Nitrogen Budget of Short Rotation Forests Amended with Digestate in Highly Permeable Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Meteorological Parameters
2.3. Soil Hydrology
2.4. Soil Water Analyses
2.5. N Leaching
2.6. Soil Analyses
2.7. Emissions of Gases (NH3 and N2O)
2.8. N Deposition
2.9. N Contents of Vegetation Biomass
2.10. N Balance
3. Results and Discussion
3.1. Components of the Soil N Budget
3.1.1. N Leaching
3.1.2. N Deposition
3.1.3. N Emissions
3.1.4. Inorganic N in Soil
3.1.5. Nitrogen Content in Woody and Herbaceous Biomass
3.2. Nitrogen Balance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Muller-Stover, D.; Sun, G.; Kroff, P.; Thomsen, S.T.; Hauggaard-Nielsen, H. Anaerobic co-digestion of perennials: Methane potential and digestate nitrogen fertilizer value. J. Plant Nutr. Soil Sci. 2016, 179, 696–704. [Google Scholar] [CrossRef]
- Uusitalo, V.; Havukainen, J.; Manninen, K.; Höhn, J.; Lehtonen, E.; Rasi, S.; Soukka, R.; Horttanainen, M. Carbon footprint of selected biomass to biogas production chains and reduction potential in transportation use. Renew. Energy 2014, 66, 90–98. [Google Scholar] [CrossRef]
- Hauk, S.; Knoke, T.; Wittkopf, S. Economic evaluation of short rotation coppice systems for energy from biomass—a review. Renew. Sust. Energ Rev. 2014, 29, 435–448. [Google Scholar] [CrossRef]
- European Commission. Sustainable and Optimal Use of Biomass for Energy in the EU Beyond 2020; 2017 Final Report; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Langeveld, H.; Quist-Wessel, F.; Dimitriou, I.; Aronsson, P.; Baum, C.; Schulz, U.; Bolte, A.; Baum, S.; Köhn, J.; Weih, M.; et al. Assessing Environmental Impacts of Short Rotation Coppice (SRC) Expansion: Model Definition and Preliminary Results. Bioenergy Res. 2012, 5, 621–635. [Google Scholar] [CrossRef]
- Grogan, P.; Matthews, R. Review of the Potential for Soil Carbon Sequestration under Bioenergy Crops in the UK; Scientific Report MAFF report on contract NF0418; Institute of Water and Environment Cranfield University Silsoe: Silsoe, UK, 2001. [Google Scholar]
- Möller, K.; Stinner, W. Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia nitrous oxides). Eur. J. Agron. 2009, 30, 1–16. [Google Scholar] [CrossRef]
- Oenema, O.; Oudendag, D.; Velthof, G.L. Nutrient losses from manure management in the European Union. Livestock Sci. 2007, 112, 261–272. [Google Scholar] [CrossRef]
- Gumiero, B.; Boz, B. How to stop nitrogen leaking from a Cross compliant buffer strip? Ecol. Eng. 2017, 103, 446–454. [Google Scholar] [CrossRef]
- Sutton, M.A.; Oenema, O.; Erisman, J.W.; Leip, A.; van Grinsven, H.; Winiwarter, W. Too much of a good thing. Nature 2011, 472, 159–161. [Google Scholar] [CrossRef] [Green Version]
- Sommer, S.G.; Hansen, M.N.; Søgaard, H.T. Infiltration of slurry and ammonia volatilization. Biosyst. Eng. 2004, 88, 359–367. [Google Scholar] [CrossRef]
- Dimitriou, I.; Rosenqvist, H. Sewage sludge and wastewater fertilisation of Short Rotation Coppice (SRC) for increased bioenergy production—biological and economic potential. Biomass Bioenergy 2011, 35, 835–842. [Google Scholar] [CrossRef]
- Balasus, A.; Bischoff, A.; Schwarz, A.; Scholz, V.; Kern, J. Nitrogen fluxes during the initial stage of willows and poplars in short-rotation coppices. J. Plant Nutr. Soil Sci. 2012, 175, 729–738. [Google Scholar] [CrossRef]
- Quaye, A.K.; Volk, T.A. Soil nutrient dynamics and biomass production in an organic and inorganic fertilized short rotation willow coppice system. Aspects Appl. Biol. 2011, 112, 121–129. [Google Scholar]
- Colombani, N.; Boz, B.; Gumiero, B.; Mastrocicco, M. Monitoring nutrients fate after digestate spreading in a short rotation buffer area. Environ. Sci. Pollut. Res. 2017, 24, 22816–22826. [Google Scholar] [CrossRef] [PubMed]
