Analysis of Optical Integration between Si3N4 Waveguide and a Ge-Based Optical Modulator Using a Lateral Amorphous GeSi Taper at the Telecommunication Wavelength of 1.55 µm
Abstract
1. Introduction
2. Optical Coupling Structures
3. Coupling Performance and Integrated Optical Modulator
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miller, D.A.B. Device requirements for optical interconnects to silicon chips. Proc. IEEE 2009, 97, 1166–1185. [Google Scholar] [CrossRef]
- Thomson, D.; Zilkie, A.; Bowers, J.E.; Komljenovic, T.; Reed, G.T.; Vivien, L.; Marris-Morini, D.; Cassan, E.; Virot, L.; Fédéli, J.-M.; et al. Roadmap on silicon photonics. J. Opt. 2016, 18, 073003. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J. Emerging technologies in Si active photonics. J. Semicond. 2018, 39, 061001. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, R.; Li, X.; Li, T. Development trends in silicon photonics for data centers. Opt. Fiber Technol. 2018, 44, 13–23. [Google Scholar] [CrossRef]
- Wada, K.; Kimerling, L.C. Photonics and Electronics with Germanium; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015. [Google Scholar]
- Liu, J.F.; Beals, M.; Pomerene, A.; Bernardis, S.; Sun, R.; Cheng, J.; Kimerling, L.C.; Michel, J. Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nat. Photonics 2008, 2, 433–437. [Google Scholar] [CrossRef]
- Feng, D.; Liao, S.; Liang, H.; Fong, J.; Bijlani, B.; Shafiiha, R.; Luff, B.J.; Luo, Y.; Cunningham, J.; Krishnamoorthy, A.V.; et al. High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide. Opt. Express 2012, 20, 22224–22232. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S.A.; Pantouvaki, M.; Gupta, S.; Chen, H.T.; Verheyen, P.; Lepage, G.; Roelkens, G.; Saraswat, K.; van Thourhout, D.; Absil, P.; et al. 56 Gb/s germanium waveguide electro-absorption modulator. J. Lightwave Technol. 2016, 34, 419–424. [Google Scholar] [CrossRef]
- Krishnamoorthy, A.V.; Zheng, X.; Feng, D.; Lexau, J.; Buckwalter, J.F.; Thacker, H.D.; Liu, F.; Luo, Y.; Chang, E.; Amberg, P.; et al. A low-power, high-speed, 9-channel germanium-silicon electro-absorption modulator array integrated with digital CMOS driver and wavelength multiplexer. Opt. Express 2014, 22, 12289–12295. [Google Scholar] [CrossRef]
- Michel, J.; Liu, J.F.; Kimerling, L.C. High-performance Ge-on-Si photodetectors. Nat. Photonics 2010, 4, 527–534. [Google Scholar] [CrossRef]
- Vivien, L.; Polzer, A.; Marris-Morini, D.; Osmond, J.; Hartmann, J.M.; Crozat, P.; Cassan, E.; Kopp, C.; Zimmermann, H.; Fédéli, J.M. Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt. Express 2012, 20, 1096–1101. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, S.; Yang, Y.; Gould, M.; Ophir, N.; Lim, A.E.-J.; Lo, G.-Q.; Magill, P.; Bergman, K.; Baehr-Jones, T.; et al. A high-responsivity photodetector absent metal-germanium direct contact. Opt. Express 2014, 22, 11367–11375. [Google Scholar] [CrossRef] [PubMed]
- Lischke, S.; Knoll, D.; Mai, C.; Zimmermann, L.; Peczek, A.; Kroh, M.; Trusch, A.; Krune, E.; Voigt, K.; Mai, A. High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode. Opt. Express 2015, 23, 27213–27220. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Verheyen, P.; de Heyn, P.; Lepage, G.; de Coster, J.; Balakrishnan, S.; Absil, P.; Yao, W.; Shen, L.; Roelkens, G.; et al. −1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond. Opt. Express 2016, 24, 4622–4631. [Google Scholar] [CrossRef] [PubMed]
