Experimental Verification of Use of Vacuum Insulating Material in Electric Vehicle Headliner to Reduce Thermal Load
Abstract
:1. Introduction
2. Vacuum Insulator for Electric Vehicle Headliner
3. Experimental Verification
3.1. Material Evaluation
3.2. Parts Evaluation
3.3. Actual Vehicle Evaluation
- IR is possible and testing is carried out in a chamber that can enter the vehicle.
- The IR irradiation conditions are based on the surface temperature of 100 °C on the vehicle roof panel.
- In summer, indoor temperature rise can occur due to sunlight.
- In order to check the indoor temperature increase due to sunlight in the summer, the outdoor temperature is maintained at 35 °C and the vehicle roof panel temperature is maintained at 100 °C.
- In summer, cooling starts after checking the room temperature rise due to outside parking.
- The winter season outdoor temperature is assumed as 0 °C in the absence of sunlight.
- The indoor air-conditioning is temperature 23 °C and the blower shift position is set to 5; the same blowing condition is applied for both cooling and heating.
- Measurement and analysis of real-time indoor temperature.
- Remote up/down and left/right movement of the thermal imaging camera.
- Insulation cover that can be applied to prevent the thermal damage of the imaging camera.
- In summer, the elevated indoor temperature is 2.8 °C lower under outdoor parking conditions.
- The indoor temperature is 3.9 °C lower than the conventional model for cooling outdoor vehicles in summer.
- The indoor temperature increases by 7.7 °C relative to the case of the conventional model when heating the vehicle outdoor in winter.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Loiselle-Lapointe, A.; Whittal, I.; Christenson, M. Electric Vehicles: Impacts of Mileage Accumulation and Fast Charging. World Electr. Veh. J. 2016, 8, 249–262. [Google Scholar] [CrossRef] [Green Version]
- Botsford, C.W.; Edwards, A. An Integrated Global Philosophy of EV Charging. World Electr. Veh. J. 2016, 8, 495–500. [Google Scholar] [CrossRef] [Green Version]
- Trentadue, G.; Lucas, A.; Otura, M.; Pliakostathis, K.; Zanni, M.; Scholz, H. Evaluation of Fast Charging Efficiency under Extreme Temperatures. Energies 2018, 11, 1937. [Google Scholar] [CrossRef]
- Dost, P.K.; Spichartz, P.; Sourkounis, C. Charging Behavior of Users Utilizing Battery Electric Vehicles and Extended Range Electric Vehicles Within the Scope of a Field Test. IEEE Trans. Ind. Appl. 2018, 54, 580–590. [Google Scholar] [CrossRef]
- Zhang, G.; Qin, F.; Zou, H.; Tian, C. Experimental Study on a Dual-parallel-evaporator Heat Pump System for Thermal Management of Electric Vehicles. Energy Procedia 2017, 105, 2390–2395. [Google Scholar] [CrossRef]
- Zhang, G.; Zou, H.; Qin, F.; Xue, Q.; Tian, C. Investigation on an Improved Heat Pump AC System with the View of Return Air Utilization and Anti-fogging for Electric Vehicles. Appl. Therm. Eng. 2017, 115, 726–735. [Google Scholar] [CrossRef]
- Kato, T.; Suzuki, R.; Miyao, R.; Kato, H.; Narita, T. A Fundamental Consideration of Active Noise Control System by Small Actuator for Ultra-Compact EV. Actuators 2018, 7, 49. [Google Scholar] [CrossRef]
- Musat, R.; Helerea, E. Characteristics of the PTC Heater Used in Automotive HVAC Systems. IFIP Adv. Inf. Commun. Technol. 2010, 314, 461–468. [Google Scholar]
- Shin, Y.H.; Ahn, S.K.; Kim, S.C. Performance Characteristics of PTC Elements for an Electric Vehicle Heating System. Energies 2016, 9, 813. [Google Scholar] [CrossRef]
