Reflections on the Limited Pervasiveness of Augmented Reality in Industrial Sectors
Abstract
:1. Introduction
2. Investigating the Causes of the Lack of Pervasiveness
2.1. Industry Survey Based on AR Applications
- Department/Unit not available to handle AR projects;
- Skills not present in the company to handle AR projects;
- IT Infrastructures;
- Financial resources;
- Ergonomics;
- Corrective Lenses/Glasses;
- Distraction;
- Image Recognition Method;
- Internet Connection;
- Digitalization Time;
- Responsiveness.
2.2. Main Factors for Lack of AR Pervasiveness
3. How to Facilitate the Adoption of AR in Industries
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Van Krevelen, D.W.F.; Poelman, R. A Survey of Augmented Reality Technologies, Applications and Limitations. Int. J. Virtual Real. 2010, 9, 1–20. [Google Scholar] [Green Version]
- Oesterreich, T.D.; Teuteberg, F. Understanding the implications of digitisation and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry. Comput. Ind. 2016, 83, 121–139. [Google Scholar] [CrossRef]
- Ong, S.K.; Yuan, M.L.; Nee, A.Y.C. Augmented reality applications in manufacturing: A survey. Int. J. Prod. Res. 2008, 46, 2707–2742. [Google Scholar] [CrossRef]
- Masood, T.; Egger, J. Augmented reality in support of Industry 4.0—Implementation challenges and success factors. Robot. Comput. Integr. Manuf. 2019, 58, 181–195. [Google Scholar] [CrossRef]
- Statista—The Statistics Portal for Market Data, Market Research and Market Studies. Available online: https://www.statista.com/ (accessed on 12 August 2019).
- Bottani, E.; Vignali, G. Augmented reality technology in the manufacturing industry: A review of the last decade. IISE Trans. 2019, 51, 284–310. [Google Scholar] [CrossRef] [Green Version]
- Harrison, S.M. A comparison of still, animated, or nonillustrated on-line help with written or spoken instructions in a graphical user interface. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems—CHI ’95, Denver, CO, USA; ACM Press: New York, NY, USA, 1995; pp. 82–89. [Google Scholar] [CrossRef]
- Mayer, R.E.; Bove, W.; Bryman, A.; Mars, R.; Tapangco, L. When less is more: Meaningful learning from visual and verbal summaries of science textbook lessons. J. Educ. Psychol. 1996, 88, 64–73. [Google Scholar] [CrossRef]
- Fite-Georgel, P. Is There a Reality in Industrial Augmented Reality? In Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality, Basel, Switzerland, 26–29 October 2011; IEEE Computer Society: Washington, DC, USA, 2011; pp. 201–210. [Google Scholar] [CrossRef]
- Havard, V.; Baudry, D.; Savatier, X.; Jeanne, B.; Louis, A.; Mazari, B. Augmented Industrial Maintenance (AIM): A Case Study for Evaluating and Comparing with Paper and Video Media Supports. In Augmented Reality, Virtual Reality, and Computer Graphics; De Paolis, L.T., Mongelli, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 9768, pp. 302–320. ISBN 978-3-319-40620-6. [Google Scholar]
- Palmarini, R.; Erkoyuncu, J.A.; Roy, R.; Torabmostaedi, H. A systematic review of augmented reality applications in maintenance. Robot. Comput. Integr. Manuf. 2018, 49, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Jetter, J.; Eimecke, J.; Rese, A. Augmented reality tools for industrial applications: What are potential key performance indicators and who benefits? Comput. Hum. Behav. 2018, 87, 18–33. [Google Scholar] [CrossRef]
- Schega, L.; Hamacher, D.; Erfuth, S.; Behrens-Baumann, W.; Reupsch, J.; Hoffmann, M.B. Differential effects of head-mounted displays on visual performance. Ergonomics 2014, 57, 1–11. [Google Scholar] [CrossRef]
- Park, C.S.; Kim, H.J. A framework for construction safety management and visualization system. Autom. Constr. 2013, 33, 95–103. [Google Scholar] [CrossRef]
