Feedback Stabilization of First Order Neutral Delay Systems Using the Lambert W Function
Abstract
:1. Introduction
2. Preliminary and Problem Formulation
3. Main Results
3.1. Oscillation and Non-Oscillation Criteria
- (i)
- The global minimum value ofis nonpositive.
- (ii)
- is strictly decreasing on, strictly increasing onand has a global minimum point at .
3.2. Stabilization of the NDDS
4. Examples
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Sipahi, R.; Niculescu, S.I.; Abdallah, C.T.; Michiels, W.; Gu, K. Stability and stabilization of systems with time delay. IEEE Contr. Syst. Mag. 2011, 31, 38–65. [Google Scholar]
- Campbell, S.A. Time delays in neural systems. In Handbook of Brain Connectivity; Viktor, K.J., McIntosh, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 65–90. [Google Scholar]
- Song, Z.G.; Xu, J. Stability switches and double Hopf bifurcation in a two-neural network system with multiple delays. Cogn. Neurodyn. 2013, 7, 505–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stepan, G. Delay effects in the human sensory system during balancing. Philos. Trans. R. Soc. A 2009, 367, 1195–1212. [Google Scholar] [CrossRef] [PubMed]
- Bellen, A.; Guglielmi, N.; Ruehli, A.E. Methods for linear systems of circuit delay differential equations of neutral type. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1999, 46, 212–216. [Google Scholar] [CrossRef]
- Kyrychko, Y.N.; Blyuss, K.B.; Gonzalez-Buelga, A.; Hogan, S.J.; Wagg, D.J. Real-time dynamic substructuring in a coupled oscillator-pendulum system. Philos. Trans. R. Soc. A 2006, 462, 1271–1294. [Google Scholar] [CrossRef]
- Xu, Q.; Stepan, G.; Wang, Z.H. Balancing a wheeled inverted pendulum with a single accelerometer in the presence of time delay. J. Vib. Control 2017, 23, 604–614. [Google Scholar] [CrossRef]
- Masoud, Z.N.; Nayfeh, A.H. Sway reduction on container cranes using delayed feedback controller. Nonlinear Dyn. 2003, 34, 347–358. [Google Scholar] [CrossRef]
- Ozcan, N. New conditions for global stability of neutral-type delayed Cohen-Grossberg neural networks. Neural Netw. 2018, 106, 1–7. [Google Scholar] [CrossRef]
- Kuang, Y. Delay Differential Equations: With Applications in Population Dynamics; Academic: San Diego, CA, USA, 1993; Volume 191. [Google Scholar]
- Szydowski, M.; Krawiec, A. The Kaldor-Kalecki model of business cycle as a two-dimensional dynamical system. J. Nonlinear Math. Phys. 2001, 8, 266–271. [Google Scholar] [CrossRef]
- Bastin, G.; Coron, J.M.; Tamasoiu, S.O. Stability of linear density-flow hyperbolic systems under PI boundary control. Automatica 2015, 53, 37–42. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Q. Sway reduction of a pendulum on a movable support using a delayed proportional-derivative or derivative-acceleration feedback. Proc. IUTAM 2017, 22, 176–183. [Google Scholar] [CrossRef]
- Gu, K.; Niculescu, S.I. Survey on recent results in the stability and control of time-delay systems. J. Dyn. Sys. Meas. Control 2003, 125, 158–165. [Google Scholar] [CrossRef]
- Jin, C.; Gu, K.; Niculescu, S.I.; Boussaada, I. Stability analysis of systems with delay-dependent coefficients: An overview. IEEE Access 2018, 6, 27392–27407. [Google Scholar] [CrossRef]
- Wang, Z.H. Numerical stability test of neutral delay differential equations. Math. Probl. Eng. 2008, 2008, 10. [Google Scholar] [CrossRef]
- Blyuss, K.B.; Kyrychko, Y.N.; Hövel, P.; Schöll, E. Control of unstable steady states in neutral time-delayed systems. Eur. Phys. J. B 2008, 65, 571. [Google Scholar] [CrossRef]
- Boussaada, I.; Niculescu, S.I.; Trabelsi, K. Towards a Decay Rate Assignment Based Design for Time-Delay Systems with Multiple Spectral Values. IFAC Pap. Online 2018, 51, 55–60. [Google Scholar] [CrossRef]
- Loiseau, J.J.; Cardelli, M.; Dusser, X. Neutral-type time-delay systems that are not formally stable are not BIBO stabilizable. IMA J. Math. Control Inf. 2002, 19, 217–227. [Google Scholar] [CrossRef]
- Michiels, W.; VyhliDal, T. An eigenvalue based approach for the stabilization of linear time-delay systems of neutral type. Automatica 2005, 41, 991–998. [Google Scholar] [CrossRef]