- Cho, S.; Jung, K.; Choi, J. Design Optimization of Interior Permanent Magnet Synchronous Motor for Electric Compressors of Air-Conditioning Systems Mounted on EVs and HEVs. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar] [CrossRef]
- Aziz, M.; Oda, T.; Ito, M. Battery-assisted charging system for simultaneous charging of electric vehicles. Energy 2016, 100, 82–90. [Google Scholar] [CrossRef]
- Quddus, M.A.; Shahvari, O.; Marufuzzaman, M.; Usher, J.M.; Jaradat, R. A collaborative energy sharing optimization model among electric vehicle charging stations, commercial buildings, and power grid. Appl. Energy 2018, 229, 841–857. [Google Scholar] [CrossRef]
- Collin, R.; Miao, Y.; Yokochi, A.; Enjeti, P.; von Jouanne, A. Advanced Electric Vehicle Fast-Charging Technologies. Energies 2019, 12, 1839. [Google Scholar] [CrossRef]
- Jung, H.; Silva, R.; Han, M. Scaling Trends of Electric Vehicle Performance: Driving Range, Fuel Economy, Peak Power Output, and Temperature Effect. World Electr. Veh. J. 2018, 9, 46. [Google Scholar] [CrossRef]
- Li, C.; Brewer, E.; Pham, L.; Jung, H. Reducing Mobile Air Conditioner (MAC) Power Consumption Using Active Cabin-Air-Recirculation in A Plug-In Hybrid Electric Vehicle (PHEV). World Electr. Veh. J. 2018, 9, 51. [Google Scholar] [CrossRef]
- Wei, C.; Hofman, T.; Ilhan Caarls, E.; van Iperen, R. Integrated Energy and Thermal Management for Electrified Powertrains. Energies 2019, 12, 2058. [Google Scholar] [CrossRef]
- Kwon, C.; Lee, C.W.; Foster, L.; Kwon, J.; Shin, Y. Development of an energy-saving occupied-zone HVAC system (OZ HVAC). In Proceedings of the SAE 2012 World Congress & Exhibition, Detroit, MI, USA, 24–26 April 2012. [Google Scholar]
- Tabei, K.; Watanabe, M.; Doi, N.; Imai, K.; Young, S. Development of a S-FLOW System and Control (S-FLOW: Energy Saving Air Flow Control System. In Proceedings of the SAE 2013 World Congress & Exhibition, Detroit, MI, USA, 16–18 April 2013. [Google Scholar]
- Wang, M.; Wolfe, E.; Ghosh, D.; Bozeman, J.; Chen, K.H.; Han, T.; Zhang, H.; Arens, E. Localized cooling for human comfort. SAE Int. J. Passeng. Cars Mech. Syst. 2014, 7, 755–768. [Google Scholar] [CrossRef]
- Dolgopolsky, I.; Duley, J.A. Polyurethane Foam as an Integral “Core” Component of Automotive Headliner. J. Ind. Text. 2000, 30, 26–41. [Google Scholar]
- Parikh, D.V.; Chen, Y.; Sun, L. Reducing Automotive Interior Noise with Natural Fiber Nonwoven Floor Covering Systems. Text. Res. J. 2006, 76, 813–820. [Google Scholar] [CrossRef]
- Da Silva, C.; Calçada, M.; Massarelli, L. Vehicle Interior Noise Reduction Using Innovative Roof Trim Structure; SAE Technical Paper 2014-36-0767; SAE International: Warrendale, PA, USA, 2014. [Google Scholar] [CrossRef]
- Kwon, J.-S.; Jang, C.H.; Jung, H.; Song, T.-H. Effective thermal conductivity of various filling materials for vacuum insulation panels. Int. J. Heat Mass Transf. 2009, 52, 5525–5532. [Google Scholar] [CrossRef]
- Peng, C.; Yang, J. Structure, Mechanism, and Application of Vacuum Insulation Panels in Chinese Buildings. Adv. Mater. Sci. Eng. 2016, 2016. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, S.M.; Kim, J.T. Simulation performance of building wall with vacuum insulation panel. Procedia Eng. 2016, 180, 1247–1255. [Google Scholar] [CrossRef]
- Biswas, K.; Desjarlais, A.; Smith, D.; Letts, J.; Yao, J.; Jiang, T. Development and thermal performance verification of composite insulation boards containing foam-encapsulated vacuum insulation panels. Appl. Energy 2018, 228, 1159–1172. [Google Scholar] [CrossRef]
