Efficient Real-Time R and QRS Detection Method Using a Pair of Derivative Filters and Max Filter for Portable ECG Device
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Sliding Window for Real-Time Processing
2.2. Simple and Efficient Noise Detection Method Using Vertical Histogram
2.3. Proposed Real-Time R and QRS Detection Method Using a Pair of Derivative Filters
2.4. Exclusion of Unreliable RR Intervals
3. Results
3.1. R Point Detection Performance
3.2. Time Cost Analysis
3.3. Analysis of Noise Effects
3.4. Analysis of Actual Data Measured by Wearable ECG Device
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sadhukhan, D.; Mitra, M. R-peak detection algorithm for ECG using double difference and RR interval processing. Procedia Technol. 2012, 4, 873–877. [Google Scholar] [CrossRef]
- MIT-BIH Arrhythmia Database Directory. Available online: https://physionet.org/physiobank/database/html/mitdbdir/intro.htm#annotations (accessed on 7 August 2019).
- Premature Atrial Contraction. Available online: https://ecgwaves.com/ecg-topic/premature-atrial-contraction-beat-complex (accessed on 7 August 2019).
- Premature Junctional Complex. Available online: https://litfl.com/premature-junctional-complex-pjc (accessed on 7 August 2019).
- ECG Tutorial: Ventricular Arrhythmias. Available online: https://www.uptodate.com/contents/ecg-tutorial-ventricular-arrhythmias (accessed on 7 August 2019).
- Premature Ventricular Contraction. Available online: https://emedicine.medscape.com/article/761148-overview (accessed on 7 August 2019).
- Atrial Fibrillation. Available online: https://www.mayoclinic.org/diseases-conditions/atrial-fibrillation/symptoms-causes/syc-20350624 (accessed on 7 August 2019).
- Arefin, M.R.; Rezai, R.F. Computationally efficient QRS detection analysis based on dual-slope method. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 2274–2277. [Google Scholar]
- Dimiter, V.D. Medical internet of things and big data in healthcare. Healthc. Inform. Res. 2016, 22, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Medtech and the Internet of Medical Things. Available online: https://www2.deloitte.com/global/en/pages/life-sciences-and-healthcare/articles/medtech-internet-of-medical-things.html (accessed on 24 September 2019).
- Madias, J.E. A proposal for monitoring patients with heart failure via smart phone technology-based electrocardiograms. J. Electrocardiol. 2016, 49, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Android App for Patient Monitoring. Available online: https://www.amrita.edu/center/awna/research/patient-monitoring-app (accessed on 24 September 2019).
- Arzeno, N.M.; Deng, Z.D.; Poon, C.S. Analysis of first-derivative based QRS detection algorithms. IEEE Trans. Biomed. Eng. 2008, 55, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, 32, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, P.S.; Tompkins, W.J. Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database. IEEE Trans. Biomed. Eng. 1986, BME-33, 1157–1165. [Google Scholar] [CrossRef]
- Castells-Rufas, D.; Carrabina, J. Simple real-time QRS detector with the MaMeMi filter. Biomed. Signal Process. Control 2015, 21, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Yochuma, M.; Renaudb, C.; Jacquira, S. Automatic detection of P, QRS and T patterns in 12 leads ECG signal based on CWT. Biomed. Signal Process. Control 2016, 25, 46–52. [Google Scholar] [CrossRef]
- Meraha, M.; Abdelmalika, T.A.; Larbi, B.H. R-peaks detection based on stationary wavelet transform. Comput. Methods Programs Biomed. 2015, 121, 149–160. [Google Scholar] [CrossRef]
- Benitez, D.S.; Gaydecki, P.A.; Zaidi, A.; Fitzpatrick, A.P. A new QRS detection algorithm Based on the Hilbert transform. In Proceedings of the Computers in Cardiology 2000, Cambridge, MA, USA, 24–27 September 2000; pp. 379–382. [Google Scholar]
