Multiple Feature Integration for Classification of Thoracic Disease in Chest Radiography
Abstract
:Featured Application
Abstract
1. Introduction
- We utilize the efficient pretrained DenseNet-121 to visualize the class activation map (CAM) of pathological abnormalities from the ChestX-ray14 dataset.
- We extract different types of shallow and deep features and select the coded features to generalize the best feature combination by extensive experiments.
- We compare the classification results from different classifiers trained in a supervised manner.
2. Related Works
3. Proposed Approach
3.1. Feature Extraction
3.1.1. Shallow Feature Extraction
- SIFT: We decompose our SIFT algorithms into four stages. First, using the feature point detection step based on the property of scale invariance, we can find features under various image sizes. After detecting some key point features found in the scale space, which are poorly localized, a subpixel localization refines the positions of these feature points to pinpoint subpixels while removing any poor features. Next, the gradient orientations of sample points within a region form an orientation histogram.
- A set of 16 histograms—a 4 × 4 spatial grid with 8 orientation bins resulting in a feature vector containing 128 elements—is used.
- GIST: We convolve the image with 32 Gabor filters in 8 orientations and 4 scales. With a 4 × 4 grid, we divide each feature map into 16 regions and then average the values of the features of each region. Finally, we concatenate the 16 values with 32 feature maps producing a 512 GIST descriptor.
- LBP: By comparing each pixel with its surrounding pixels, LBP allows us to compute the local representation of texture in the image. First, LBP converts the image into grayscale. For each pixel of the grayscale image, a neighborhood size surrounding the center pixel is selected. If the value of neighbor is less than the value of the center pixel, written as “1”; otherwise, “0” is written. The conversion from binary number in to decimal number in the range of 0–255 is then applied. Finally, we divide the image into multiple 8 × 8 grids to generate each histogram associated with each region and a feature vector of 256 positions. The final histogram contains 1 6384 positions.
- HOG: HOG decomposes an image into small squares in a dense manner, computes the histogram of oriented gradients, normalizes the obtained results by a block-wise pattern, concatenates the 3 × 3 grid cells, and returns the HOG descriptor at each grid location.
3.1.2. Deep Feature Extraction
3.2. Feature Integration
3.3. Supervised Learning Classifiers
- Gaussian discriminant analysis (GDA) [52]: based on the generative learning algorithm property, we learn the model distributed according to Bernoulli and where k is one of the 14 classes distributed according to the multivariate normal distribution; then, can be expressed as Sigmoid function.
- K-nearest neighbor (KNN) [53]: we initialize K = 30 for the number of neighbors to capture and locate similar data points. We gradually increase the value of K so that our KNN predictions become more stable and accurate based on majority voting and averaging.
- Naïve Bayes [54]: based on the so-called Bayesian theorem, which calculates the posterior probability from , , and , the Naïve Bayes assumes that the effect on a given class (x is independent of the predictor, called class conditional independence.
- Support vector machine (SVM) [55]: we apply SVM algorithms to find an optimal hyperplane acting as a decision boundary in N-dimensional space that can distinctly classify our feature points. We maximize the margin of the classifier when support vectors affect the position and orientation of the hyperplane. The tuning parameters, including the kernel, regularization, and gamma, are carefully chosen.
- Adaptive boosting (AdaBoost) [56]: we sequentially add a set of weak classifiers and trains using the weighted training data. First, we initialize the weight for each data point, fit weak classifiers to the dataset, and compute the weight of all weak classifiers. After 100 iterations, we obtain the final prediction with the updated weight for each classifier by the formula , where is the weak classifier and is the corresponding weight.
- Random Forest [57]: this comprises multiple random decision trees. A random sample from our original dataset forms into each tree. A subset of K features presenting each tree node d is randomly selected to generate the best split. Then, we split the node into daughter nodes and repeating these steps n times to create n trees.
- Extreme learning machine (ELM) [58]: the ELM includes an input layer, a hidden layer, and an output layer. We set the specific number of hidden neurons, randomize the weight and the bias between input and hidden layers in the execution process, calculate the weight between hidden and output layers by the Moore–Penrose pseudoinverse with a sigmoid activation function, and fit the results with the least-squares method.