- Egorov, A.V. A stability criterion for the neutral type time-delay equation. In Proceedings of the International Conference Stability and Oscillations of Nonlinear Control Systems, Moscow, Russia, 1–3 June 2016; pp. 1–4. [Google Scholar]
- Graef, J.R.; Spikes, P.W.; Grammatikopoulos, M.K. On the behavior of solutions of a first order nonlinear neutral delay differential equation. Appl. Anal. 1991, 40, 111–121. [Google Scholar] [CrossRef]
- Jaros, J. On characterization of oscillations in first-order linear neutral differential equations. Funk. Ekvac. 1991, 34, 331–342. [Google Scholar]
- Grammatikopoulos, M.K.; Grove, E.A.; Ladas, G. Oscillations of first-order neutral delay differential equations. J. Math. Anal. Appl. 1986, 120, 510–520. [Google Scholar] [CrossRef] [Green Version]
- Chatzarakis, G.E.; Dzurina, J.; Jadlovska, I. A remark on oscillatory results for neutral differential equations. Appl. Math. Lett. 2019, 90, 124–130. [Google Scholar] [CrossRef]
- Ahmed, F.N.; Ahmad, R.R.; Din, U.K.S.; Noorani, M.S.M. Oscillation criteria for linear neutral delay differential equations of first order. Abstr. Appl. Anal. 2013, 2013, 5. [Google Scholar] [CrossRef]
- Corless, R.M.; Gonnet, G.H.; Hare, D.E.; Jeffrey, D.J.; Knuth, D.E. On the Lambert W function. Adv. Comput. Math. 1996, 5, 329–359. [Google Scholar] [CrossRef]
- Yu, J.; Wang, Z.; Qian, C. Oscillation of neutral delay differential equations. Bull. Aust. Math. Soc. 1992, 45, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Vyhlídal, T.; Zítek, P. Mapping based algorithm for large scale computation of quasi polynomial zeros. IEEE Trans. Autom. Control. 2009, 54, 171–177. [Google Scholar] [CrossRef]
- Kuang, Y. On neutral delay logistic Gause-type predator-prey systems. Dyn. Stabil. Syst. 1991, 6, 173–189. [Google Scholar] [CrossRef]
- Liu, M.; Dassios, I.; Milano, F. On the stability analysis of systems of neutral delay differential equations. Circ. Syst. Signal Proc. 2019, 38, 1639–1653. [Google Scholar] [CrossRef]
- Pólya, G.; Szegö, G. Problems and Theorems in Analysis, Volume I: Series, Integral Calculus, Theory of Functions; Springer: New York, NY, USA; Heidelberg/Berlin, Germany, 1972. [Google Scholar]
- Boussaada, I.; Tliba, S.; Niculescu, S.I.; Ünal, H.U.; Vyhlídal, T. Further remarks on the effect of multiple spectral values on the dynamics of time-delay systems. Application to the control of a mechanical system. Linear Algebra Appl. 2018, 542, 589–604. [Google Scholar] [CrossRef] [Green Version]
[31] | |||||
---|---|---|---|---|---|
without Feedback | with Feedback | without Feedback | with Feedback | without Feedback | with Feedback |
−0.1656 | −2.5687 | −0.2777 | −2.6174 | −0.2936 | −2.5194 |
−8.2685 − i31.2548 | −3.7482 | 0.4315 − i31.2442 | −3.8654 | 1.6161 − i31.2448 | −3.6338 |
−8.2685 + i31.2548 | −6.9049 + i0.6305 | 0.4315 + i31.2442 | −7.1044 − i63.0651 | 1.6161 + i31.2448 | −6.7092 + i63.0384 |
−8.2321 + i94.1912 | −6.9049 − i0.6305 | 0.4281 − i94.1908 | −7.1044 + i63.0651 | 1.6070 + i94.1908 | −6.7092 − i63.0384 |
−8.2321 − i94.1912 | −6.9247 + i1.2577 | 0.4281 + i94.1908 | −7.1260 + i125.7820 | 1.6070 − i94.1908 | −6.7272 + i125.7683 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.; Kwon, J.; Choi, S.; Yang, J. Feedback Stabilization of First Order Neutral Delay Systems Using the Lambert W Function. Appl. Sci. 2019, 9, 3539. https://doi.org/10.3390/app9173539
Kim B, Kwon J, Choi S, Yang J. Feedback Stabilization of First Order Neutral Delay Systems Using the Lambert W Function. Applied Sciences. 2019; 9(17):3539. https://doi.org/10.3390/app9173539
Chicago/Turabian StyleKim, Beomsoo, Jaesung Kwon, Sungwoong Choi, and Jeonghyeon Yang. 2019. "Feedback Stabilization of First Order Neutral Delay Systems Using the Lambert W Function" Applied Sciences 9, no. 17: 3539. https://doi.org/10.3390/app9173539
APA StyleKim, B., Kwon, J., Choi, S., & Yang, J. (2019). Feedback Stabilization of First Order Neutral Delay Systems Using the Lambert W Function. Applied Sciences, 9(17), 3539. https://doi.org/10.3390/app9173539