Development of Hybrid Artificial Intelligence Approaches and a Support Vector Machine Algorithm for Predicting the Marshall Parameters of Stone Matrix Asphalt
Abstract
:1. Introduction
2. Experimental Program and Data Preparation
2.1. Material Properties
2.2. Samples Preparation and Testing
2.3. Data Statistical Information
3. Method Used
3.1. Adaptive Network-Based Fuzzy Inference System
3.2. Genetic Algorithm
3.3. Particle Swarm Optimization
3.4. Support Vector Machine
3.5. Quality Assessment
3.6. Monte Carlo Method
3.7. Modeling Methodology
- Step 1:
- Loading the as-obtained dataset and dividing it into two parts. The first part, including 70% of the data, is used to train and construct the AI “black-boxes”, whereas the remaining 30% of data was used for validation of the models. The input parameters were coarse and fine aggregates (wt.%), AC-60/70 (wt.%) or PMB I (wt.%) binders, and cellulose fibers (wt.%). The output of the AI numerical tools was MS (kN), MF (mm) and MQ (kN/mm).
- Step 2:
- Construction of the models using the training dataset. In the PSOANFIS, the PSO was first used to optimize the consequent and antecedent parameters of the ANFIS with the best number of particles and the inertia weight were set as 25 and 0.01, respectively. The optimal parameters optimized by the PSO were then used to train the ANFIS model for generating the PSOANFIS. For the GAANFIS, the GA was first used to optimize the consequent and antecedent parameters of the ANFIS with the crossover rate, the best number of individuals and mutation rate were set as 0.4, 25, and 0.7, respectively. The optimal parameters optimized by the GA were then used to train the ANFIS model for generating the GAANFIS. With respect to the SVM, the cubic algorithm was used to train and construct the model. A k-fold cross-validation was applied to assess the performance of SVM with the number of 10 folds.
- Step 3:
- Validation of the models using testing data set was performed in this step. Various criteria namely R, RMSE, MAE were used to validate the three developed models in both the training and testing datasets.
- Step 4:
- Monte Carlo analysis and asymmetric distribution were finally used to validate the robustness of the developed models. In this step, the uniform distribution was used to generate random sampling of the training dataset for Monte Carlo simulation.
- Step 5:
- Predicting the MF and MQ of the SMA materials: Using the results of Monte Carlo analysis, asymmetric distribution and other validation criteria, the best model will be determined, this model is then used to predict other important parameters of the SMA materials namely MF and MQ.
4. Results and Discussion
4.1. Prediction Capability
4.2. Models Robustness
4.3. Prediction of Marshall Flow (MF) and Marshall Quotient (MQ)
4.4. Comparison with Polynomial Regression Approach