4. Experimental Results
4.1. ChestX-Ray14 Dataset and Preprocessing
4.2. CAM Visualization
4.3. Classification Results
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brenner, D.R.; McLaughlin, J.R.; Hung, R.J. Previous lung diseases and lung cancer risk: A systematic review and meta-analysis. PLoS ONE 2011, 6, e17479. [Google Scholar] [CrossRef] [PubMed]
- Ruuskanen, O.; Lahti, E.; Jennings, L.C.; Murdoch, D.R. Viral pneumonia. Lancet 2011, 377, 1264–1275. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Imag. Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Bagheri, M.; Summers, R.M. Chest X-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Liu, C.; Mao, J.; Sha, F.; Yuille, A.L. Attention correctness in neural image captioning. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Ba, J.; Mnih, V.; Kavukcuoglu, K. Multiple object recognition with visual attention. arXiv 2014, arXiv:1412.7755. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the International Conference on Learning Representations, Banff, AB, Canada, 14–16 April 2015. [Google Scholar]
- Zhou, B.; Lapedriza, A.; Xiao, J.; Torralba, A.; Oliva, A. Learning deep features for scene recognition using places database. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 6–13 December 2014. [Google Scholar]
- Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 142–158. [Google Scholar] [CrossRef]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollr, P.; Zitnick, L. Microsoft coco: Common objects in context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014. [Google Scholar]
- Johnson, J.; Karpathy, A.; Fei-Fei, L. DenseCap: Fully convolutional localization networks for dense captioning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Krishna, R.; Zhu, Y.; Groth, O.; Johnson, J.; Hata, K.; Kravitz, J.; Chen, S.; Kalantidis, Y.; Li, L.-J.; Shamma, D.A.; et al. Visual Genome: Connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 2017, 123, 32–73. [Google Scholar] [CrossRef]
- Roth, H.R.; Lu, L.; Seff, A.; Cherry, K.M.; Hoffman, J.; Wang, S.; Liu, J.; Turkbey, E.; Summers, R.M. A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention, Boston, MA, USA, 14–18 September 2014. [Google Scholar]
- Shin, H.; Roth, H.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learnings. IEEE Trans. Med. Imag. 2016, 35, 1285–1298. [Google Scholar] [CrossRef]
- Setio, A.; Ciompi, F.; Litjens, G.; Gerke, P.; Jacobs, C.; van Riel, S.; Wille, M.; Naqibullah, M.; Snchez, C.; van Ginneken, B. Pulmonary nodule detection in ct images: False positive reduction using multi-view convolutional networks. IEEE Trans. Med. Imag. 2016, 35, 1160–1169. [Google Scholar] [CrossRef]
- Dou, Q.; Chen, H.; Yu, L.; Zhao, L.; Qin, J.; Wang, D.; Mok, V.; Shi, L.; Heng, P. Automatic detection of cerebral microbleeds from mr images via 3d convolutional neural networks. IEEE Trans. Med. Imag. 2016, 35, 1182–1195. [Google Scholar] [CrossRef]
- Jamaludin, A.; Kadir, T.; Zisserman, A. SpineNet: Automatically pinpointing classification evidence in spinal MRIs. In Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention, Athens, Greece, 17–21 October 2016. [Google Scholar]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Roth, H.; Lu, L.; Farag, A.; Shin, H.-C.; Liu, J.; Turkbey, E.B.; Summers, R.M. DeepOrgan: Multi-level deep convolutional networks for automated pancreas segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention, Munich, Germany, 5–9 October 2015. [Google Scholar]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikäinen, M.; Mäenpää, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 7, 971–987. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–26 June 2005. [Google Scholar]
