A Novel Bidirectional Wireless Power Transfer System for Mobile Power Application
Abstract
:Featured Application
Abstract
1. Introduction
2. Analysis of Proposed Circuit Topology
3. Simulation and Experimental Results
4. System Analysis and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
EV | Electric vehicle |
WPT | Wireless power transfer |
Tx | Transmitter |
Rx | Receiver |
M | Mutual inductance |
, | Magnetic vector potential |
Permeability of vacuum | |
L1, L2 | Boost inductor |
C1, C2, Cr1, Cr2 | Resonant capacitor |
Lr1, Lr2 | Resonant coupled inductor |
S1, S2 | Active switch |
Vgsx | Gate signal of active switch x, x = 1, 2 |
V1, V2 | Voltage sources of primary and secondary side |
D1, D2 | Switching duty ratios of switch 1 and switch 2 |
References
- Nutwong, S.; Sangswang, A.; Naetiladdanon, S. An Inverter Topology for Wireless Power Transfer System with Multiple Transmitter Coils. Appl. Sci. 2019, 9, 1551. [Google Scholar] [CrossRef]
- Tao, X.; Rong, C.; Lu, C.; Huang, X.; Zeng, Y.; Hu, Z.; Liu, M. A Novel Approach to Reach Impedance Matching in Wireless Power Transfer Systems. Appl. Sci. 2019, 9, 976. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, C.; Jiang, J.; Song, K.; Wei, G. A 3-kW Wireless Power Transfer System for Sightseeing Car Supercapacitor Charge. IEEE Trans. Power Electron. 2017, 32, 3301–3316. [Google Scholar] [CrossRef]
- Li, Y.; Grabham, N.; Torah, R.; Tudor, J.; Beeby, S. Textile-Based Flexible Coils for Wireless Inductive Power Transmission. Appl. Sci. 2018, 8, 912. [Google Scholar] [CrossRef]
- Matsumoto, H.; Neba, Y.; Ishizaka, K.; Itoh, R. Comparison of characteristics on planar contactless power transfer systems. IEEE Trans. Power Electron. 2012, 27, 2980–2993. [Google Scholar] [CrossRef]
- Xie, K.; Huang, A.; Chen, L.; Guo, S.; Zhang, H. Half-Cycle Resonance Tracking for Inductively Coupled Wireless Power Transmission System. IEEE Trans. Power Electron. 2018, 33, 2668–2679. [Google Scholar] [CrossRef]
- Ahn, D.; Hong, S. A transmitter or a receiver consisting of two strongly coupled resonators for enhanced resonant coupling in wireless power transfer. IEEE Trans. Ind. Electron. 2014, 61, 1193–1203. [Google Scholar] [CrossRef]
- Zhong, W.X.; Liu, X.; Hui, S.Y.R. A novel single-layer winding array and receiver coil structure for contactless battery charging systems with free-positioning and localized charging features. IEEE Trans. Ind. Electron. 2011, 58, 4136–4144. [Google Scholar] [CrossRef]
- Lee, J.; Han, B. A Bidirectional Wireless Power Transfer EV Charger Using Self-Resonant PWM. IEEE Trans. Power Electron. 2015, 30, 1784–1787. [Google Scholar] [CrossRef]
- Yan, X.; Li, J.; Zhang, B.; Jia, Z.; Tian, Y.; Zeng, H.; Lv, Z. Virtual Synchronous Motor Based-Control of a Three-Phase Electric Vehicle Off-Board Charger for Providing Fast-Charging Service. Appl. Sci. 2018, 8, 856. [Google Scholar] [CrossRef]
- Khan, S.U.; Mehmood, K.K.; Haider, Z.M.; Bukhari, S.B.A.; Lee, S.-J.; Rafique, M.K.; Kim, C.-H. Energy Management Scheme for an EV Smart Charger V2G/G2V Application with an EV Power Allocation Technique and Voltage Regulation. Appl. Sci. 2018, 8, 648. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, Y.; Madawala, U.K.; Thrimawithana, D.J.; Ma, H. A New Controller for Bidirectional Wireless Power Transfer Systems. IEEE Trans. Power Electron. 2018, 33, 9076–9087. [Google Scholar] [CrossRef]
