Tuning the Resonant Frequency of a Surface Plasmon by Double-Metallic Ag/Au Nanoparticles for High-Efficiency Green Light-Emitting Diodes
Abstract
:1. Introduction
2. Experiments
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Akasaki, I.; Amano, H. Crystal growth and conductivity control of group III nitride semiconductors and their application to short wavelength light emitters. Jpn. J. Appl. Phys. 1997, 36, 5393–5408. [Google Scholar] [CrossRef]
- Amano, H. Nobel lecture: Growth of GaN on sapphire via low-temperature deposited buffer layer and realization of p-type GaN by Mg doping followed by low-energy electron beam irradiation. Rev. Mod. Phys. 2015, 87, 1133–1138. [Google Scholar] [CrossRef]
- Akasaki, I. Nobel lecture: Fascinated journeys into blue light. Rev. Mod. Phys. 2015, 87, 1119–1131. [Google Scholar] [CrossRef]
- Riechert, H. Lighting the 21st century. Phys. Status Solidi A 2015, 212, 893–896. [Google Scholar] [CrossRef]
- Saito, S.; Hashimoto, R.; Hwang, J.; Nunoue, S. InGaN light-emitting diodes on c-face sapphire substrates in green gap spectral range. Appl. Phys. Express 2013, 6, 111004. [Google Scholar] [CrossRef]
- Crawford, M.H. LEDs for solid-state lighting: Performance challenges and recent advances. IEEE J. Quantum Electron. 2009, 15, 1028–1040. [Google Scholar] [CrossRef]
- Iida, D.; Kondo, Y.; Sowa, M.; Sugiyama, T.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I. Analysis of strain relaxation process in GaInN/GaN heterostructure by in situ X-ray diffraction monitoring during metalorganic vapor-phase epitaxial growth. Phys. Status Solidi RRL 2013, 7, 211–214. [Google Scholar] [CrossRef]
- Iida, D.; Niwa, K.; Kamiyama, S.; Ohkawa, K. Demonstration of InGaN-based orange LEDs with hybrid multiple-quantum-wells structure. Appl. Phys. Express 2016, 9, 111003. [Google Scholar] [CrossRef]
- Karpov, S.Y. Effect of carrier localization on recombination processes and efficiency of InGaN-based LEDs operating in the “Green Gap”. Appl. Sci. 2018, 8, 818. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, J.; Zhou, S.; Gao, Y.; Hu, J.; Liu, X.; Ding, X. An InGaN/GaN superlattice to enhance the performance of green LEDs: Exploring the role of V-pits. Nanomaterials 2018, 8, 450. [Google Scholar] [CrossRef]
- Doi, T.; Honda, Y.; Yamaguchi, M.; Amano, H. Strain-compensated effect on the growth of InGaN/AlGaN multi-quantum well by metalorganic vapor phase epitaxy. Jpn. J. Appl. Phys. 2013, 52, 08JB14. [Google Scholar] [CrossRef]
- Okamoto, K.; Niki, I.; Shvartser, A.; Narukawa, Y.; Mukai, T.; Scherer, A. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat. Mater. 2004, 3, 601–605. [Google Scholar] [CrossRef]
- Oh, T.S.; Jeong, H.; Lee, Y.S.; Kim, J.D.; Seo, T.H.; Kim, H.; Park, A.H.; Lee, K.J.; Suh, E.-H. Coupling of InGaN/GaN multiquantum-wells photoluminescence to surface plasmons in platinum nanocluster. Appl. Phys. Lett. 2009, 95, 111112. [Google Scholar]
- Chen, C.-Y.; Yeh, D.-M.; Lu, Y.-C.; Yang, C.C. Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure. Appl. Phys. Lett. 2006, 89, 203113. [Google Scholar] [CrossRef]
- Cho, C.-Y.; Kim, K.S.; Lee, S.-J.; Kwon, M.-K.; Ko, H.; Kim, S.-T.; Jung, G.-Y.; Park, S.-J. Surface plasmon-enhanced light-emitting diodes with silver nanoparticles and SiO2 nano-disks embedded in p-GaN. Appl. Phys. Lett. 2011, 99, 041107. [Google Scholar] [CrossRef]