- Negrel, R.; Picard, D.; Gosselin, P.H. Evaluation of second-order visual features for land-use classification. In Proceedings of the 12th IEEE International Workshop on Content-Based Multimedia Indexing, Klagenfurt, Austria, 8–20 June 2014. [Google Scholar]
- Zhong, Y.; Zhu, O.; Zhang, L. Scene classification based on the multifeature fusion probabilistic topic model for high spatial resolution remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6207–6222. [Google Scholar] [CrossRef]
- Penatti, O.A.; Nogueira, K.; Santos, J.A.D. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, 8–10 June 2015. [Google Scholar]
- Vu, T.H.; Mousavi, H.S.; Monga, V.; Rao, G.; Rao, U.A. Histopathological image classification using discriminative feature-oriented dictionary learning. IEEE Trans. Med. Imag. 2015, 35, 738–751. [Google Scholar] [CrossRef] [PubMed]
- Otálora, S.; Cruz-Roa, A.; Arevalo, J.; Atzori, M.; Madabhushi, A.; Judkins, A.R.; Depeursinge, A. Combining unsupervised feature learning and riesz wavelets for histopathology image representation: Application to identifying anaplastic medulloblastoma. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015. [Google Scholar]
- Hu, F.; Xia, G.S.; Hu, J.; Zhang, L. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens. 2015, 7, 14680–14707. [Google Scholar] [CrossRef]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- Van Ginneken, B.; Setio, A.A.; Jacobs, C.; Ciompi, F. Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. In Proceedings of the 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), New York, NY, USA, 16–19 April 2015. [Google Scholar]
- Nanni, L.; Ghidoni, S.; Brahnam, S. Ensemble of convolutional neural networks for bioimage classification. Appl. Comput. Inf. 2018. [Google Scholar] [CrossRef]
- Mahmood, A.; Bennamoun, M.; An, S.; Sohel, F.; Boussaid, F.; Hovey, R.; Fisher, R.B. Coral classification with hybrid feature representations. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016. [Google Scholar]
- Tang, Y.; Tang, Y.; Sandfort, V.; Xiao, J.; Summers, R.M. TUNA-Net: Task-oriented UNsupervised Adversarial Network for Disease Recognition in Cross-Domain Chest X-rays. arXiv 2019, arXiv:1908.07926. [Google Scholar]
- Li, Z.; Wang, C.; Han, M.; Xue, Y.; Wei, W.; Li, L.J.; Fei-Fei, L. Thoracic disease identification and localization with limited supervision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Salehinejad, H.; Valaee, S.; Dowdell, T.; Colak, E.; Barfett, J. Generalization of deep neural networks for chest pathology classification in x-rays using generative adversarial networks. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, AB, Canada, 15–20 April 2018. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Yao, L.; Poblenz, E.; Dagunts, D.; Covington, B.; Bernard, D.; Lyman, K. Learning to diagnose from scratch by exploiting dependencies among labels. arXiv 2017, arXiv:1710.10501. [Google Scholar]
- Kumar, P.; Grewal, M.; Srivastava, M.M. Boosted cascaded convnets for multilabel classification of thoracic diseases in chest radiographs. In Proceedings of the International Conference Image Analysis and Recognition, Póvoa de Varzim, Portugal, 27–29 June 2018. [Google Scholar]
- Rajpurkar, P.; Irvin, J.; Zhu, K.; Yang, B.; Mehta, H.; Duan, T.; Lungren, M.P. Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv 2017, arXiv:1711.05225. [Google Scholar]