- Zhang, F.; Lian, Y. Wavelet and Hilbert transforms based QRS complexes detection algorithm for wearable ECG devices in wireless Body Sensor Networks. In Proceedings of the IEEE Biomedical Circuits and Systems Conference, Beijing, China, 26–28 November 2009; pp. 225–228. [Google Scholar]
- Martínez, A.; Alcaraz, R.; Rieta, J.J. Application of the phasor transform for automatic delineation of single-lead ECG fiducial points. Physiol. Meas. 2010, 31, 1467–1485. [Google Scholar] [CrossRef]
- Christov, I.I. Real time electrocardiogram QRS detection using combined adaptive threshold. Biomed. Eng. Online 2004, 3, 28. [Google Scholar] [CrossRef] [PubMed]
- Karimipour, A.; Homaeinezhad, M.R. Real-time electrocardiogram P-QRS-T detection–delineation algorithm based on quality-supported analysis of characteristic templates. Comput. Biol. Med. 2014, 52, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Lian, Y. Effective ECG QRS detection based on multiscale mathematical morphology filtering. IEEE Trans. Biomed. Circuits Syst. 2009, 3, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, S.; Vesin, J.M. Extraction of QRS fiducial points from the ECG using adaptive mathematical morphology. Digit. Signal Process. 2016, 56, 100–109. [Google Scholar] [CrossRef] [Green Version]
- Farashi, S.A. multiresolution time-dependent entropy method for QRS complex detection. Biomed. Signal Process. Control 2016, 24, 63–71. [Google Scholar] [CrossRef]
- Phukpattaranont, P. QRS detection algorithm based on the quadratic filter. Expert Syst. Appl. 2015, 42, 4867–4877. [Google Scholar] [CrossRef]
- Kim, J.; Shin, H. Simple and robust realtime QRS detection algorithm based on spatiotemporal characteristic of the QRS complex. PLoS ONE 2016, 11, e0150144. [Google Scholar] [CrossRef]
- Zhang, X.; Lian, Y. A 300-mV 220-nW event-driven ADC with real-time QRS detection for wearable ECG sensors. IEEE Trans. Biomed. Circuits Syst. 2014, 8, 834–843. [Google Scholar] [CrossRef]
- Gutiérrez-Rivas, R.; García, J.J.; Marnane, W.P.; Hernández, Á. Novel real-time low-complexity QRS complex detector based on adaptive thresholding. IEEE Sens. J. 2015, 15, 6036–6043. [Google Scholar] [CrossRef]
- Silva, H.P.; Lourenço, A.; Fred, A.; Raposo, N.; Aires-de-Sousa, M. Check your biosignals here: A new dataset for off-the-person ECG biometrics. Comput Methods Programs Biomed. 2014, 113, 503–514. [Google Scholar] [CrossRef]
- Check Your Biosignals Here Initiative (CYBHi) Dataset for Off-the-Person Electrocardiography (ECG) Biometrics. Available online: https://zenodo.org/record/2381823#.XYn59kYzabh (accessed on 24 September 2019).
- MIT-BIH Noise Stress Test Database. Available online: https://physionet.org/physiobank/database/nstdb (accessed on 7 August 2019).
- American National Standard ANSI/AAMI EC 57:2012, Testing and Reporting Performance Results of Cardiac Rhythm and ST-Segment Measurement Algorithms. Available online: https://webstore.ansi.org/RecordDetail.aspx?sku=CARDIO+MEDICAL+DEVICE+PACKAGE (accessed on 8 August 2019).
- Hoglinger, M. Electronics and Information Technology. Bachelor’s Thesis, Jonannes Kepler University, Linz, Austria, 2016. [Google Scholar]
- Eguchi, K.; Aoki, R.; Yoshida, K.; Yamada, T. Reliability evaluation of R-R interval measurement status for time domain heart rate variability analysis with wearable ECG devices. In Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, Korea, 11–15 July 2017; pp. 1307–1311. [Google Scholar]
- Eguchi, K.; Aoki, R.; Shimauchi, S.; Yoshida, K.; Yamada, T. R-R interval outlier processing for heart rate variability analysis using wearable ECG devices. Adv. Biomed. Eng. 2018, 7, 28–38. [Google Scholar] [CrossRef]