- Simmler, H.; Brunner, S.; Heinemann, U.; Schwab, H.; Kumaran, K.; Mukhopadhyaya, P.; Quenard, D.; Sallee, H.; Noller, K.; Kucukpinar-Niarchos, E.; et al. Vacuum Insulation Panels: Study on VIP-components and Panels for Service Life Prediction of VIP in Building Applications (Subtask A). IEA/EBC Annex 39 2005, 39, 1–159. [Google Scholar]
- Binz, A.; Moosmann, A.; Steinke, G.; Schonhardt, U.; Fregnan, F.; Simmler, H.; Brunner, S.; Ghazi Wakili, K.; Bundi, R.; Heinemann, U. Vacuum Insulation in the Building Sector-Systems and Applications (Subtask B). IEA/EBC Annex 39 2005, 39, 1–134. [Google Scholar]
- ISO 8302 Standard: 1991(R2013). Thermal Insulation—Determination of Steady-State Thermal Resistance and Related Prosperities—Guarded Hot Plate Apparatus; International Organization for Standardization: Geneva, Switzerland, 1991. [Google Scholar]
- Manini, P. Recent Developments in the Open Cell Foam-Filled Vacuum Insulated Panels for Appliances Applications. J. Cell. Plast. 1999, 35, 403–420. [Google Scholar] [CrossRef]
- Brunner, S.; Simmler, H. In Situ Performance of Vacuum Insulation Panels in a Flat Roof Construction. Vacuum 2007, 82, 700–707. [Google Scholar] [CrossRef]
- Chuntonov, K.; Ivanov, A.O.; Verbitsky, B.; Setina, J. Getters for vacuum insulated glazing. Vacuum 2018, 155, 300–306. [Google Scholar] [CrossRef]
- Memon, S.; Farukh, F.; Kandan, K. Effect of Cavity Vacuum Pressure Diminution on Thermal Performance of Triple Vacuum Glazing. Appl. Sci. 2018, 8, 1705. [Google Scholar] [CrossRef]
Items | Conventional | Improved | Unit |
---|---|---|---|
Surface roughness | 100 | 5 | µm |
Thermal conductivity | 0.0364 | 0.0028 | W/mK |
Items | Conventional | Improved | Unit | Remark |
---|---|---|---|---|
Heating time up to indoor temperature 23 °C | 52 | 45 | Minute | Blower output: 100 W |
Inner headliner temperature | 18.20 | 19.84 | °C | Infrared lamp output: 100% |
Indoor temperature holding time | 150 | 170 | Second | - |
Insulation effect at indoor temperature holding time | - | 13.33 | % | - |
Items | Requirements | Value | Unit |
---|---|---|---|
Surface density | Below 840 | 829.5 | g/m2 |
Flexural strength | Above 2.40 | 2.46 | kgf/cm |
Heat-resistant cycle | No deformation | Clear | - |
Items | Conventional | Improved | Unit | Remark |
---|---|---|---|---|
Headliner portion (Sp1) | 65.5 | 57.9 | °C | Reduced by 7.6 °C |
Non-headliner portion (Sp2) | 66.7 | 62.6 | °C | Reduced by 4.1 °C |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, S.-W.; Lee, S.W.; Kim, C.-S. Experimental Verification of Use of Vacuum Insulating Material in Electric Vehicle Headliner to Reduce Thermal Load. Appl. Sci. 2019, 9, 4207. https://doi.org/10.3390/app9204207
Baek S-W, Lee SW, Kim C-S. Experimental Verification of Use of Vacuum Insulating Material in Electric Vehicle Headliner to Reduce Thermal Load. Applied Sciences. 2019; 9(20):4207. https://doi.org/10.3390/app9204207
Chicago/Turabian StyleBaek, Soo-Whang, Sang Wook Lee, and Chul-Soo Kim. 2019. "Experimental Verification of Use of Vacuum Insulating Material in Electric Vehicle Headliner to Reduce Thermal Load" Applied Sciences 9, no. 20: 4207. https://doi.org/10.3390/app9204207
APA StyleBaek, S. -W., Lee, S. W., & Kim, C. -S. (2019). Experimental Verification of Use of Vacuum Insulating Material in Electric Vehicle Headliner to Reduce Thermal Load. Applied Sciences, 9(20), 4207. https://doi.org/10.3390/app9204207