- Wang, H.; Xia, Y. Chestnet: A deep neural network for classification of thoracic diseases on chest radiography. arXiv 2018, arXiv:1807.03058. [Google Scholar]
- Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Summers, R.M. Tienet: Text-image embedding network for common thorax disease classification and reporting in chest X-rays. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Baltruschat, I.M.; Nickisch, H.; Grass, M.; Knopp, T.; Saalbach, A. Comparison of deep learning approaches for multi-label chest X-ray classification. arXiv 2018, arXiv:1803.02315. [Google Scholar] [CrossRef] [PubMed]
- Luo, B.; Jiang, S.; Zhang, L. Indexing of remote sensing images with different resolutions by multiple features. IEEE J. Select. Topics Appl. Earth Observ. Remote Sens. 2013, 6, 1899–1912. [Google Scholar] [CrossRef]
- Li, E.; Xia, J.; Lin, P.D.C.; Samat, A. Integrating multilayer features of convolutional neural networks for remote sensing scene classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5653–5665. [Google Scholar] [CrossRef]
- Oliva, A.; Torralba, A. Modeling the shape of the scene: A holistic representation of the spatial envelope. Int. J. Comput. Vis. 2004, 42, 145–175. [Google Scholar] [CrossRef]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Ju, J.; Kolaczyk, E.D.; Gopal, S. Gaussian mixture discriminant analysis and sub-pixel land cover characterization in remote sensing. Remote Sens. Environ. 2003, 84, 550–560. [Google Scholar] [CrossRef]
- Weinberger, K.Q.; Saul, L.K. Distance metric learning for large margin nearest neighbor classification. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 4–7 December 2006. [Google Scholar]
- Murphy, K.P. Naive Bayes Classifiers; University of British Columbia: Vancouver, BC, Canada, 2006. [Google Scholar]
- Fung, G.M.; Mangasarian, O.L. Multicategory proximal support vector machine classifiers. Mach. Learn. 2005, 59, 77–97. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Z.; Todorovic, S.; Li, J. Adaptive boosting for SAR automatic target recognition. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 112–125. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhou, H.; Ding, X.; Zhang, R. Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. 2011, 42, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Abdelmoula, W.M.; Balluff, B.; Englert, S.; Dijkstra, J.; Reinders, M.J.; Walch, A.; Lelieveldt, B.P. Data-driven identification of prognostic tumor subpopulations using spatially mapped t-SNE of mass spectrometry imaging data. Proc. Natl. Acad. Sci. USA 2016, 113, 12244–12249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Guendel, S.; Grbic, S.; Georgescu, B.; Liu, S.; Maier, A.; Comaniciu, D. Learning to recognize abnormalities in chest X-rays with location-aware dense networks. In Proceedings of the Iberoamerican Congress on Pattern Recognition, Madrid, Spain, 19–22 November 2018. [Google Scholar]
- Team, P.P.; Gohagan, J.K.; Prorok, P.C.; Hayes, R.B.; Kramer, B.S. The Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial of the National Cancer Institute: History, organization, and status. Controll. Clinic. Trials 2000, 21, 251S–272S. [Google Scholar]
Feature | Dataset Division ( ): No. of Images | Accuracy | |||||||
---|---|---|---|---|---|---|---|---|---|
GDA | KNN | Naïve Bayes | SVM | Ada-Boost | Random Forest | ELM | |||
SIFT | Training: 80% (89,696) Testing: 20% (22,424) | 0.5720 | 0.6026 | 0.6562 | 0.5598 | 0.6451 | 0.6621 | 0.7669 | |
GIST | 0.5850 | 0.6030 | 0.6557 | 0.5732 | 0.6401 | 0.6710 | 0.7227 | ||
LBP | 05941 | 0.6009 | 0.6440 | 0.5865 | 0.6471 | 0.7210 | 0.7828 | ||