- Okamoto, K.; Niki, I.; Shvartser, A.; Maltezos, G.; Narukawa, Y.; Mukai, T.; Kawakami, Y.; Scherer, A. Surface plasmon enhanced bright light emission from InGaN/GaN. Phys. Status Solidi A 2007, 204, 2013–2017. [Google Scholar] [CrossRef]
- Gao, N.; Huang, K.; Li, J.; Li, S.; Yang, X.; Kang, J. Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells. Sci. Rep. 2012, 2, 816. [Google Scholar] [CrossRef]
- Kwon, M.-K.; Kim, J.-Y.; Kim, B.-H.; Park, I.-K.; Cho, C.-Y.; Byeon, C.-C.; Park, S.-J. Surface-plasmon-enhanced light-emitting diodes. Adv. Mater. 2008, 20, 1253–1257. [Google Scholar] [CrossRef]
- Iida, D.; Fadil, A.; Chen, Y.; Ou, Y.; Kopylov, O.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I.; Ou, H. Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles. AIP Adv. 2015, 5, 097169. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, K. Surface plasmon enhanced solid-state light-emitting devices. In Nanoscale Photonics and Optoelectronics; Wang, Z.M., Neogi, A., Eds.; Springer: New York, NY, USA, 2010; pp. 27–46. [Google Scholar]
- Okamoto, K.; Funato, M.; Kawakami, Y.; Tamada, K. High-efficiency light emission by exciton–surface-plasmon coupling. J. Photochem. Photobiol. C Photochem. Rev. 2017, 32, 58–77. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, J.; Liu, G.; Tansu, N. Surface plasmon dispersion engineering via double-metallic Au/Ag layers for Ⅲ-nitride based light-emitting diodes. Appl. Phys. Lett. 2011, 98, 151115. [Google Scholar] [CrossRef]
- Paiella, R. Tunable surface plasmons in coupled metallo-dielectric multiple layers for light-emission efficiency enhancement. Appl. Phys. Lett. 2005, 87, 111104. [Google Scholar] [CrossRef]
- Hong, R.; Ji, J.; Tao, C.; Zhang, D. Tunable surface plasmon resonance frequency of Au-Ag bimetallic asymmetric structure thin films in the UV and IR. Proc. SPIE 2016, 10154, 101548. [Google Scholar]
- Henson, J.; Bhattacharyya, A.; Moustakas, T.D.; Paiella, R. Controlling the recombination rate of semiconductor active layers via coupling to dispersion-engineered surface plasmons. J. Opt. Soc. Am. B 2008, 25, 1328–1335. [Google Scholar] [CrossRef]
- Beliatis, M.J.; Henley, S.J.; Silva, S.R.P. Engineering the plasmon resonance of large area bimetallic nanoparticle films by laser nanostructuring for chemical sensors. Opt. Lett. 2011, 36, 1362–1364. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Pudasaini, P.R.; Ruiz-Zepeda, F.; Vinogradova, E.; Ayon, A.A. Plasmonic Effects of Au/Ag Bimetallic Multispiked Nanoparticles for Photovoltaic Applications. ACS Appl. Mater. Interfaces 2014, 6, 15472–15479. [Google Scholar] [CrossRef]
- Heinz, M.; Srabionyan, V.V.; Avakyan, L.A.; Bugaev, A.L.; Skidanenko, A.V.; Kaptelinin, S.Y.; Ihlemann, J.; Meinertz, J.; Patzig, C.; Dubiel, M.; et al. Formation of bimetallic gold-silver nanoparticles in glass by UV laser irradiation. J. Alloy Compd. 2018, 767, 1253–1263. [Google Scholar] [CrossRef]
- Lu, C.-H.; Lan, C.-C.; Lai, Y.-L.; Li, Y.-L.; Liu, C.-P. Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array. Adv. Funct. Mater. 2011, 21, 4719–4723. [Google Scholar] [CrossRef]