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Samples | Coarse Aggregate (%) | Bitumen 60/70 (%) | Bitumen PMB I (%) | Cellulose Fibers (%) | MS (kN) | MF (mm) | MQ (kN/mm) |
---|---|---|---|---|---|---|---|
1 | 76.1 | 5.4 | 0 | 0 | 6.449 | 2.900 | 2.224 |
2 | 76.1 | 6.0 | 0 | 0 | 6.530 | 3.550 | 1.839 |
3 | 76.1 | 6.2 | 0 | 0 | 6.700 | 3.680 | 1.821 |
4 | 76.1 | 6.5 | 0 | 0 | 6.550 | 3.970 | 1.650 |
5 | 76.1 | 7.0 | 0 | 0 | 6.400 | 4.650 | 1.376 |
6 | 76.1 | 5.4 | 0 | 0.2 | 7.350 | 2.720 | 2.702 |
7 | 76.1 | 6.0 | 0 | 0.2 | 7.510 | 2.830 | 2.654 |
8 | 76.1 | 6.2 | 0 | 0.2 | 7.760 | 2.910 | 2.667 |
9 | 76.1 | 6.5 | 0 | 0.2 | 7.840 | 2.960 | 2.649 |
10 | 76.1 | 7.0 | 0 | 0.2 | 7.090 | 3.440 | 2.061 |
11 | 76.1 | 5.4 | 0 | 0.3 | 7.799 | 2.633 | 2.962 |
12 | 76.1 | 6.0 | 0 | 0.3 | 7.970 | 2.721 | 2.929 |
13 | 76.1 | 6.2 | 0 | 0.3 | 8.240 | 2.860 | 2.881 |
14 | 76.1 | 6.5 | 0 | 0.3 | 8.420 | 2.907 | 2.896 |
15 | 76.1 | 7.0 | 0 | 0.3 | 7.560 | 3.360 | 2.250 |
16 | 76.1 | 5.4 | 0 | 0.5 | 7.220 | 2.700 | 2.674 |
17 | 76.1 | 6.0 | 0 | 0.5 | 7.380 | 2.790 | 2.645 |
18 | 76.1 | 6.2 | 0 | 0.5 | 7.630 | 2.930 | 2.604 |
19 | 76.1 | 6.5 | 0 | 0.5 | 7.790 | 2.980 | 2.614 |
20 | 76.1 | 7.0 | 0 | 0.5 | 7.000 | 3.440 | 2.035 |
21 | 71.17 | 0 | 5.5 | 0 | 8.950 | 2.820 | 3.174 |
22 | 71.17 | 0 | 6.0 | 0 | 9.064 | 3.150 | 2.878 |
23 | 71.17 | 0 | 6.5 | 0 | 9.324 | 3.430 | 2.718 |
24 | 71.17 | 0 | 7.0 | 0 | 8.901 | 3.580 | 2.486 |
25 | 71.17 | 0 | 7.5 | 0 | 8.601 | 3.850 | 2.234 |
26 | 71.17 | 0 | 5.5 | 0.2 | 9.088 | 3.030 | 2.999 |
27 | 71.17 | 0 | 6.0 | 0.2 | 9.361 | 3.110 | 3.010 |
28 | 71.17 | 0 | 6.5 | 0.2 | 8.976 | 3.230 | 2.779 |
29 | 71.17 | 0 | 7.0 | 0.2 | 8.604 | 3.380 | 2.546 |
30 | 71.17 | 0 | 7.5 | 0.2 | 8.505 | 3.650 | 2.330 |
31 | 71.17 | 0 | 5.5 | 0.3 | 9.471 | 3.180 | 2.978 |
32 | 71.17 | 0 | 6.0 | 0.3 | 10.595 | 3.210 | 3.301 |
33 | 71.17 | 0 | 6.5 | 0.3 | 11.318 | 3.280 | 3.451 |
34 | 71.17 | 0 | 7.0 | 0.3 | 9.011 | 3.530 | 2.553 |
35 | 71.17 | 0 | 7.5 | 0.3 | 7.999 | 3.650 | 2.192 |
36 | 71.17 | 0 | 5.5 | 0.5 | 8.955 | 3.260 | 2.747 |
37 | 71.17 | 0 | 6.0 | 0.5 | 8.994 | 3.310 | 2.717 |
38 | 71.17 | 0 | 6.5 | 0.5 | 9.326 | 3.430 | 2.719 |
39 | 71.17 | 0 | 7.0 | 0.5 | 8.904 | 3.470 | 2.566 |
40 | 71.17 | 0 | 7.5 | 0.5 | 8.605 | 3.780 | 2.276 |
41 | 74.2 | 5.7 | 0 | 0 | 6.520 | 3.220 | 2.025 |
42 | 74.2 | 6.0 | 0 | 0 | 6.860 | 3.480 | 1.971 |
43 | 74.2 | 6.3 | 0 | 0 | 7.100 | 3.550 | 2.000 |
44 | 74.2 | 6.6 | 0 | 0 | 6.730 | 3.790 | 1.776 |
45 | 74.2 | 6.9 | 0 | 0 | 6.580 | 4.500 | 1.462 |
46 | 74.2 | 5.7 | 0 | 0.2 | 7.450 | 2.700 | 2.759 |
47 | 74.2 | 6.0 | 0 | 0.2 | 7.630 | 2.820 | 2.706 |
48 | 74.2 | 6.3 | 0 | 0.2 | 7.890 | 2.880 | 2.740 |
49 | 74.2 | 6.6 | 0 | 0.2 | 7.850 | 2.930 | 2.679 |
50 | 74.2 | 6.9 | 0 | 0.2 | 7.210 | 3.400 | 2.121 |
51 | 74.2 | 5.7 | 0 | 0.3 | 7.940 | 2.550 | 3.114 |
52 | 74.2 | 6.0 | 0 | 0.3 | 8.190 | 2.800 | 2.925 |
53 | 74.2 | 6.3 | 0 | 0.3 | 8.460 | 2.870 | 2.948 |