- Frova, A.; Handler, P. Franz-Keldysh effect in the space-charge region of a germanium p-n junction. Phys. Rev. 1965, 137, A1857. [Google Scholar] [CrossRef]
- Sun, C.; Wade, M.T.; Lee, Y.; Orcutt, J.S.; Alloatti, L.; Georgas, M.S.; Waterman, A.S.; Shainline, J.M.; Avizienis, R.R.; Lin, S.; et al. Single-chip microprocessor that communicates directly using light. Nature 2015, 528, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Chaisakul, P.; Marris-Morini, D.; Frigerio, J.; Chrastina, D.; Rouifed, M.-S.; Cecchi, S.; Crozat, P.; Isella, G.; Vivien, L. Integrated germanium optical interconnects on silicon substrates. Nat. Photonics 2014, 8, 482–488. [Google Scholar] [CrossRef]
- Goll, B.; Thomson, D.J.; Zimmermann, L.; Porte, H.; Gardes, F.Y.; Hu, Y.; Knoll, D.; Lischke, S.; Tillack, B.; Reed, G.T.; et al. A monolithically integrated silicon modulator with a 10 Gb/s 5 Vpp or 5.6 Vpp driver in 0.25 μm SiGe:C BiCMOS. Front. Phys. 2014, 2, 62. [Google Scholar] [CrossRef]
- Shang, K.; Pathak, S.; Guan, B.; Liu, G.; Yoo, S.J.B. Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits. Opt. Express 2015, 23, 21334–21342. [Google Scholar] [CrossRef]
- Rahim, A.; Ryckeboer, E.; Subramanian, A.Z.; Clemmen, S.; Kuyken, B.; Dhakal, A.; Raza, A.; Hermans, A.; Muneeb, M.; Dhoore, S.; et al. Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits. J. Lightwave Technol. 2017, 35, 639–649. [Google Scholar] [CrossRef]
- Wilmart, Q.; el Dirani, H.; Tyler, N.; Fowler, D.; Malhouitre, S.; Garcia, S.; Casale, M.; Kerdiles, S.; Hassan, K.; Monat, C.; et al. A versatile silicon-silicon nitride photonics platform for enhanced functionalities and applications. Appl. Sci. 2019, 9, 255. [Google Scholar] [CrossRef]
- Muñoz, P.; Micó, G.; Bru, L.A.; Pastor, D.; Pérez, D.; Doménech, J.D.; Fernández, J.; Baños, R.; Gargallo, B.; Alemany, R.; et al. Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications. Sensors 2017, 17, 2088. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yako, M.; Ju, K.; Kawai, N.; Chaisakul, P.; Tsuchizawa, T.; Hikita, M.; Yamada, K.; Ishikawa, Y.; Wada, K. A new material platform of Si photonics for implementing architecture of dense wavelength division multiplexing on Si bulk wafer. Sci. Technol. Adv. Mater. 2017, 18, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Doerr, C.R.; Buhl, L.; Baeyens, Y.; Aroca, R.A. Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon. IEEE Photonics Technol. Lett. 2011, 23, 869–871. [Google Scholar] [CrossRef]
- Chen, L.; Doerr, C.R.; Dong, P.; Chen, Y.-K. Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing. Opt. Express 2011, 19, B946–B951. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.C.; Tao, S.H.; Xu, Y.L.; Sun, X.W.; Yu, M.B.; Lo, G.Q.; Kwong, D.L. Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module. Opt. Express 2008, 16, 20809–20816. [Google Scholar] [CrossRef] [PubMed]
- Rangarajan, B.; Kovalgin, A.Y.; Wörhoff, K.; Schmitz, J. Low-temperature deposition of high-quality silicon oxynitride films for CMOS-integrated optics. Opt. Lett. 2013, 38, 941–943. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Pan, D.; Jongthammanurak, S.; Wada, K.; Kimerling, L.C.; Michel, J. Design of monolithically integrated GeSi electroabsorption modulators and photodetectors on an SOI platform. Opt. Express 2007, 15, 623–628. [Google Scholar] [CrossRef]
