Broadening Bandgap Width of Piezoelectric Metamaterial by Introducing Cavity
Abstract
:1. Introduction
2. Lumped-Parameter Modeling of Piezoelectric Metamaterial
2.1. Configuration of Conventional Piezoelectric Metamaterial
2.2. Semi-Analytical Model of Unit-Cell
2.3. Piezoelectric Metamaterial with Cavity
3. Case Analyses and Discussions
3.1. Dispersion Analysis of Unit-Cell with Cavity
3.2. Effect of Cavity on Bandgap Characteristics
3.3. Transmission Analysis
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A. Derivations of Lumped Parameters in Unit-Cell Equations of Motion
References
- Liu, Z.; Zhang, X.; Mao, Y.; Zhu, Y.Y.; Yang, Z.; Chan, C.T.; Sheng, P. Locally resonant sonic materials. Science 2000, 289, 1734–1736. [Google Scholar] [CrossRef] [PubMed]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Pendry, J.B.; Li, J. An acoustic metafluid: Realizing a broadband acoustic cloak. New J. Phys. 2008, 10, 115032. [Google Scholar] [CrossRef]
- Yang, J.; Huang, M.; Yang, C.; Peng, J.; Chang, J. An external acoustic cloak with N-sided regular polygonal cross section based on complementary medium. Comput. Mater. Sci. 2010, 49, 9–14. [Google Scholar] [CrossRef]
- Bigoni, D.; Guenneau, S.; Movchan, A.B.; Brun, M. Elastic metamaterials with inertial locally resonant structures: Application to lensing and localization. Phys. Rev. B 2013, 87, 174303. [Google Scholar] [CrossRef]
- Baravelli, E.; Ruzzene, M. Internally resonating lattices for bandgap generation and low-frequency vibration control. J. Sound Vib. 2013, 332, 6562–6579. [Google Scholar] [CrossRef]
- Yoo, Y.J.; Zheng, H.Y.; Kim, Y.J.; Rhee, J.Y.; Kang, J.H.; Kim, K.W.; Cheong, H.; Kim, Y.H.; Lee, Y.P. Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell. Appl. Phys. Lett. 2014, 105, 041902. [Google Scholar] [CrossRef]
- Zhu, R.; Chen, Y.; Barnhart, M.; Hu, G.; Sun, C.T.; Huang, G. Experimental study of an adaptive elastic metamaterial controlled by electric circuits. Appl. Phys. Lett. 2016, 108, 011905. [Google Scholar] [CrossRef]
- Li, J.; Chan, C.T. Double-negative acoustic metamaterial. Phys. Rev. E 2004, 70, 055602. [Google Scholar] [CrossRef] [PubMed]
- Fang, N.; Lee, H.; Sun, C.; Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 2005, 308, 534–537. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Mei, J.; Yang, M.; Chan, N.H.; Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass. Appl. Phys. Lett. 2008, 101, 204301. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Ma, G.C.; Yang, M.; Yang, Z.; Wen, W.J.; Sheng, P. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 2012, 3, 756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Conlon, S.C.; Semperlotti, F. Broadband energy harvesting using acoustic black hole structural tailoring. Smart Mater. Struct. 2014, 23, 065021. [Google Scholar] [CrossRef]
- Che, K.; Yuan, C.; Wu, J.; Qi, H.; Meaud, J. Three-dimensional-printed multistable mechanical metamaterials with a deterministic deformation sequence. ASME J. Appl. Mech. 2017, 84, 011004. [Google Scholar] [CrossRef]
- Liu, L.; Hussein, M.I. Wave motion in periodic flexural beams and characterization of the transition between Bragg scattering and local resonance. ASME J. Appl. Mech. 2012, 79, 011003. [Google Scholar] [CrossRef]
- Monsoriu, J.A.; Depine, R.A.; MartÝnez-Ricci, M.L.; Silvestre, E. Interaction between non-Bragg band gaps in 1D metamaterial photonic crystals. Opt. Express 2006, 14, 12958–12967. [Google Scholar] [CrossRef] [PubMed]
- Achaoui, Y.; Khelif, A.; Benchabane, S.; Robert, L.; Laude, V. Experimental observation of locally-resonant and Bragg band gaps for surface guided waves in a phononic crystal of pillars. Phys. Rev. B 2011, 83, 104201. [Google Scholar] [CrossRef]
- Huang, H.H.; Lin, C.K.; Tan, K.T. Attenuation of transverse waves by using a metamaterial beam with lateral local resonators. Smart Mater. Struct. 2016, 25, 085027. [Google Scholar] [CrossRef]
- Tan, K.T.; Huang, H.H.; Sun, C.T. Blast-wave impact mitigation using negative effective mass density concept of elastic metamaterials. Int. J. Impact Eng. 2014, 64, 20–29. [Google Scholar] [CrossRef]
- Thorp, O.; Ruzzene, M.; Baz, A. Attenuation of wave propagation in fluid-loaded shells with periodic shunted piezoelectric rings. Smart Mater. Struct. 2005, 14, 594–604. [Google Scholar] [CrossRef]