- Weidlich, D.; Scherer, S.; Wabner, M. Analyses Using VR/AR Visualization. IEEE Comput. Graph. Appl. 2008, 28, 84–86. [Google Scholar] [CrossRef] [PubMed]
- Caruso, G.; Carulli, M.; Bordegoni, M. Augmented Reality System for the Visualization and Interaction with 3D Digital Models in a Wide Environment. Comput. Aided Des. Appl. 2015, 12, 86–95. [Google Scholar] [CrossRef]
- Behzadan, A.H.; Dong, S.; Kamat, V.R. Augmented reality visualization: A review of civil infrastructure system applications. Adv. Eng. Inform. 2015, 29, 252–267. [Google Scholar] [CrossRef]
- Radkowski, R.; Herrema, J.; Oliver, J. Augmented Reality-Based Manual Assembly Support with Visual Features for Different Degrees of Difficulty. Int. J. Hum. Comput. Interact. 2015, 31, 337–349. [Google Scholar] [CrossRef]
- Canessa, A.; Chessa, M.; Gibaldi, A.; Sabatini, S.P.; Solari, F. Calibrated Depth and Color Cameras for Accurate 3D Interaction in a Stereoscopic Augmented Reality Environment. J. Vis. Comun. Image Represent. 2014, 25, 227–237. [Google Scholar] [CrossRef]
- Scurati, G.W.; Gattullo, M.; Fiorentino, M.; Ferrise, F.; Bordegoni, M.; Uva, A.E. Converting maintenance actions into standard symbols for Augmented Reality applications in Industry 4.0. Comput. Ind. 2018, 98, 68–79. [Google Scholar] [CrossRef]
- Egger-Lampl, S.; Gerdenitsch, C.; Deinhard, L.; Schatz, R.; Hold, P. Assembly Instructions with AR: Towards measuring Interactive Assistance Experience in an Industry 4.0 Context. In Proceedings of the 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX), Berlin, Germany, 1–3 June 2019; IEEE: Berlin, Germany, 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Kellner, F.; Bolte, B.; Bruder, G.; Rautenberg, U.; Steinicke, F.; Lappe, M.; Koch, R. Geometric Calibration of Head-Mounted Displays and its Effects on Distance Estimation. IEEE Trans. Vis. Comput. Graph. 2012, 18, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Reif, R.; Günthner, W.A. Pick-by-vision: Augmented reality supported order picking. Vis Comput 2009, 25, 461–467. [Google Scholar] [CrossRef]
- Itoh, Y.; Dzitsiuk, M.; Amano, T.; Klinker, G. Semi-Parametric Color Reproduction Method for Optical See-Through Head-Mounted Displays. IEEE Trans. Vis. Comput. Graph. 2015, 21, 1269–1278. [Google Scholar] [CrossRef]
- Novak-Marcincin, J.; Janak, M.; Fečová, V.; Novakova-Marcincinova, L. Utilization of Augmented Reality Elements for Visualization of Operational States of Manufacturing Devices. AMM 2013, 308, 111–114. [Google Scholar] [CrossRef]
- Anton, D.; Kurillo, G.; Bajcsy, R. User experience and interaction performance in 2D/3D telecollaboration. Future Gener. Comput. Syst. 2018, 82, 77–88. [Google Scholar] [CrossRef]
- Chenechal, M.L.; Duval, T.; Gouranton, V.; Royan, J.; Arnaldi, B. Vishnu: Virtual immersive support for HelpiNg users an interaction paradigm for collaborative remote guiding in mixed reality. In Proceedings of the 2016 IEEE Third VR International Workshop on Collaborative Virtual Environments (3DCVE), Greenville, SC, USA, 20 March 2016; IEEE: Greenville, SC, USA, 2016; pp. 9–12. [Google Scholar] [CrossRef]
- Eck, U.; Pankratz, F.; Sandor, C.; Klinker, G.; Laga, H. Precise Haptic Device Co-Location for Visuo-Haptic Augmented Reality. IEEE Trans. Vis. Comput. Graph. 2015, 21, 1427–1441. [Google Scholar] [CrossRef] [PubMed]
- Mw, R.; Abdul Aziz, F.; Mohd Yusuff, R.; Nor Hayati, S.; Ibrahim, R. Development of virtual reality (VR)system with haptic controller and augmented reality (AR) system to enhance learning and training experience. Int. J. Appl. Eng. Res. 2016, 11, 8806–8809. [Google Scholar]
- Heikkinen, J.; Handroos, H. Haptic Controller for Mobile Machine Teleoperation. Int. Rev. Autom. Control 2013, 6, 228–235. [Google Scholar]
- Van West, E.; Yamamoto, A.; Higuchi, T. The concept of “Haptic Tweezer”, a non-contact object handling system using levitation techniques and haptics. Mechatronics 2007, 17, 345–356. [Google Scholar] [CrossRef]
