Experimental Modal Analysis of Hand–Arm Vibration in Golf: Influence of Grip Strength
Abstract
:1. Introduction
2. ISO 5349 Standard
3. Experimental Model
4. Finite Element Numerical Model
4.1. Shaft Modeling
4.2. Modeling of Contact between the Ball and Club Head
5. Influence of Grip Strength
5.1. On the Modal Characteristics
5.2. On the Values of Total Accelerations
5.3. On the Vibratory Doses
6. Discussion
7. Conclusions/Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Taiar, R.; Machado, C.B.; Chiementin, X.; Bernardo-Filho, M. Whole Body Vibrations: Physical and Biological Effects on the Human Body, 1st ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Griffin, M.J. Handbook of Human Vibration; Academic Press: Cambridge, MA, USA, 1990. [Google Scholar]
- International Organization for Standardization. ISO5349-1, “Mechanical Vibration—Measurement and Evaluation of Human Exposure to Hand-Transmitted Vibration—Part 1: General Requirements”; International Organization for Standardization: Geneva, Switzerland, 2001. [Google Scholar]
- International Organization for Standardization. ISO 2631-1, ISO 2631-1:1997—Mechanical Vibration and Shock—Evaluation of Human Exposure to Whole-Body Vibration—Part 1: General Requirements; International Organization for Standardization: Geneva, Switzerland, 1997. [Google Scholar]
- Council of the European Union; European Parliament. Directive 2002/44/EC, “Directive 2002/44/EC of the European Parliament on the Minimum Health and Safety Requirements Regarding the Exposure of Workers to the Risks Arising from Physical Agents (Vibration)”; Council of the European Union, European Parliament: Luxembourg, 2002. [Google Scholar]
- Friden, J. Vibration damage to the hand: Clinical presentation, prognosis and length and severity of vibration required. J. Hand Surg. J. Br. Soc. Surg. Hand 2001, 26, 471–474. [Google Scholar] [CrossRef]
- Pyykkö, I.; Färkkilä, M.; Toivanen, J.; Korhonen, O.; Hyvärinen, J. Transmission of vibration in the hand-arm system with special reference to changes in compression force and acceleration. Scand. J. Work Environ. Health 1976, 2, 87–95. [Google Scholar] [CrossRef]
- Bovenzi, M.; Petronio, L.; DiMarino, F. Epidemiological survey of shipyard workers exposed to hand-arm vibration. Int. Arch. Occup. Environ. Health 1980, 46, 251–266. [Google Scholar] [CrossRef]
- Taylor, W. Biological effects of the hand-arm vibration syndrome: Historical perspective and current research. J. Acoust. Soc. Am. 1988, 83, 415–422. [Google Scholar] [CrossRef]
- Pekkarinen, J.; Starck, J.; Pyyko, I. High-speed digital method to measure impulsive hand–arm vibration. In Proceedings of the 3rd International Symposium of the ISSA, Vienna, Austria, 19–21 April 1989. [Google Scholar]
- Starck, J.; Pekkarinen, J.; Chun, L.C. Transmission of vibration from tool handle to wrist and to head. Kurume Med. J. 1990, 37, S1–S11. [Google Scholar] [CrossRef]
- Aldien, Y.; Marcotte, P.; Rakheja, S.; Boileau, P.-É. Influence of hand forces and handle size on power absorption of the human hand–arm exposed to zh-axis vibration. J. Sound Vib. 2006, 290, 1015–1039. [Google Scholar] [CrossRef]