54 | 74.2 | 6.6 | 0 | 0.3 | 8.310 | 2.940 | 2.827 |
55 | 74.2 | 6.9 | 0 | 0.3 | 7.880 | 3.350 | 2.352 |
56 | 74.2 | 5.7 | 0 | 0.5 | 7.100 | 2.680 | 2.649 |
57 | 74.2 | 6.0 | 0 | 0.5 | 7.460 | 2.740 | 2.723 |
58 | 74.2 | 6.3 | 0 | 0.5 | 7.740 | 2.810 | 2.754 |
59 | 74.2 | 6.6 | 0 | 0.5 | 7.670 | 2.900 | 2.645 |
60 | 74.2 | 6.9 | 0 | 0.5 | 7.220 | 3.340 | 2.162 |
References
- Scherocman, J.A. Stone Mastic Asphalt Reduces Rutting. Better Roads 1991, 61, 26–27. [Google Scholar]
- Van Thanh, D.; Feng, C.P. Study on Marshall and Rutting test of SMA at abnormally high temperature. Constr. Build. Mater. 2013, 47, 1337–1341. [Google Scholar] [CrossRef]
- Moghaddam, T.B.; Karim, M.R.; Abdelaziz, M. A review on fatigue and rutting performance of asphalt mixes. Sci. Res. Essays 2011, 6, 670–682. [Google Scholar]
- Al-Hadidy, A.I.; Tan, Y. Mechanistic analysis of ST and SBS-modified flexible pavements. Constr. Build. Mater. 2009, 23, 2941–2950. [Google Scholar] [CrossRef]
- Wu, S.; Xue, Y.; Ye, Q.; Chen, Y. Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures. Build. Environ. 2007, 42, 2580–2585. [Google Scholar] [CrossRef]
- Ahmadinia, E.; Zargar, M.; Karim, M.R.; Abdelaziz, M.; Shafigh, P. Using waste plastic bottles as additive for stone mastic asphalt. Mater. Des. 2011, 32, 4844–4849. [Google Scholar] [CrossRef]
- Asi, I.M. Laboratory comparison study for the use of stone matrix asphalt in hot weather climates. Constr. Build. Mater. 2006, 20, 982–989. [Google Scholar] [CrossRef]
- Aksoy, A.; Iskender, E.; Kahraman, H.T. Application of the intuitive k-NN Estimator for prediction of the Marshall Test (ASTM D1559) results for asphalt mixtures. Constr. Build. Mater. 2012, 34, 561–569. [Google Scholar] [CrossRef]
- Hınıslıoğlu, S.; Ağar, E. Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix. Mater. Lett. 2004, 58, 267–271. [Google Scholar] [CrossRef]
- Nejad, F.M.; Aflaki, E.; Mohammadi, M.A. Fatigue behavior of SMA and HMA mixtures. Constr. Build. Mater. 2010, 24, 1158–1165. [Google Scholar] [CrossRef]
- Sheng, Y.; Li, H.; Guo, P.; Zhao, G.; Chen, H.; Xiong, R. Effect of Fibers on Mixture Design of Stone Matrix Asphalt. Appl. Sci. 2017, 7, 297. [Google Scholar] [CrossRef]
- Özgan, E.; Serin, S.; Kap, T. Multi-faceted investigation into the effects of hot-mix asphalt parameters on Marshall Stability. Constr. Build. Mater. 2013, 40, 419–425. [Google Scholar] [CrossRef]
- Asteris, P.G.; Nozhati, S.; Nikoo, M.; Cavaleri, L.; Nikoo, M. Krill herd algorithm-based neural network in structural seismic reliability evaluation. Mech. Adv. Mater. Struct. 2019, 26, 1146–1153. [Google Scholar] [CrossRef]
- Chen, H.; Asteris, P.G.; Jahed Armaghani, D.; Gordan, B.; Pham, B.T. Assessing Dynamic Conditions of the Retaining Wall: Developing Two Hybrid Intelligent Models. Appl. Sci. 2019, 9, 1042. [Google Scholar] [CrossRef]