- Suhaifi, S.; Abdullah, J.; Day Chyi, K. A resource-independent method to deliver augmented reality content. J. Teknol. 2015, 75. [Google Scholar] [CrossRef]
- Kim, Y.D.; Moon, I.Y. e-Training content delivery networking system for augmented reality car maintenance training application. Int. J. Multimed. Ubiquitous Eng. 2013, 8, 69–80. [Google Scholar]
- Liao, T. Future directions for mobile augmented reality research: Understanding relationships between augmented reality users, nonusers, content, devices, and industry. Mob. Media Commun. 2019, 7, 131–149. [Google Scholar] [CrossRef]
- Zhu, J.; Ong, S.K.; Nee, A.Y.C. A context-aware augmented reality system to assist the maintenance operators. Int. J. Interact. Des. Manuf. 2014, 8, 293–304. [Google Scholar] [CrossRef]
- Ajanki, A.; Billinghurst, M.; Gamper, H.; Järvenpää, T.; Kandemir, M.; Kaski, S.; Koskela, M.; Kurimo, M.; Laaksonen, J.; Puolamäki, K.; et al. An augmented reality interface to contextual information. Virtual Real. 2011, 15, 161–173. [Google Scholar] [CrossRef]
- Del Amo, I.F.; Erkoyuncu, J.A.; Roy, R.; Wilding, S. Augmented Reality in Maintenance: An information-centred design framework. Procedia Manuf. 2018, 19, 148–155. [Google Scholar] [CrossRef]
- Lee, J.Y.; Rhee, G. Context-aware 3D visualization and collaboration services for ubiquitous cars using augmented reality. Int. J. Adv. Manuf. Technol. 2008, 37, 431–442. [Google Scholar] [CrossRef]
- Neumann, U.; Majoros, A. Cognitive, performance, and systems issues for augmented reality applications in manufacturing and maintenance. In Proceedings of the IEEE 1998 Virtual Reality Annual International Symposium (Cat. No.98CB36180), Atlanta, GA, USA, 14–18 March 1998; pp. 4–11. [Google Scholar] [CrossRef]
- Martinetti, A.; Moerman, J.J.; van Dongen, L.A.M. Storytelling as a strategy in managing complex systems: Using antifragility for handling an uncertain future in reliability. Saf. Reliab. 2017, 37, 233–247. [Google Scholar] [CrossRef]
- The Next Web. Available online: https://thenextweb.com/contributors/2018/02/16/3-reasons-augmented-reality-hasnt-achieved-widespread-adoption/ (accessed on 12 August 2019).
Factor | DF 1 | F-Value | p-Value |
---|---|---|---|
Department/Unit not able to handle AR projects | (2, 53) | 0.54 | 0.585 |
Skill not present in the company to handle AR projects | (2, 53) | 0.05 | 0.948 |
IT Infrastructures | (2, 53) | 0.95 | 0.395 |
Financial Resources | (2, 53) | 3.04 | 0.056 |
Ergonomics | (2, 53) | 1.13 | 0.330 |
Corrective Lenses/Glasses | (2, 53) | 0.74 | 0.482 |
Distraction | (2, 53) | 0.74 | 0.482 |
Image Recognition Method | (2, 53) | 4.09 | 0.022 |
Internet Connection | (2, 53) | 0.93 | 0.401 |
Digitalization Time | (2, 53) | 0.18 | 0.840 |
Responsiveness | (2, 53) | 10.16 | <=0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinetti, A.; Marques, H.C.; Singh, S.; van Dongen, L. Reflections on the Limited Pervasiveness of Augmented Reality in Industrial Sectors. Appl. Sci. 2019, 9, 3382. https://doi.org/10.3390/app9163382
Martinetti A, Marques HC, Singh S, van Dongen L. Reflections on the Limited Pervasiveness of Augmented Reality in Industrial Sectors. Applied Sciences. 2019; 9(16):3382. https://doi.org/10.3390/app9163382
Chicago/Turabian StyleMartinetti, Alberto, Henrique Costa Marques, Sarbjeet Singh, and Leo van Dongen. 2019. "Reflections on the Limited Pervasiveness of Augmented Reality in Industrial Sectors" Applied Sciences 9, no. 16: 3382. https://doi.org/10.3390/app9163382
APA StyleMartinetti, A., Marques, H. C., Singh, S., & van Dongen, L. (2019). Reflections on the Limited Pervasiveness of Augmented Reality in Industrial Sectors. Applied Sciences, 9(16), 3382. https://doi.org/10.3390/app9163382