- Issurin, V.B. Vibrations and their applications in sport. A review. J. Sports Med. Phys. Fit. 2005, 45, 324–336. [Google Scholar]
- Stroede, C.L.; Noble, L.; Walker, H.S. The effect of tennis racket string vibration dampers on racket handle vibrations and discomfort following impacts. J. Sports Sci. 1999, 17, 379–385. [Google Scholar] [CrossRef]
- Brody, B.; Létourneau, Y.; Poirier, A. Le coût des accidents du travail: État des connaissances. Relat. Ind. 1990, 45, 94–117. [Google Scholar] [CrossRef]
- Allen, T.; Dixon, S.; Dunn, M.; Knudson, D. Tennis Equipment and Technique Interactions on Risk of Overuse Injuries. In Tennis Medicine; Springer International Publishing: Cham, Switzerland, 2018; pp. 61–79. [Google Scholar]
- Chiementin, X.; Rigaut, M.; Crequy, S.; Bolaers, F.; Bertucci, W. Hand–arm vibration in cycling. J. Vib. Control 2013, 19, 2551–2560. [Google Scholar] [CrossRef]
- Rtaimate, M.; Farez, E.; Lariviere, J.; Limousin, M.; Laffargue, P. Aneurysm of the ulnar artery in a mountain biker, a case report and review of the literature. Chirurgie de la Main 2002, 21, 362–365. [Google Scholar] [CrossRef]
- Haloua, J.P.; Collin, J.P.; Coudeyre, L. Paralysis of the ulnar nerve in cyclists. Ann. Chir. Main 1987, 6, 282–287. [Google Scholar] [CrossRef]
- Parkin, J.; Sainte Cluque, E.; Parkin, J.; Sainte Cluque, E. The impact of vibration on comfort and bodily stress while cycling. In Proceedings of the UTSG 46th Annual Conference, Newcastle University, Newcastle, UK, 6–8 January 2014. [Google Scholar]
- Ayachi, F.S.; Dorey, J.; Guastavino, C. Identifying factors of bicycle comfort: An online survey with enthusiast cyclists. Appl. Ergon. 2015, 46, 124–136. [Google Scholar] [CrossRef]
- Noble, L.; Walker, H. Baseball Bat Inertial and Vibrational Characteristics and Discomfort Following Ball–Bat Impacts. J. Appl. Biomech. 1994, 10, 132–144. [Google Scholar] [CrossRef]
- Tabuchi, N. Effect of rubber-ball baseball playing experience on the batted ball sound evaluation. Proc. Symp. Sport. Hum. Dyn. 2015, 28, 1–6. [Google Scholar]
- Roberts, J.R.; Jones, R.; Mansfield, N.J.; Rothberg, S.J. Evaluation of impact sound on the ‘feel’ of a golf shot. J. Sound Vib. 2005, 287, 651–666. [Google Scholar] [CrossRef]
- Bower, R.; Cross, R. Player sensitivity to changes in string tension in a tennis racket. J. Sci. Med. Sport 2003, 6, 120–131. [Google Scholar] [CrossRef]
- Steele, C.; Jones, R.; Leaney, P. Improved tennis ball design: Incorporating mechanical and psychological influences. J. Eng. Des. 2008, 19, 269–284. [Google Scholar] [CrossRef]
- Osis, S.T.; Stefanyshyn, D.J. Vibration at the wrist and elbow joints during the golf swing reveals shaft-specific swing kinematics. Procedia Eng. 2010, 2, 2637–2642. [Google Scholar] [CrossRef]
- Roberts, J.R.; Jones, R.; Mansfield, N.J.; Rothberg, S.J. Evaluation of vibrotactile sensations in the ‘feel’ of a golf shot. J. Sound Vib. 2005, 285, 303–319. [Google Scholar] [CrossRef]
- Braunwart, P.R. Experimental and Analytical Examination of Golf Club Dynamics. Ph.D. Thesis, Virginia Tech, Blacksburg, Virginia, March 1999. [Google Scholar]
- Friswell, M.I.; Mottershead, J.E.; Smart, M.G. Dynamic models of golf clubs. Sport. Eng. 1998, 1, 41–50. [Google Scholar] [CrossRef]