- Asteris, P.G.; Nikoo, M. Artificial bee colony-based neural network for the prediction of the fundamental period of infilled frame structures. Neural Comput. Applic 2019, 1–11. [Google Scholar] [CrossRef]
- Asteris, P.G.; Roussis, P.C.; Douvika, M.G. Feed-Forward Neural Network Prediction of the Mechanical Properties of Sandcrete Materials. Sensors 2017, 17, 1344. [Google Scholar] [CrossRef] [PubMed]
- Asteris, P.G.; Kolovos, K.G. Self-compacting concrete strength prediction using surrogate models. Neural Comput. Applic 2019, 31, 409–424. [Google Scholar] [CrossRef]
- Cavaleri, L.; Asteris, P.G.; Psyllaki, P.P.; Douvika, M.G.; Skentou, A.D.; Vaxevanidis, N.M. Prediction of Surface Treatment Effects on the Tribological Performance of Tool Steels Using Artificial Neural Networks. Appl. Sci. 2019, 9, 2788. [Google Scholar] [CrossRef]
- Psyllaki, P.; Stamatiou, K.; Iliadis, I.; Mourlas, A.; Asteris, P.; Vaxevanidis, N. Surface treatment of tool steels against galling failure. In MATEC Web of Conference; EDP Sciences: Les Ulis, France, 2018; Volume 188, p. 04024. [Google Scholar]
- Asteris, P.G.; Tsaris, A.K.; Cavaleri, L.; Repapis, C.C.; Papalou, A.; Di Trapani, F.; Karypidis, D.F. Prediction of the Fundamental Period of Infilled RC Frame Structures Using Artificial Neural Networks. Available online: https://www.hindawi.com/journals/cin/2016/5104907/ (accessed on 17 July 2019).
- Kaseko, M.S.; Ritchie, S.G. A neural network-based methodology for pavement crack detection and classification. Transp. Res. Part C Emerg. Technol. 1993, 1, 275–291. [Google Scholar] [CrossRef]
- Eldin, N.N.; Senouci, A.B. Use of neural networks for condition rating of jointed concrete pavements. Adv. Eng. Softw. 1995, 23, 133–141. [Google Scholar] [CrossRef]
- Roberts, C.A.; Attoh-Okine, N.O. A comparative analysis of two artificial neural networks using pavement performance prediction. Comput.-Aided Civil Infrastruct. Eng. 1998, 13, 339–348. [Google Scholar] [CrossRef]
- Attoh-Okine, N.O. Grouping Pavement Condition Variables for Performance Modeling Using Self-Organizing Maps. Comput.-Aided Civil Infrastruct. Eng. 2001, 16, 112–125. [Google Scholar] [CrossRef]
- Ozgan, E. Fuzzy logic and statistical-based modelling of the Marshall Stability of asphalt concrete under varying temperatures and exposure times. Adv. Eng. Softw. 2009, 40, 527–534. [Google Scholar] [CrossRef]
- Ozgan, E. Artificial neural network based modelling of the Marshall Stability of asphalt concrete. Expert Syst. Appl. 2011, 38, 6025–6030. [Google Scholar] [CrossRef]
- Tapkın, S.; Çevik, A.; Uşar, Ü. Accumulated strain prediction of polypropylene modified marshall specimens in repeated creep test using artificial neural networks. Expert Syst. Appl. 2009, 36, 11186–11197. [Google Scholar] [CrossRef]
- Tapkın, S.; Çevik, A.; Uşar, Ü. Prediction of Marshall test results for polypropylene modified dense bituminous mixtures using neural networks. Expert Syst. Appl. 2010, 37, 4660–4670. [Google Scholar] [CrossRef]
