LED Nonlinearity Estimation and Compensation in VLC Systems Using Probabilistic Bayesian Learning
Abstract
:1. Introduction
2. System Model
3. PBL-Based LED Nonlinearity Estimation and Compensation in VLC
3.1. PBL Regression
3.2. LED Nonlinearity Estimation and Compensation Using PBL Regression
4. Simulation Setup
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Komine, T.; Nakagawa, M. Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 2004, 50, 100–107. [Google Scholar] [CrossRef]
- Jovicic, A.; Li, J.; Richardson, T. Visible light communication: Opportunities, challenges and the path to market. IEEE Commun. Mag. 2013, 51, 26–32. [Google Scholar] [CrossRef]
- Pathak, P.H.; Feng, X.; Hu, P.; Mohapatra, P. Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Commun. Surv. Tutor. 2015, 17, 2047–2077. [Google Scholar] [CrossRef]
- Wu, D.; Zhong, W.D.; Ghassemlooy, Z.; Chen, C. Short-range visible light ranging and detecting system using illumination light emitting diodes. IET Optoelectron. 2016, 10, 94–99. [Google Scholar] [CrossRef]
- Deng, X.; Mardanikorani, S.; Wu, Y.; Arulandu, K.; Chen, B.; Khalid, A.M.; Linnartz, J.P.M. Mitigating LED nonlinearity to enhance visible light communications. IEEE Trans. Commun. 2018, 66, 5593–5607. [Google Scholar] [CrossRef]
- Rajbhandari, S.; Chun, H.; Faulkner, G.; Cameron, K.; Jalajakumari, A.V.; Henderson, R.; Tsonev, D.; Ijaz, M.; Chen, Z.; Haas, H.; et al. High-speed integrated visible light communication system: Device constraints and design considerations. IEEE J. Sel. Areas Commun. 2015, 33, 1750–1757. [Google Scholar] [CrossRef]
- Elgala, H.; Mesleh, R.; Haas, H.; Pricope, B. OFDM visible light wireless communication based on white LEDs. In Proceedings of the IEEE 65th Vehicular Technology Conference (VTC Spring), Dublin, Ireland, 22–25 April 2007; pp. 2185–2189. [Google Scholar]
- Marshoud, H.; Kapinas, V.M.; Karagiannidis, G.K.; Muhaidat, S. Non-orthogonal multiple access for visible light communications. IEEE Photonics Technol. Lett. 2015, 28, 51–54. [Google Scholar] [CrossRef]
- Chen, C.; Zhong, W.D.; Yang, H.; Du, P. On the performance of MIMO-NOMA-based visible light communication systems. IEEE Photonics Technol. Lett. 2017, 30, 307–310. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, C.; Zhang, W.; Deng, X.; Du, P.; Yang, H.; Zhong, W.D.; Chen, L. Secure and private NOMA VLC using OFDM with two-level chaotic encryption. Opt. Express 2018, 26, 34031–34042. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Zhong, W.D.; Yang, H.; Du, P.; Yang, Y. Flexible-rate SIC-free NOMA for downlink VLC based on constellation partitioning coding. IEEE Wirel. Commun. Lett. 2019, 8, 568–571. [Google Scholar] [CrossRef]
- Zeng, L.; O’Brien, D.C.; Le Minh, H.; Faulkner, G.E.; Lee, K.; Jung, D.; Oh, Y.; Won, E.T. High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting. IEEE J. Sel. Areas Commun. 2009, 27, 1654–1662. [Google Scholar] [CrossRef]
- Chen, C.; Zhong, W.D.; Wu, D. On the coverage of multiple-input multiple-output visible light communications. IEEE/OSA J. Opt. Commun. Netw. 2017, 9, D31–D41. [Google Scholar] [CrossRef]
- Chen, C.; Zhong, W.D.; Wu, D. Indoor OFDM visible light communications employing adaptive digital pre-frequency domain equalization. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 June 2016. paper JTh2A. [Google Scholar]
- Le Minh, H.; O’Brien, D.; Faulkner, G.; Zeng, L.; Lee, K.; Jung, D.; Oh, Y.; Won, E.T. 100-Mb/s NRZ visible light communications using a postequalized white LED. IEEE Photonics Technol. Lett. 2009, 21, 1063–1065. [Google Scholar] [CrossRef]
- Ying, K.; Yu, Z.; Baxley, R.J.; Qian, H.; Chang, G.K.; Zhou, G.T. Nonlinear distortion mitigation in visible light communications. IEEE Wirel. Commun. 2015, 22, 36–45. [Google Scholar] [CrossRef]
- Stepniak, G.; Siuzdak, J.; Zwierko, P. Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE. IEEE Photonics Technol. Lett. 2013, 25, 1597–1600. [Google Scholar] [CrossRef]
- Mitra, R.; Bhatia, V. Chebyshev polynomial-based adaptive predistorter for nonlinear LED compensation in VLC. IEEE Photonics Technol. Lett. 2016, 28, 1053–1056. [Google Scholar] [CrossRef]
- Liang, S.; Jiang, Z.; Qiao, L.; Lu, X.; Chi, N. Faster-than-Nyquist precoded CAP modulation visible light communication system based on nonlinear weighted look-up table predistortion. IEEE Photonics J. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Lu, H.; Jin, J.; Wang, J. Alleviation of LED nonlinearity impact in visible light communication using companding and predistortion. IET Commun. 2019, 13, 818–821. [Google Scholar] [CrossRef]
- Mitra, R.; Bhatia, V. Adaptive sparse dictionary-based kernel minimum symbol error rate post-distortion for nonlinear LEDs in visible light communications. IEEE Photonics J. 2016, 8, 1–13. [Google Scholar] [CrossRef]