Tape | Total | FN | FP | Se [%] | +P [%] | DER | Tape | Total | FN | FP | Se [%] | +P [%] | DER |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 2273 | 0 | 0 | 100 | 100 | 0 | 201 | 1963 | 8 | 2 | 99.59 | 99.90 | 0.51 |
101 | 1865 | 3 | 5 | 99.84 | 99.73 | 0.43 | 202 | 2136 | 6 | 3 | 99.72 | 99.86 | 0.42 |
102 | 2187 | 0 | 0 | 100 | 100 | 0 | 203 | 2980 | 22 | 15 | 99.26 | 99.50 | 1.24 |
103 | 2084 | 0 | 0 | 100 | 100 | 0 | 205 | 2656 | 6 | 2 | 99.77 | 99.92 | 0.30 |
104 | 2229 | 7 | 19 | 99.69 | 99.15 | 1.17 | 207 | 1862 | 7 | 8 | 99.62 | 99.57 | 0.81 |
105 | 2572 | 13 | 20 | 99.49 | 99.22 | 1.28 | 208 | 2955 | 17 | 9 | 99.42 | 99.69 | 0.88 |
106 | 2027 | 5 | 6 | 99.75 | 99.70 | 0.54 | 209 | 3004 | 3 | 3 | 99.90 | 99.90 | 0.20 |
107 | 2137 | 2 | 0 | 99.91 | 100 | 0.09 | 210 | 2650 | 23 | 11 | 99.13 | 99.58 | 1.28 |
108 | 1774 | 13 | 28 | 99.27 | 98.43 | 2.31 | 212 | 2748 | 1 | 5 | 99.96 | 99.82 | 0.22 |
109 | 2532 | 3 | 0 | 99.88 | 100 | 0.12 | 213 | 3251 | 2 | 6 | 99.94 | 99.82 | 0.25 |
111 | 2124 | 2 | 2 | 99.91 | 99.91 | 0.19 | 214 | 2265 | 1 | 1 | 99.96 | 99.96 | 0.09 |
112 | 2539 | 0 | 1 | 100 | 99.96 | 0.04 | 215 | 3363 | 2 | 3 | 99.94 | 99.91 | 0.15 |
113 | 1795 | 1 | 0 | 99.94 | 100 | 0.06 | 217 | 2209 | 7 | 6 | 99.68 | 99.73 | 0.59 |
114 | 1879 | 3 | 4 | 99.84 | 99.79 | 0.37 | 219 | 2154 | 4 | 3 | 99.81 | 99.86 | 0.32 |
115 | 1953 | 0 | 0 | 100 | 100 | 0 | 220 | 2048 | 1 | 0 | 99.95 | 100 | 0.05 |
116 | 2412 | 14 | 4 | 99.42 | 99.83 | 0.75 | 221 | 2427 | 4 | 2 | 99.84 | 99.92 | 0.25 |
117 | 1535 | 0 | 0 | 100 | 100 | 0 | 222 | 2483 | 5 | 3 | 99.80 | 99.88 | 0.32 |
118 | 2278 | 2 | 0 | 99.91 | 100 | 0.09 | 223 | 2605 | 3 | 2 | 99.88 | 99.92 | 0.19 |
119 | 1987 | 0 | 0 | 100 | 100 | 0 | 228 | 2053 | 4 | 19 | 99.81 | 99.08 | 1.12 |
121 | 1863 | 2 | 0 | 99.89 | 100 | 0.11 | 230 | 2256 | 1 | 3 | 99.96 | 99.87 | 0.18 |
122 | 2476 | 0 | 0 | 100 | 100 | 0 | 231 | 1571 | 1 | 1 | 99.94 | 99.94 | 0.13 |
123 | 1518 | 2 | 0 | 99.87 | 100 | 0.13 | 232 | 1780 | 2 | 2 | 99.89 | 99.89 | 0.22 |
124 | 1619 | 0 | 0 | 100 | 100 | 0 | 233 | 3079 | 5 | 1 | 99.84 | 99.97 | 0.19 |
200 | 2601 | 5 | 15 | 99.81 | 99.43 | 0.77 | 234 | 2753 | 3 | 0 | 99.89 | 100 | 0.11 |
Mean | 109510 | 215 | 214 | 99.80 | 99.80 | 0.39 |
Method | Real-Time Feasibility | Noise Detection | Post-Processing of Contaminated R and RR Interval | Se [%] | +P [%] | DER [%] |
---|---|---|---|---|---|---|
Pan et al. [14] | Y | Y | N | 99.76 | 99.56 | 0.68 |
Hamilton et al. [15] | Y | Y | N | 99.69 | 99.77 | 0.54 |
Castells-Rufas et al. [16] | Y | Y | N | 99.43 | 99.67 | 0.88 |
Benitez et al. [19] | N | N | N | 99.81 | 99.83 | 0.36 |
Cristov [22] | Y | N | N | 99.78 | 99.78 | 0.44 |
Zhang et al. [24] | N | N | N | 99.81 | 99.80 | 0.39 |
Kim et al. [28] | N | N | N | 99.90 | 99.91 | 0.19 |
Proposed method | Y | Y | Y | 99.80 | 99.80 | 0.39 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, T.W.; Kwon, K.K. Efficient Real-Time R and QRS Detection Method Using a Pair of Derivative Filters and Max Filter for Portable ECG Device. Appl. Sci. 2019, 9, 4128. https://doi.org/10.3390/app9194128
Bae TW, Kwon KK. Efficient Real-Time R and QRS Detection Method Using a Pair of Derivative Filters and Max Filter for Portable ECG Device. Applied Sciences. 2019; 9(19):4128. https://doi.org/10.3390/app9194128
Chicago/Turabian StyleBae, Tae Wuk, and Kee Koo Kwon. 2019. "Efficient Real-Time R and QRS Detection Method Using a Pair of Derivative Filters and Max Filter for Portable ECG Device" Applied Sciences 9, no. 19: 4128. https://doi.org/10.3390/app9194128
APA StyleBae, T. W., & Kwon, K. K. (2019). Efficient Real-Time R and QRS Detection Method Using a Pair of Derivative Filters and Max Filter for Portable ECG Device. Applied Sciences, 9(19), 4128. https://doi.org/10.3390/app9194128