- ASTM D6926. Standard Practice for Preparation of Asphalt Mixture Specimens Using Marshall Apparatus; ASTM International West Conshohocken: Conshohocken, PA, USA, 2016. [Google Scholar]
- ASTM. Standard Test Method for Marshall Stability and Flow of Asphalt Mixtures; ASTM D6927–15; ASTM International West Conshohocken: Conshohocken, PA, USA, 2015. [Google Scholar]
- Behnood, A.; Modiri Gharehveran, M. Morphology, rheology, and physical properties of polymer-modified asphalt binders. Eur. Polym. J. 2019, 112, 766–791. [Google Scholar] [CrossRef]
- Behnood, A.; Olek, J. Rheological properties of asphalt binders modified with styrene-butadiene-styrene (SBS), ground tire rubber (GTR), or polyphosphoric acid (PPA). Constr. Build. Mater. 2017, 151, 464–478. [Google Scholar] [CrossRef]
- Behnood, A.; Olek, J. Stress-dependent behavior and rutting resistance of modified asphalt binders: An MSCR approach. Constr. Build. Mater. 2017, 157, 635–646. [Google Scholar] [CrossRef]
- Jang, J.-R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. ManCybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Dao, D.V.; Trinh, S.H.; Ly, H.-B.; Pham, B.T. Prediction of Compressive Strength of Geopolymer Concrete Using Entirely Steel Slag Aggregates: Novel Hybrid Artificial Intelligence Approaches. Appl. Sci. 2019, 9, 1113. [Google Scholar] [CrossRef]
- Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. In Readings in Fuzzy Sets for Intelligent Systems; Elsevier: Amsterdam, The Netherlands, 1993; pp. 387–403. [Google Scholar]
- Johari, A.; Javadi, A.A.; Habibagahi, G. Modelling the mechanical behaviour of unsaturated soils using a genetic algorithm-based neural network. Comput. Geotech. 2011, 38, 2–13. [Google Scholar] [CrossRef]
- Holland, J. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Dao, D.V.; Ly, H.-B.; Trinh, S.H.; Le, T.-T.; Pham, B.T. Artificial Intelligence Approaches for Prediction of Compressive Strength of Geopolymer Concrete. Materials 2019, 12, 983. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, Western Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Shi, Y.; Eberhart, R.C. Empirical study of particle swarm optimization. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; IEEE: Piscataway, NJ, USA, 1999; Volume 3, pp. 1945–1950. [Google Scholar]
- Vapnik, V. The Nature of Statistical Learning Theory, 2nd ed.; Springer: New York, NY, USA, 1999; ISBN 978-0-387-98780-4. [Google Scholar]
- Bui, D.T.; Tuan, T.A.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 2016, 13, 361–378. [Google Scholar]
- Pham, B.T.; Nguyen, M.D.; Dao, D.V.; Prakash, I.; Ly, H.-B.; Le, T.-T.; Ho, L.S.; Nguyen, K.T.; Ngo, T.Q.; Hoang, V.; et al. Development of artificial intelligence models for the prediction of Compression Coefficient of soil: An application of Monte Carlo sensitivity analysis. Sci. Total Environ. 2019, 679, 172–184. [Google Scholar] [CrossRef]