- Lin, C.-H.; Su, C.-Y.; Kuo, Y.; Chen, C.-H.; Yao, Y.-F.; Shih, P.-Y.; Chen, H.-S.; Hsieh, C.; Kiang, Y.-W.; Yang, C.C. Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles. Appl. Phys. Lett. 2014, 105, 101106. [Google Scholar] [CrossRef]
- Jiang, S.; Hu, Z.; Chen, Z.; Fu, X.; Jiang, X.; Jiao, Q.; Yu, T.; Zhang, G. Resonant absorption and scattering suppression of localized surface plasmons in Ag particles on green LED. Opt. Express 2013, 21, 12100–12110. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Han, D.-P.; Ishimoto, S.; Mano, R.; Kamiyama, S.; Takeuchi, T.; Iwaya, M.; Akasaki, I. Optimization of indium-tin-oxide layer thickness for surface-plasmon-enhanced green light-emitting diodes. Jpn. J. Appl. Phys. 2019. Accepted. [Google Scholar]
- Yao, Y.-C.; Hwang, J.-M.; Yang, Z.-P.; Haung, J.-Y.; Lin, C.-C.; Shen, W.-C.; Chou, C.-Y.; Wang, M.-T.; Huang, C.-Y.; Chen, C.-Y.; et al. Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons. Sci. Rep. 2016, 6, 22659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fadil, A.; Iida, D.; Chen, Y.; Ma, J.; Ou, Y.; Petersen, P.M.; Ou, H. Surface plasmon coupling dynamics in InGaN/GaN quantum-well structures and radiative efficiency improvement. Sci. Rep. 2014, 4, 6329. [Google Scholar] [CrossRef] [PubMed]
- Yeh, D.-M.; Huang, C.-F.; Chen, C.-Y.; Lu, Y.-C.; Yang, C.C. Localized surface plasmon-induced emission enhancement of a green light-emitting diode. Nanotechnology 2008, 19, 345201. [Google Scholar] [CrossRef]
- Tanaka, D.; Imazu, K.; Sung, J.; Park, C.; Okamoto, K.; Tamada, K. Characteristics of localized surface plasmons excited on mixed monolayers composed of self-assembled Ag and Au nanoparticles. Nanoscale 2015, 7, 15310–15320. [Google Scholar] [CrossRef] [PubMed]
Sample | Ag Thickness | Au Thickness |
---|---|---|
NPs 1 | 4 nm | - |
NPs 2 | 3 nm | 1 nm |
NPs 3 | 2 nm | 2 nm |
NPs 4 | 1 nm | 3 nm |
NPs 5 | - | 4 nm |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mano, R.; Han, D.-P.; Yamamoto, K.; Ishimoto, S.; Kamiyama, S.; Takeuchi, T.; Iwaya, M.; Akasaki, I. Tuning the Resonant Frequency of a Surface Plasmon by Double-Metallic Ag/Au Nanoparticles for High-Efficiency Green Light-Emitting Diodes. Appl. Sci. 2019, 9, 305. https://doi.org/10.3390/app9020305
Mano R, Han D-P, Yamamoto K, Ishimoto S, Kamiyama S, Takeuchi T, Iwaya M, Akasaki I. Tuning the Resonant Frequency of a Surface Plasmon by Double-Metallic Ag/Au Nanoparticles for High-Efficiency Green Light-Emitting Diodes. Applied Sciences. 2019; 9(2):305. https://doi.org/10.3390/app9020305
Chicago/Turabian StyleMano, Ryoya, Dong-Pyo Han, Kengo Yamamoto, Seiji Ishimoto, Satoshi Kamiyama, Tetsuya Takeuchi, Motoaki Iwaya, and Isamu Akasaki. 2019. "Tuning the Resonant Frequency of a Surface Plasmon by Double-Metallic Ag/Au Nanoparticles for High-Efficiency Green Light-Emitting Diodes" Applied Sciences 9, no. 2: 305. https://doi.org/10.3390/app9020305
APA StyleMano, R., Han, D.-P., Yamamoto, K., Ishimoto, S., Kamiyama, S., Takeuchi, T., Iwaya, M., & Akasaki, I. (2019). Tuning the Resonant Frequency of a Surface Plasmon by Double-Metallic Ag/Au Nanoparticles for High-Efficiency Green Light-Emitting Diodes. Applied Sciences, 9(2), 305. https://doi.org/10.3390/app9020305