Photoluminescence Revealed Higher Order Plasmonic Resonance Modes and Their Unexpected Frequency Blue Shifts in Silver-Coated Silica Nanoparticle Antennas
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Transmission Electron Microscopy (TEM) Results
3.2. Photoluminescence Spectroscopy Analyses
3.3. Numerical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Greffet, J.J.; Laroche, M.; Marquier, F. Impedance of a nanoantenna and a single quantum emitter. Phys. Rev. Lett. 2010, 105, 117701. [Google Scholar] [CrossRef] [PubMed]
- Zhukovsky, S.V.; Babicheva, V.E.; Uskov, A.V.; Protsenko, I.E.; Lavrinenko, A.V. Enhanced electron photoemission by collective lattice resonances in plasmonic nanoparticle-array photodetectors and solar cells. Plasmonics 2014, 9, 283–289. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, X.; Wang, X.; Ku, G.; Gill, K.L.; O’Neal, D.P.; Stoica, G.; Wang, L.V. Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett. 2004, 4, 1689–1692. [Google Scholar] [CrossRef]
- Jain, P.K.; Huang, W.; El-Sayed, M.A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation. Nano Lett. 2007, 7, 2080–2088. [Google Scholar] [CrossRef]
- Durr, N.J.; Larson, T.; Smith, D.K.; Korgel, B.A.; Sokolov, K.; Ben-Yakar, A. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett. 2007, 7, 941–945. [Google Scholar] [CrossRef] [PubMed]
- Merlo, J.M.; Nesbitt, N.T.; Calm, Y.M.; Rose, A.H.; Imperio, L.D.; Yang, C.; Naughton, J.R.; Burns, M.J.; Kempa, K.; Naughton, M.J. Wireless communication system via nanoscale plasmonic antennas. Sci. Rep. 2016, 6, 31710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodson, S.; Haggui, M.; Bachelot, R.; Plain, J.; Li, S.; Xiong, Q. Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae. J. Phys. Chem. Lett. 2013, 4, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Hooshmand, N.; Bordley, J.A.; El-Sayed, M.A. The sensitivity of the distance dependent plasmonic coupling between two nanocubes to their orientation: Edge-to-edge versus face-to-face. J. Phys. Chem. C 2016, 120, 4564–4570. [Google Scholar] [CrossRef]
- Dong, Z.G.; Liu, H.; Li, T.; Zhu, Z.-H.; Wang, S.-M.; Cao, J.-X.; Zhu, S.-N.; Zhang, X. Modeling the directed transmission and reflection enhancements of the lasing surface plasmon amplification by stimulated emission of radiation in active metamaterials. Phys. Rev. B 2009, 80, 235116. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Kan, J.; Fullerton, E.E.; Liu, Z. Tunable surface plasmon polaritons in Ag composite films by adding dielectrics or semiconductors. Appl. Phys. Lett. 2011, 98, 243114. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Li, D.; Sun, X.; Li, Z.; Song, H.; Jiang, H.; Chen, Y. Tunable dipole surface plasmon resonances of silver nanoparticles by cladding dielectric layers. Sci. Rep. 2015, 5, 12555. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S.D.; Ziolkowski, R.W. Simultaneous excitation of electric and magnetic dipole modes in a resonant core-shell particle at infrared frequencies to achieve minimal backscattering. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 4700209. [Google Scholar] [CrossRef]
- Gordon, J.A.; Ziolkowski, R.W. The design and simulated performance of a coated nano-particle laser. Opt. Express 2007, 15, 2622–2653. [Google Scholar] [CrossRef] [PubMed]