- Abdulaal, A.; Cintuglu, M.H.; Asfour, S.; Mohammed, O.A. Solving the Multivariant EV Routing Problem Incorporating V2G and G2V Options. IEEE Trans. Transp. Electrif. 2017, 3, 238–248. [Google Scholar] [CrossRef]
- Hu, K.; Yi, P.; Liaw, C. An EV SRM Drive Powered by Battery/Supercapacitor With G2V and V2H/V2G Capabilities. IEEE Trans. Ind. Electron. 2015, 62, 4714–4727. [Google Scholar] [CrossRef]
- Kerviel, A.; Pesyridis, A.; Mohammed, A.; Chalet, D. An Evaluation of Turbocharging and Supercharging Options for High-Efficiency Fuel Cell Electric Vehicles. Appl. Sci. 2018, 8, 2474. [Google Scholar] [CrossRef]
- Kuroda, K.; Omori, H.; Kimura, N.; Morizane, T.; Fukuda, K.; Michikoshi, H.; Mekhilef, S.; Nakaoka, M. A wireless V2H apparatus with a new SiC-MOSFET and unique bidirectional controlled single-ended converter. In Proceedings of the 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017–ECCE Asia), Kaohsiung, Taiwan, 3–7 June 2017; pp. 298–303. [Google Scholar] [CrossRef]
- Li, S.; Li, W.; Deng, J.; Nguyen, T.D.; Mi, C.C. A double-sided LCC compensation network and its tuning method for wireless power transfer. IEEE Trans. Veh. Technol. 2015, 64, 2261–2273. [Google Scholar] [CrossRef]
- Berger, A.; Agostinelli, M.; Vesti, S.; Oliver, A. A wireless charging system applying phase-shift and amplitude control to maximize efficiency and extracted power. IEEE Trans. Power Electron. 2015, 30, 6338–6348. [Google Scholar] [CrossRef]
- Liao, Y.; Hsu, C. A Novel AC/DC Bridgeless and Contactless Electrical Energy Transmission System for Multi-Load Applications. IEEE Trans. Ind. Appl. 2016, 52, 1148–1156. [Google Scholar] [CrossRef]
- Diekhans, T.; De, R.W. A dual-side controlled inductive power transfer system optimized for large coupling factor variations and partial Load. IEEE Trans. Power Electron. 2015, 30, 6320–6328. [Google Scholar] [CrossRef]
Parameters | Primary Side Circuit | Secondary Side Circuit |
---|---|---|
Inductor | L1 = 1 mH | L2 = 1 mH |
Resonant tank | C1 = 660 nF, Lr1 = 15.3 uH | C2 = 660 nF, Lr2 = 15.3 uH |
Transmitter/Receiver | 20 turns, width of winding = 2.7 mm, with two layers | 20 turns, width of winding = 2.7 mm, with two layers |
LED Load to Emulate portable device | Forward voltage 3.5 V | |
Switching frequency | Approximately 50 kHz | |
MOSFET | IRF 540 | |
Transistor | 2222A NPN, 2907A PNP | |
PWM IC | Low Voltage PWM Controller (LT1619 or MAX1967) | |
Coil of Transmitter/Receiver Length 50 mm width 50mm High 5.4 mm |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Y.-H.; Lin, Y. A Novel Bidirectional Wireless Power Transfer System for Mobile Power Application. Appl. Sci. 2019, 9, 3769. https://doi.org/10.3390/app9183769
Liao Y-H, Lin Y. A Novel Bidirectional Wireless Power Transfer System for Mobile Power Application. Applied Sciences. 2019; 9(18):3769. https://doi.org/10.3390/app9183769
Chicago/Turabian StyleLiao, Yi-Hung, and Yue Lin. 2019. "A Novel Bidirectional Wireless Power Transfer System for Mobile Power Application" Applied Sciences 9, no. 18: 3769. https://doi.org/10.3390/app9183769
APA StyleLiao, Y. -H., & Lin, Y. (2019). A Novel Bidirectional Wireless Power Transfer System for Mobile Power Application. Applied Sciences, 9(18), 3769. https://doi.org/10.3390/app9183769