- Sandhu, S.; Millard, M.; Mcphee, J.; Brekke, D. 3D Dynamic Modelling and Simulation of a Golf Drive. Procedia Eng. 2010, 2, 3243–3248. [Google Scholar] [CrossRef]
- Chadefaux, D.; Rao, G.; Le Carrou, J.-L.; Berton, E.; Vigouroux, L. The effects of player grip on the dynamic behaviour of a tennis racket. J. Sports Sci. 2017, 35, 1155–1164. [Google Scholar] [CrossRef]
- Farber, A.J.; Smith, J.S.; Kvitne, R.S.; Mohr, K.J.; Shin, S.S. Electromyographic Analysis of Forearm Muscles in Professional and Amateur Golfers. Am. J. Sports Med. 2009, 37, 396–401. [Google Scholar] [CrossRef]
- Carma. Glossaire des Matériaux Composites—Actualisation; Région Provence - Alpes Côte d’Azur, CARMA: Washington, DC, USA, 2006. [Google Scholar]
- Guillaume, P.; Van der Auweraer, H.; Vanlanduit, S.; Peeters, B. A poly-reference implementation of the least-squares complex frequency-domain estimator. In Proceedings of the IMAC, Kissimmee, FL, USA, 3–6 February 2003; Volume 21. [Google Scholar]
- Cheong, S.K.; Kang, K.W.; Jeong, S.K. Evaluation of the mechanical performance of golf shafts. Eng. Fail. Anal. 2006, 13, 464–473. [Google Scholar] [CrossRef]
- Tanaka, K.; Sekizawa, K. Construction of a Finite Element Model of Golf Clubs and Influence of Shaft Stiffness on Its Dynamic Behavior. Proceedings 2018, 2, 247. [Google Scholar] [CrossRef]
- Allemang, R. The modal assurance criterion—Twenty years of use and abuse. Sound Vib. 2003, 37, 14–23. [Google Scholar]
- Arakawa, K.; Mada, T.; Komatsu, H.; Shimizu, T.; Satou, M.; Takehara, K.; Etoh, G. Dynamic Deformation Behavior of a Golf Ball during Normal Impact. Exp. Mech. 2009, 49, 471–477. [Google Scholar] [CrossRef]
- Thomas, G.; Deiters, T.; Best, C. Simulating golf club performance using modal analysis. In Proceedings of the 13th International Modal Analysis Conference, Nashville, TN, USA, 13–16 February 1995. [Google Scholar]
- Goff, G.D. Differential discrimination of frequency of cutaneous mechanical vibration. J. Exp. Psychol. 1967, 74 Pt 1, 294–299. [Google Scholar] [CrossRef]
- Russell, D.A. Flexural vibration and the perception of sting in hand-held sports implements. In Proceedings of the 41st International Congress and Exposition on Noise Control Engineering, New York, NY, USA, 19–22 August 2012; Volume 2012, pp. 10111–10119. [Google Scholar]
- McCarroll, J.R.; Rettig, A.C.; Shelbourne, K.D. Injuries in the Amateur Golfer. Phys. Sportsmed. 1990, 18, 122–126. [Google Scholar] [CrossRef]
- Kohn, H.S. Prevention and treatment of elbow injuries in golf. Clin. Sports Med. 1996, 15, 65–83. [Google Scholar]
- Knudson, D.V. Forces on the Hand in the Tennis One-Handed Backhand. Int. J. Sport Biomech. 1991, 7, 282–292. [Google Scholar] [CrossRef]
- Rossi, J.; Berton, E.; Grélot, L.; Barla, C.; Vigouroux, L. Characterisation of forces exerted by the entire hand during the power grip: Effect of the handle diameter. Ergonomics 2012, 55, 682–692. [Google Scholar] [CrossRef]
- Peeters, B.; Van Der Auweraer, H. Polymax: A revolution in operational modal analysis. In Proceedings of the 1st International Operational Modal Analysis Conference, Copenhagen, Denmark, 26–27 April 2005. [Google Scholar]