- Stöber, W.; Fink, A.; Bohn, E.; Colloid, J. Controlled growth of monodisperse silica spheres in the micron size range. Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Kim, J.H.; Bryan, W.W.; Lee, T.R. Preparation, characterization, and optical properties of gold, silver, and gold−silver alloy nanoshells having silica cores. Langmuir 2008, 24, 11147–11152. [Google Scholar] [CrossRef]
- Rahman, A.U.; Rafiq, M.A.; Maaz, K.; Karim, S.; Cho, S.O.; Hasan, M.M. Temperature induced delocalization of charge carriers and metallic phase in Co0.6Sn0.4Fe2O4 nanoparticles. J. Appl. Phys. 2012, 112, 063718. [Google Scholar] [CrossRef]
- Poddar, P.; Fried, T.; Markovich, G. First-order metal-insulator transition and spin-polarized tunneling in Fe3O4 nanocrystals. Phys. Rev. B 2002, 65, 172405. [Google Scholar] [CrossRef]
- Sato, Y.; Oba, F.; Yodogawa, M.; Yamamoto, T.; Ikuhara, Y. Grain boundary dependency of nonlinear current–voltage characteristics in Pr and Co doped ZnO bicrystals. J. Appl. Phys. 2004, 95, 1258–1264. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Grady, N.K.; Halas, N.J.; Nordlander, P. Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles. Chem. Phys. Lett. 2004, 399, 167–171. [Google Scholar] [CrossRef] [Green Version]
- Şendur, K.; Challener, W.; Mryasov, O. Interaction of spherical nanoparticles with a highly focused beam of light. Opt. Exp. 2008, 16, 2874–2886. [Google Scholar] [CrossRef] [PubMed]
- Kupresak, M.; Zheng, X.; Vandenbosch, G.A.E.; Moshchalkov, V.V. Benchmarking of software tools for the characterization of nanoparticles. Opt. Exp. 2017, 25, 26760–26780. [Google Scholar] [CrossRef] [PubMed]
Sample | Experiment | Simulation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
λ1 (nm) | λ2 (nm) | λ1 (nm) | λ2 (nm) | |||||||
CST-SDD | Mie-SDD | CST-JC | Mie-JC | CST-SDD | Mie-SDD | CST-JC | Mie-JC | |||
S1 | 484 | 568 | 482.7 | 482 | 497 | 496 | 566.7 | 566 | 591 | 588 |
S2 | 474.5 | 564 | 476.7 | 477 | 469 | 468 | 559 | 557 | 549 | 550 |
S3 | 471 | 556 | 472 | 470 | 452 | 451 | 553 | 552 | 547 | 545 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, A.U.; Geng, J.; Ziolkowski, R.W.; Hang, T.; Hayat, Q.; Liang, X.; Rehman, S.U.; Jin, R. Photoluminescence Revealed Higher Order Plasmonic Resonance Modes and Their Unexpected Frequency Blue Shifts in Silver-Coated Silica Nanoparticle Antennas. Appl. Sci. 2019, 9, 3000. https://doi.org/10.3390/app9153000
Rahman AU, Geng J, Ziolkowski RW, Hang T, Hayat Q, Liang X, Rehman SU, Jin R. Photoluminescence Revealed Higher Order Plasmonic Resonance Modes and Their Unexpected Frequency Blue Shifts in Silver-Coated Silica Nanoparticle Antennas. Applied Sciences. 2019; 9(15):3000. https://doi.org/10.3390/app9153000
Chicago/Turabian StyleRahman, Atta Ur, Junping Geng, Richard W. Ziolkowski, Tao Hang, Qaisar Hayat, Xianling Liang, Sami Ur Rehman, and Ronghong Jin. 2019. "Photoluminescence Revealed Higher Order Plasmonic Resonance Modes and Their Unexpected Frequency Blue Shifts in Silver-Coated Silica Nanoparticle Antennas" Applied Sciences 9, no. 15: 3000. https://doi.org/10.3390/app9153000
APA StyleRahman, A. U., Geng, J., Ziolkowski, R. W., Hang, T., Hayat, Q., Liang, X., Rehman, S. U., & Jin, R. (2019). Photoluminescence Revealed Higher Order Plasmonic Resonance Modes and Their Unexpected Frequency Blue Shifts in Silver-Coated Silica Nanoparticle Antennas. Applied Sciences, 9(15), 3000. https://doi.org/10.3390/app9153000