- Nguyen, L.M.; Kuroyanagi, R.; Tsuchizawa, T.; Ishikawa, Y.; Yamada, K.; Wada, K. Stress tuning of the fundamental absorption edge of pure germanium waveguides. Opt. Express 2015, 23, 18487–18492. [Google Scholar] [CrossRef]
- Ahn, D.; Hong, C.-Y.; Liu, J.; Giziewicz, W.; Beals, M.; Kimerling, L.C.; Michel, J.; Chen, J.; Kärtner, F.X. High performance, waveguide integrated Ge photodetectors. Opt. Express 2007, 15, 3916–3921. [Google Scholar] [CrossRef]
- Ahna, D.; Kimerling, L.C.; Michel, J. Efficient evanescent wave coupling conditions for waveguide-integrated thin-film Si/Ge photodetectors on silicon-on-insulator/germanium-on-insulator substrates. J. Appl. Phys. 2011, 110, 083115. [Google Scholar] [CrossRef]
- Chaisakul, P.; Koompai, N.; Limsuwan, P. Theoretical investigation of a low-voltage Ge/SiGe multiple quantum wells optical modulator operating at 1310 nm integrated with Si3N4 waveguides. AIP Adv. 2018, 8, 115318. [Google Scholar] [CrossRef]
- Chaisakul, P.; Vakarin, V.; Frigerio, J.; Chrastina, D.; Isella, G.; Vivien, L.; Marris-Morini, D. Recent progress on Ge/SiGe quantum well optical modulators, detectors, and emitters for optical interconnects. Photonics 2019, 6, 24. [Google Scholar] [CrossRef]
- Hernández-Montero, W.W.; Zaldívar-Huerta, I.E.; Zúñiga-Islas, C.; Torres-Jácome, A.; Reyes-Betanzo, C.; Itzmoyotl-Toxqui, A. Optical and compositional properties of amorphous silicon-germanium films by plasma processing for integrated photonics. Opt. Mater. Express 2012, 2, 358–370. [Google Scholar] [CrossRef]
- Selvaraja, S.; de Heyn, P.; Winroth, G.; Ong, P.; Lepage, G.; Cailler, C.; Rigny, A.; Bourdelle, K.; Bogaerts, W.; van Thourhout, D.; et al. Highly uniform and low-loss passive silicon photonics devices using a 300 mm CMOS platform. In Proceedings of the Optical Fiber Communication Conference (OFC2014), San Francisco, CA, USA, 9–13 March 2014; p. Th2A.33. [Google Scholar]
- Abdolvand, R.; Ayazi, F. An advanced reactive ion etching process for very high aspect-ratio sub-micron wide trenches in silicon. Sens. Actuators A Phys. 2008, 144, 109–116. [Google Scholar] [CrossRef]
- Wu, B.; Kumar, A.; Pamarthy, S. High aspect ratio silicon etch: A review. J. Appl. Phys. 2010, 108, 051101. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Traiwattanapong, W.; Wada, K.; Chaisakul, P. Analysis of Optical Integration between Si3N4 Waveguide and a Ge-Based Optical Modulator Using a Lateral Amorphous GeSi Taper at the Telecommunication Wavelength of 1.55 µm. Appl. Sci. 2019, 9, 3846. https://doi.org/10.3390/app9183846
Traiwattanapong W, Wada K, Chaisakul P. Analysis of Optical Integration between Si3N4 Waveguide and a Ge-Based Optical Modulator Using a Lateral Amorphous GeSi Taper at the Telecommunication Wavelength of 1.55 µm. Applied Sciences. 2019; 9(18):3846. https://doi.org/10.3390/app9183846
Chicago/Turabian StyleTraiwattanapong, Worawat, Kazumi Wada, and Papichaya Chaisakul. 2019. "Analysis of Optical Integration between Si3N4 Waveguide and a Ge-Based Optical Modulator Using a Lateral Amorphous GeSi Taper at the Telecommunication Wavelength of 1.55 µm" Applied Sciences 9, no. 18: 3846. https://doi.org/10.3390/app9183846
APA StyleTraiwattanapong, W., Wada, K., & Chaisakul, P. (2019). Analysis of Optical Integration between Si3N4 Waveguide and a Ge-Based Optical Modulator Using a Lateral Amorphous GeSi Taper at the Telecommunication Wavelength of 1.55 µm. Applied Sciences, 9(18), 3846. https://doi.org/10.3390/app9183846