- Mucchi, E. On the sweet spot estimation in beach tennis rackets. Measurement 2013, 46, 1399–1410. [Google Scholar] [CrossRef]
- Hung, G.K. Effect of Putting Grip on Eye and Head Movements During the Golf Putting Stroke. Sci. World J. 2003, 3, 122–137. [Google Scholar] [CrossRef]
- Petersen, W.; McPhee, J. Shape optimization of golf clubface using finite element impact models. Sport. Eng. 2009, 12, 77–85. [Google Scholar] [CrossRef]
Shaft (Composite) | Grip (EDPM) | Head (Aluminium) |
---|---|---|
Gripping | Hand | Pressure (MPa) | Surface (mm2) |
---|---|---|---|
Low | Right | 0.026 | 2306 |
Medium | Right | 0.044 | 3153 |
Strong | Right | 0.098 | 4482 |
Low | Left | 0.019 | 1923 |
Medium | Left | 0.032 | 3159 |
Strong | Left | 0.052 | 3736 |
Mode | Free-Free | Fixed-Free | Strong Grip-Free | Medium Grip-Free | Weak Grip-Free | Plane |
---|---|---|---|---|---|---|
1 | 45.25 (1.0) | 3.79 (1.7) | 2.03 (24.2) | 2.03 (12.3) | 2.06 (10.5) | xy |
2 | 51.08 (0.9) | 4.44 (1.8) | 3.02 (32.2) | 3.05 (14.5) | 3.05 (15.0) | xz |
3 | 124.43 (0.50) | 72.25 (1.4) | 83.00 (15.5) | 84.06 (9.0) | 84.38 (8.9) | xy |
4 | 146.86 (0.8) | 92.45 (1.5) | 95.45 (-) | 96.33 (13.4) | 97.99 (12.2) | xz |
5 | 286.75 (0.4) | 187.94 (0.8) | 188.51 (10.2) | 189.99 (5.3) | 193.19(1.0) | xy |
6 | 298.92 (1.6) | 239.50 (0.5) | 276.68 (19.4) | 277.59 (12.1) | 278.79 (14.2) | xz |
7 | 361.88 (-) | 320.20 (1.3) | 357.48 (-) | 377.97 (12.5) | 388.55 (-) | xy |
8 | 477.88 (2.7) | 478.74 (1.6) | 444.60 (35.2) | 456.22 (-) | 472.29 (-) | xz |
Free-Free | Embedded-Free | |||||
---|---|---|---|---|---|---|
Mode | Exp. | Num. before Updating | Num. after Updating | Exp. | Num. before Updating | Num. after Updating |
1 | 45.25 | 54.55 | 44.64 | 3.79 | 6.01 | 5.04 |
2 | 51.08 | 61.17 | 50.06 | 4.44 | 6.40 | 5.25 |
3 | 124.43 | 145.09 | 127.04 | 72.25 | 84.00 | 69.21 |
4 | 146.86 | 154.29 | 152.75 | 92.45 | 114.95 | 94.85 |
5 | 286.75 | 309.93 | 257.45 | 187.94 | 231.85 | 193.55 |
6 | 298.92 | - | - | 239.5 | 294.24 | 244.89 |
7 | 361.88 | - | - | 320.20 | - | - |
8 | 477.88 | - | - | 478.74 | - | - |
Grip Strength | |||
---|---|---|---|
Strong | 183 | 119 | 39 |
Medium | 151 | 120 | 36 |
Weak | 182 | 123 | 56 |
Vibratory Doses | Strong Grip | Medium Grip | Weak Grip |
---|---|---|---|
3.04 | 3.01 | 3.09 | |
2.31 | 2.29 | 2.35 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiementin, X.; Kouroussis, G.; Murer, S.; Serra, R. Experimental Modal Analysis of Hand–Arm Vibration in Golf: Influence of Grip Strength. Appl. Sci. 2019, 9, 2050. https://doi.org/10.3390/app9102050
Chiementin X, Kouroussis G, Murer S, Serra R. Experimental Modal Analysis of Hand–Arm Vibration in Golf: Influence of Grip Strength. Applied Sciences. 2019; 9(10):2050. https://doi.org/10.3390/app9102050
Chicago/Turabian StyleChiementin, Xavier, Georges Kouroussis, Sébastien Murer, and Roger Serra. 2019. "Experimental Modal Analysis of Hand–Arm Vibration in Golf: Influence of Grip Strength" Applied Sciences 9, no. 10: 2050. https://doi.org/10.3390/app9102050
APA StyleChiementin, X., Kouroussis, G., Murer, S., & Serra, R. (2019). Experimental Modal Analysis of Hand–Arm Vibration in Golf: Influence of Grip Strength. Applied Sciences, 9(10), 2050. https://doi.org/10.3390/app9102050