- Le, L.M.; Ly, H.-B.; Pham, B.T.; Le, V.M.; Pham, T.A.; Nguyen, D.-H.; Tran, X.-T.; Le, T.-T. Hybrid Artificial Intelligence Approaches for Predicting Buckling Damage of Steel Columns Under Axial Compression. Materials 2019, 12, 1670. [Google Scholar] [CrossRef]
- Ly, H.-B.; Le, L.M.; Duong, H.T.; Nguyen, T.C.; Pham, T.A.; Le, T.-T.; Le, V.M.; Nguyen-Ngoc, L.; Pham, B.T. Hybrid Artificial Intelligence Approaches for Predicting Critical Buckling Load of Structural Members under Compression Considering the Influence of Initial Geometric Imperfections. Appl. Sci. 2019, 9, 2258. [Google Scholar] [CrossRef]
- Ly, H.-B.; Desceliers, C.; Le, L.M.; Le, T.-T.; Pham, B.T.; Nguyen-Ngoc, L.; Doan, V.T.; Le, M. Quantification of Uncertainties on the Critical Buckling Load of Columns under Axial Compression with Uncertain Random Materials. Materials 2019, 12, 1828. [Google Scholar] [CrossRef]
- Soize, C. Uncertainty Quantification: An Accelerated Course with Advanced Applications in Computational Engineering; Interdisciplinary Applied Mathematics; Springer International Publishing: Berlin, Germany, 2017; ISBN 978-3-319-54338-3. [Google Scholar]
- Ly, H.-B.; Monteiro, E.; Le, T.-T.; Le, V.M.; Dal, M.; Regnier, G.; Pham, B.T. Prediction and Sensitivity Analysis of Bubble Dissolution Time in 3D Selective Laser Sintering Using Ensemble Decision Trees. Materials 2019, 12, 1544. [Google Scholar] [CrossRef]
- Stochastic Models of Uncertainties in Computational Mechanics; Christian, P.D.S. (Ed.) Amer Society of Civil Engineers: Reston, VA, USA, 2012; ISBN 978-0-7844-1223-7. [Google Scholar]
- Le, T.T.; Guilleminot, J.; Soize, C. Stochastic continuum modeling of random interphases from atomistic simulations. Application to a polymer nanocomposite. Comput. Methods Appl. Mech. Eng. 2016, 303, 430–449. [Google Scholar] [CrossRef] [Green Version]
- Guilleminot, J.; Le, T.T.; Soize, C. Stochastic framework for modeling the linear apparent behavior of complex materials: Application to random porous materials with interphases. Acta Mech. Sin. 2013, 29, 773–782. [Google Scholar] [CrossRef] [Green Version]
- Ahneman, D.T.; Estrada, J.G.; Lin, S.; Dreher, S.D.; Doyle, A.G. Predicting reaction performance in C–N cross-coupling using machine learning. Science 2018, 360, 186–190. [Google Scholar] [CrossRef]
Properties | Value |
---|---|
Coarse aggregate | |
Los Angeles abrasion (%) | 16.22 |
Flat and Elongated (3 to 1) (%) | 8.80 |
Water absorption (%) | 0.53 |
Bulk specific density (g/cm3) | 2.670 |
Crushed content (one face) (%) | 100 |
Crushed content (two faces) (%) | 100 |
Fine aggregate | |
Water absorption (%) | 0.79 |
Bulk specific density (g/cm3) | 2.667 |
Mineral filler | |
Bulk specific density (g/cm3) | 2.720 |
Properties | Bitumen 60/70 | PMB I |
---|---|---|
Specific gravity at 25 °C (g/cm3) | 1.030 | 1.027 |
Penetration at 25 °C (0.1 mm) | 64.5 | 48 |