- Airoldi, L.; Ruzzene, M. Wave propagation control in beams through periodic multi-branch shunts. J. Intell. Mater. Syst. Struct. 2011, 22, 1567–1579. [Google Scholar] [CrossRef]
- Wang, G.; Chen, S. Large low-frequency vibration attenuation induced by arrays of piezoelectric patches shunted with amplifier-resonator feedback circuit. Smart Mater. Struct. 2016, 25, 015004. [Google Scholar] [CrossRef]
- Wang, G.; Chen, S.; Wen, J. Low-frequency locally resonant band gaps induced by arrays of resonant shunts with Antoniou’s circuit: Experimental investigation on beams. Smart Mater. Struct. 2010, 20, 015026. [Google Scholar] [CrossRef]
- Xu, J.; Tang, J. Tunable Prism Based on Piezoelectric Metamaterial for Acoustic Beam Steering. Appl. Phys. Lett. 2017, 110, 181902. [Google Scholar] [CrossRef]
- Xu, J.; Li, S.; Tang, J. Customized Shaping of Vibration Modes by Acoustic Metamaterial Synthesis. Smart Mater. Struct. 2018, 27, 045001. [Google Scholar] [CrossRef]
- Casadei, F.; Ruzzene, M.; Dozio, L.; Gunefare, K.A. Broadband vibration control through periodic arrays of resonant shunts: Experimental investigation on plates. Smart Mater. Struct. 2010, 19, 015002. [Google Scholar] [CrossRef]
- Tang, J.; Wang, K.W. Vibration delocalization of nearly periodic structures using coupled piezoelectric networks. ASME J. Vib. Acoust. 2003, 125, 95–108. [Google Scholar] [CrossRef]
- Wang, K.W.; Tang, J. Adaptive Structural Systems with Piezoelectric Transducer Circuitry; Springer: New York, NY, USA, 2008. [Google Scholar]
- Zhao, J.; Wang, X.; Tang, J. Damping reduction in structures using piezoelectric circuitry with negative resistance. ASME J. Vib. Acoust. 2011, 133, 041009. [Google Scholar] [CrossRef]
- Narisetti, R.K.; Leamy, M.J.; Ruzzene, M. A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures. ASME J. Vib. Acoust. 2010, 132, 031001. [Google Scholar] [CrossRef]
- Hu, G.; Tang, L.; Banerjee, A.; Das, R. Meta-structure with piezoelectric element for simultaneous vibration suppression and energy harvesting. ASME J. Vib. Acoust. 2016, 139, 011012. [Google Scholar] [CrossRef]
- Parra, E.A.F.; Bergamini, A.; Kamm, L.; Zbinden, P.; Ermanni, P. Implementation of integrated 1d hybrid phononic crystal through miniaturized programmable virtual inductances. Smart Mater. Struct. 2017, 26, 067001. [Google Scholar] [CrossRef]
- Zhu, R.; Liu, X.N.; Huang, G.L.; Huang, H.H.; Sun, C.T. Microstructural design and experimental validation of elastic metamaterial plates with anisotropic mass density. Phys. Rev. B 2012, 25, 144307. [Google Scholar] [CrossRef]
- ANSI/IEEE Std. 176-1987 IEEE Standard on Piezoelectricity; IEEE Standards Association: Piscataway, NJ, USA, 1988.
- Huang, G.; Sun, C.T. Band gaps in a multiresonator acoustic metamaterial. ASME J. Vib. Acoust. 2010, 132, 031003. [Google Scholar] [CrossRef]
- Collet, M.; Ouisse, M.; Ichchou, M.N. Structural energy flow optimization through adaptive shunted piezoelectric metacomposite. J. Intell. Mater. Syst. Struct. 2012, 23, 1661–1677. [Google Scholar] [CrossRef]
- Pai, P.F.; Peng, H.; Jiang, S. Acoustic metamaterial beams based on multi-frequency vibration absorbers. Int. J. Mech. Sci. 2014, 79, 195–205. [Google Scholar] [CrossRef]
- Tang, J.; Wang, K.W. Active-passive hybrid piezoelectric networks for vibration control: Comparisons and improvement. Smart Mater. Struct. 2001, 10, 794–806. [Google Scholar] [CrossRef]
- Massimo, R. Frequency–wavenumber domain filtering for improved damage visualization. Smart Mater. Struct. 2007, 16, 2166. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Yan, R.; Tang, J. Broadening Bandgap Width of Piezoelectric Metamaterial by Introducing Cavity. Appl. Sci. 2018, 8, 1606. https://doi.org/10.3390/app8091606
Xu J, Yan R, Tang J. Broadening Bandgap Width of Piezoelectric Metamaterial by Introducing Cavity. Applied Sciences. 2018; 8(9):1606. https://doi.org/10.3390/app8091606
Chicago/Turabian StyleXu, Jiawen, Ruqiang Yan, and J. Tang. 2018. "Broadening Bandgap Width of Piezoelectric Metamaterial by Introducing Cavity" Applied Sciences 8, no. 9: 1606. https://doi.org/10.3390/app8091606
APA StyleXu, J., Yan, R., & Tang, J. (2018). Broadening Bandgap Width of Piezoelectric Metamaterial by Introducing Cavity. Applied Sciences, 8(9), 1606. https://doi.org/10.3390/app8091606