HOG | 0.5947 | 0.6012 | 0.6487 | 0.5897 | 0.6489 | 0.6751 | 0.7837 | ||
FI 1 | SIFT+GIST+LBP+HOG | 0.6039 | 0.6205 | 0.6587 | 0.6112 | 0.6551 | 0.6902 | 0.7941 | |
FI 2 | Conv5+SIFT | 0.5753 | 0.5569 | 0.4803 | 0.6065 | 0.6401 | 0.6452 | 0.6742 | |
Conv5+GIST | 0.6006 | 0.5599 | 0.4808 | 0.6128 | 0.6451 | 0.6309 | 0.7115 | ||
Conv5+LBP | 0.6058 | 0.5607 | 0.4817 | 0.6213 | 0.6519 | 0.6649 | 0.8115 | ||
Conv5+HOG | 0.5901 | 0.5577 | 0.4807 | 0.5992 | 0.6551 | 0.6501 | 0.8105 | ||
FI 3 | Conv5+SIFT+GIST+LBP+HOG | 0.6834 | 0.6332 | 0.6052 | 0.7478 | 0.7952 | 0.7701 | 0.8462 | |
Fully pretrained DenseNet121 | Training: 70% (78,484) Validation: 10% (11,212) Testing: 20% (22,424) | 0.8097 |
Feature | Dataset Division ( ): No. of images | F1-score | |||||||
---|---|---|---|---|---|---|---|---|---|
GDA | KNN | Naïve Bayes | SVM | Ada-Boost | Random Forest | ELM | |||
SIFT | Training: 80% (89,696) Testing: 20% (22,424) | 0.7276 | 0.7646 | 0.7924 | 0.7124 | 0.7937 | 0.8211 | 0.8686 | |
GIST | 0.7436 | 0.7651 | 0.7921 | 0.7292 | 0.7937 | 0.8101 | 0.8227 | ||
LBP | 0.7552 | 0.7627 | 0.7835 | 0.7454 | 0.7937 | 0.8167 | 0.8328 | ||
HOG | 0.7552 | 0.7627 | 0.7869 | 0.7445 | 0.7937 | 0.8100 | 0.8262 | ||
FI 1 | SIFT+GIST+LBP+HOG | 0.7662 | 0.5766 | 0.7942 | 0.7747 | 0.7937 | 0.8011 | 0.8520 | |
FI 2 | Conv5+SIFT | 0.7088 | 0.6056 | 0.7693 | 0.7937 | 0.7901 | 0.8110 | 0.6742 | |
Conv5+GIST | 0.7126 | 0.6062 | 0.7766 | 0.7957 | 0.7715 | 0.8444 | 0.7115 | ||
Conv5+LBP | 0.7009 | 0.6076 | 0.7863 | 0.7937 | 0.8106 | 0.8646 | 0.8115 | ||
Conv5+HOG | 0.7098 | 0.6060 | 0.7606 | 0.7937 | 0.8102 | 0.8445 | 0.8105 | ||
FI 3 | Conv5+SIFT+GIST+LBP+HOG | 0.8413 | 0.7541 | 0.7138 | 0.8661 | 0.9038 | 0.8858 | 0.9413 | |
Fully pretrained DenseNet121 | Training: 70% (78,484) Validation: 10% (11,212) Testing: 20% (22,424) | 0.8838 |
Pathology | Wang et al. [4] | Yao et al. [41] | Gundel et al. [61] | Wang et al. [44] | Proposed |
---|---|---|---|---|---|
Atelectasis | 0.716 | 0.772 | 0.767 | 0.743 | 0.795 |
Cardiomegaly | 0.807 | 0.904 | 0.883 | 0.875 | 0.887 |
Effusion | 0.784 | 0.859 | 0.828 | 0.811 | 0.875 |
Infiltration | 0.609 | 0.695 | 0.709 | 0.677 | 0.703 |
Mass | 0.706 | 0.792 | 0.821 | 0.783 | 0.835 |
Nodule | 0.671 | 0.717 | 0.758 | 0.698 | 0.716 |
Pneumonia | 0.633 | 0.713 | 0.731 | 0.696 | 0.742 |
Pneumothorax | 0.806 | 0.841 | 0.846 | 0.810 | 0.863 |
Consolidation | 0.708 | 0.788 | 0.745 | 0.723 | 0.786 |
Edema | 0.835 | 0.882 | 0.835 | 0.833 | 0.892 |
Emphysema | 0.815 | 0.829 | 0.895 | 0.822 | 0.875 |
Fibrosis | 0.769 | 0.767 | 0.818 | 0.804 | 0.756 |
Pleural Thickening | 0.708 | 0.765 | 0.761 | 0.751 | 0.774 |
Hernia | 0.767 | 0.914 | 0.896 | 0.899 | 0.836 |
Average | 0.738 | 0.801 | 0.807 | 0.781 | 0.8097 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, T.K.K.; Gwak, J. Multiple Feature Integration for Classification of Thoracic Disease in Chest Radiography. Appl. Sci. 2019, 9, 4130. https://doi.org/10.3390/app9194130
Ho TKK, Gwak J. Multiple Feature Integration for Classification of Thoracic Disease in Chest Radiography. Applied Sciences. 2019; 9(19):4130. https://doi.org/10.3390/app9194130
Chicago/Turabian StyleHo, Thi Kieu Khanh, and Jeonghwan Gwak. 2019. "Multiple Feature Integration for Classification of Thoracic Disease in Chest Radiography" Applied Sciences 9, no. 19: 4130. https://doi.org/10.3390/app9194130
APA StyleHo, T. K. K., & Gwak, J. (2019). Multiple Feature Integration for Classification of Thoracic Disease in Chest Radiography. Applied Sciences, 9(19), 4130. https://doi.org/10.3390/app9194130