- Deng, X.; Mardanikorani, S.; Arulandu, K.; Linnartz, J.P.M. Novel Post-distortion to Mitigate LED Nonlinearity in High-speed Visible Light Communications. In Proceedings of the IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, UAE, 9–13 December 2018; pp. 1–6. [Google Scholar]
- Wang, Y.; Tao, L.; Huang, X.; Shi, J.; Chi, N. Enhanced performance of a high-speed WDM CAP64 VLC system employing Volterra series-based nonlinear equalizer. IEEE Photonics J. 2015, 7, 1–7. [Google Scholar] [CrossRef]
- Lu, X.; Wang, K.; Qiao, L.; Zhou, W.; Wang, Y.; Chi, N. Nonlinear compensation of multi-CAP VLC system employing clustering algorithm based perception decision. IEEE Photonics J. 2017, 9, 1–9. [Google Scholar] [CrossRef]
- Ma, J.; He, J.; Shi, J.; Zhou, Z.; Deng, R. Nonlinear Compensation Based on K-Means Clustering Algorithm for Nyquist PAM-4 VLC System. IEEE Photonics Technol. Lett. 2019, 31, 935–938. [Google Scholar] [CrossRef]
- Lu, X.; Lu, C.; Yu, W.; Qiao, L.; Liang, S.; Lau, A.P.T.; Chi, N. Memory-controlled deep LSTM neural network post-equalizer used in high-speed PAM VLC system. Opt. Express 2019, 27, 7822–7833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, P.; Zhu, B.; Qi, C.; Jin, Y.; Lin, C. A Model-Driven Deep Learning Method for LED Nonlinearity Mitigation in OFDM-based Optical Communications. IEEE Access 2019, 7, 71436–71446. [Google Scholar] [CrossRef]
- Nguyen, T.; Mhatli, S.; Giacoumidis, E.; Van Compernolle, L.; Wuilpart, M.; Mégret, P. Fiber nonlinearity equalizer based on support vector classification for coherent optical OFDM. IEEE Photonics J. 2016, 8, 1–9. [Google Scholar] [CrossRef]
- Lake, B.M.; Salakhutdinov, R.; Tenenbaum, J.B. Human-level concept learning through probabilistic program induction. Science 2015, 350, 1332–1338. [Google Scholar] [CrossRef] [Green Version]
- Tipping, M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1, 211–244. [Google Scholar]
- Chen, C.; Zhong, W.D.; Zhao, L. Sparse Bayesian RVM regression based channel estimation for IM/DD OFDM-VLC systems with reduced training overhead. In Proceedings of the IEEE International Conference on Communications Workshops (ICC Workshops), Paris, France, 21–25 May 2017; pp. 162–167. [Google Scholar]
- Zhao, L.; Wang, L.; Yang, L.; Zoubir, A.M.; Bi, G. The race to improve radar imagery: An overview of recent progress in statistical sparsity-based techniques. IEEE Signal Process. Mag. 2016, 33, 85–102. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, L.; Bi, G.; Zhang, L.; Zhang, H. Robust frequency-hopping spectrum estimation based on sparse Bayesian method. IEEE Trans. Wirel. Commun. 2014, 14, 781–793. [Google Scholar] [CrossRef]
- Li, J.; Huang, Z.; Liu, X.; Ji, Y. Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems. Opt. Express 2015, 23, 611–619. [Google Scholar] [CrossRef]
- Tipping, M.E.; Faul, A.C. Fast marginal likelihood maximisation for sparse Bayesian models. In Proceedings of the 9th International Workshop on Artificial Intelligence and Statistics, Key West, FL, USA, 3–6 January 2003; pp. 1–13. [Google Scholar]
- Aggarwal, P.; Kabra, T.; Ahmad, R.; Bohara, V.A.; Srivastava, A. Adaptive learning architecture-based predistorter for nonlinear VLC system. Photonics Netw. Commun. 2019, 1–12. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Semi-angle at half power of LED | |
LED output optical power | 10 W |
Gain of optical filter | 0.9 |
Refractive index of optical lens | 1.5 |
Half-angle FOV of optical lens | |
Active area of PD | 16 |
Responsivity of PD | 0.53 A/W |
Vertical distance between LED and PD | 2 m |
Horizontal offset between LED and PD | 2 m |
Modulation bandwidth | 20 MHz |
QAM constellation order | 16 |
Raw data rate | 80 Mbit/s |
Size of FFT/IFFT | 512 |
Number of data subcarriers | 128 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Deng, X.; Yang, Y.; Du, P.; Yang, H.; Zhao, L. LED Nonlinearity Estimation and Compensation in VLC Systems Using Probabilistic Bayesian Learning. Appl. Sci. 2019, 9, 2711. https://doi.org/10.3390/app9132711
Chen C, Deng X, Yang Y, Du P, Yang H, Zhao L. LED Nonlinearity Estimation and Compensation in VLC Systems Using Probabilistic Bayesian Learning. Applied Sciences. 2019; 9(13):2711. https://doi.org/10.3390/app9132711
Chicago/Turabian StyleChen, Chen, Xiong Deng, Yanbing Yang, Pengfei Du, Helin Yang, and Lifan Zhao. 2019. "LED Nonlinearity Estimation and Compensation in VLC Systems Using Probabilistic Bayesian Learning" Applied Sciences 9, no. 13: 2711. https://doi.org/10.3390/app9132711
APA StyleChen, C., Deng, X., Yang, Y., Du, P., Yang, H., & Zhao, L. (2019). LED Nonlinearity Estimation and Compensation in VLC Systems Using Probabilistic Bayesian Learning. Applied Sciences, 9(13), 2711. https://doi.org/10.3390/app9132711