Flash point (°C) | 310 | 248 |
Softening point (°C) | 48.1 | 67.5 |
Ductility at 25 °C (cm) | >100 | >100 |
Properties | Test Value |
---|---|
Cellulose content (%) | 85% |
Length (mm) | <5 |
Diameter (µm) | 46 |
Density (g/m3) | 1.6 |
pH Value | 6.5 |
Parameters | Unit | Minimum | Maximum | Average | StD * | Median |
---|---|---|---|---|---|---|
Coarse aggregates | (%) | 71.17 | 76.1 | 73.82 | 2.05 | 74.2 |
Bitumen 60/70 | (%) | 0 | 7.0 | 4.17 | 3.00 | 6.00 |
PMB I | (%) | 0 | 7.5 | 2.17 | 3.12 | 0 |
Cellulose fiber | (%) | 0 | 0.5 | 0.25 | 0.18 | 0.25 |
MS | (kN) | 6.4 | 11.32 | 7.99 | 1.02 | 7.85 |
MF | (mm) | 2.55 | 4.65 | 3.21 | 0.44 | 3.20 |
MQ | (kN/mm) | 1.38 | 3.45 | 2.54 | 0.44 | 2.65 |
Part | Method | R | RMSE | MAE |
---|---|---|---|---|
Training | PSOANFIS | 0.9266 | 0.3429 | 0.2134 |
GAANFIS | 0.9111 | 0.3834 | 0.2655 | |
SVM | 0.9110 | 0.3781 | 0.2609 | |
Testing | PSOANFIS | 0.8692 | 0.6592 | 0.4361 |
GAANFIS | 0.8181 | 0.7213 | 0.5015 | |
SVM | 0.8711 | 0.5978 | 0.3804 |
Method | MeanR | StdR | MeanRMSE | StdRMSE | MeanMAE | StdMAE |
---|---|---|---|---|---|---|
PSOANFIS | 0.8655 | 0.0784 | 0.5485 | 0.1937 | 0.3782 | 0.0982 |
GAANFIS | 0.8463 | 0.0723 | 0.5769 | 0.1447 | 0.4206 | 0.0889 |
SVM | 0.9246 | 0.0376 | 0.4004 | 0.1158 | 0.2741 | 0.0600 |
Output | A | B | C | D | E | R (Equation (5)) | R(SVM) |
---|---|---|---|---|---|---|---|
MS | −0.13 | −0.32 | −0.13 | 1.22 | 18.80 | 0.82 | 0.92 |
MF | 0.01 | 0.45 | 0.47 | −0.97 | −0.28 | 0.76 | 0.94 |
MQ | −0.05 | −0.41 | −0.38 | 0.97 | 8.38 | 0.73 | 0.91 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.-L.; Le, T.-H.; Pham, C.-T.; Le, T.-T.; Ho, L.S.; Le, V.M.; Pham, B.T.; Ly, H.-B. Development of Hybrid Artificial Intelligence Approaches and a Support Vector Machine Algorithm for Predicting the Marshall Parameters of Stone Matrix Asphalt. Appl. Sci. 2019, 9, 3172. https://doi.org/10.3390/app9153172
Nguyen H-L, Le T-H, Pham C-T, Le T-T, Ho LS, Le VM, Pham BT, Ly H-B. Development of Hybrid Artificial Intelligence Approaches and a Support Vector Machine Algorithm for Predicting the Marshall Parameters of Stone Matrix Asphalt. Applied Sciences. 2019; 9(15):3172. https://doi.org/10.3390/app9153172
Chicago/Turabian StyleNguyen, Hoang-Long, Thanh-Hai Le, Cao-Thang Pham, Tien-Thinh Le, Lanh Si Ho, Vuong Minh Le, Binh Thai Pham, and Hai-Bang Ly. 2019. "Development of Hybrid Artificial Intelligence Approaches and a Support Vector Machine Algorithm for Predicting the Marshall Parameters of Stone Matrix Asphalt" Applied Sciences 9, no. 15: 3172. https://doi.org/10.3390/app9153172
APA StyleNguyen, H.-L., Le, T.-H., Pham, C.-T., Le, T.-T., Ho, L. S., Le, V. M., Pham, B. T., & Ly, H.-B. (2019). Development of Hybrid Artificial Intelligence Approaches and a Support Vector Machine Algorithm for Predicting the Marshall Parameters of Stone Matrix Asphalt. Applied Sciences, 9(15), 3172. https://doi.org/10.3390/app9153172