- Mastrocicco, M.; Colombani, N.; Salemi, E.; Boz, B.; Gumiero, B. Managed aquifer recharge via infiltration ditches in short rotation afforested areas. Ecohydrology 2015, 9, 167–178. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and drainage paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Paniraghi, B.; Panda, S.N. Field test of a soil water balance simulation model. Agric. Water Manag. 2003, 58, 223–240. [Google Scholar] [CrossRef]
- Sumner, D.M.; Jacobs, J.M. Utility of Penman–Monteith Priestley–Taylor reference evapotranspiration and pan evaporation methods to estimate pasture evapotranspiration. J. Hydrol. 2005, 308, 81–104. [Google Scholar] [CrossRef]
- Ritchie, J.T. Soil Water Balance and Plant Water Stress. In Understanding Options for Agricultural Production; Springer: Dordrecht, Germany, 1998; pp. 41–54. [Google Scholar]
- Conen, F.; Smith, K.A. A re-examination of closed flux chamber methods for the measurement of trace gas emissions from soils to the atmosphere. Eur. J. Soil Sci. 1998, 49, 701–707. [Google Scholar] [CrossRef]
- Misselbrook, T.H.; Nicholson, F.A.; Chambers, B.J.; Johnson, R.A. Measuring ammonia emissions from land applied manure: An intercomparison of commonly used samplers and techniques. Environ. Pollut. 2005, 135, 389–397. [Google Scholar] [CrossRef]
- Gericke, D.; Pacholski, A.; Kage, H. Measurement of ammonia emissions in multi-plot field experiments. Biosyst. Eng. 2011, 108, 164–173. [Google Scholar] [CrossRef]
- Yoshinari, T.; Knowles, R. Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochem. Biophys. Res. Commun. 1976, 69, 705–710. [Google Scholar] [CrossRef]
- Bussink, D.W.; Huijsmans, J.F.M.; Ketelaars, J.J.M.H. Ammonia volatilization from nitric-acid-treated cattle slurry surface applied to grassland NJAS Wageningen. J. Life Sci. 1994, 42, 293–309. [Google Scholar]
- FAO. Global Estimates of Gaseous Emissions of NH3 NO and N2O from Agricultural Land; FAO: Rome, Italy, 2001. [Google Scholar]
- Fortier, J.; Truax, B.; Gagnon, D.; Lambert, F. Biomass carbon, nitrogen and phosphorus stocks in hybrid poplar buffers, herbaceous buffers and natural woodlots in the riparian zone on agricultural land. J. Environ. Manage. 2015, 154, 333–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastrocicco, M.; Colombani, N.; Salemi, E.; Castaldelli, G. Reactive modeling of denitrification in soils with natural and depleted organic matter. Water Air Soil Pollut. 2011, 222, 205–215. [Google Scholar] [CrossRef]
- Castaldelli, G.; Colombani, N.; Soana, E.; Vincenzi, F.; Fano, E.A.; Mastrocicco, M. Reactive nitrogen losses via denitrification assessed in saturated agricultural soils. Geoderma 2019, 337, 91–98. [Google Scholar] [CrossRef]
- Zhou, S.; Sakiyama, Y.; Riya, S.; Song, X.; Terada, A.; Hosomi, M. Assessing nitrification and denitrification in a paddy soil with different water dynamics and applied liquid cattle waste using the 15 N isotopic technique. Sci. Total Environ. 2012, 430, 93–100. [Google Scholar] [CrossRef] [PubMed]
A1 | A2 | P1 | P2 | |||||
---|---|---|---|---|---|---|---|---|
Date | Volume (m3 ha−1) | N (kg ha−1) | Volume (m3 ha−1) | N (kg ha−1) | Volume (m3 ha−1) | N (kg ha−1) | Volume (m3 ha−1) | N (kg ha−1) |
11 May 2010 | 15.2 | 45.8 | 23.8 | 71.4 | 18.8 | 56.3 | 37.5 | 112.5 |
29 June 2010 | 22.8 | 72 | 45.8 | 144 | 19 | 59.9 | 37.8 | 118.9 |
18 October 2010 | 21.4 | 45.4 | 46 | 97.6 | 19 | 40.3 | 37.8 | 80 |
Total annual | 59.4 | 163.2 | 115.6 | 313 | 56.8 | 156.5 | 113.1 | 311.4 |
Date | DM (%) | VS (%TS) | Total N (mg L−1) | Total N-NH4 (mg L−1) | pH (−) |
---|---|---|---|---|---|
11 May 2010 | 5.4 | 67.2 | 3000 | 2300 | 8.1 |
29 June 2010 | 5.2 | 64.6 | 3150 | 1700 | 8.4 |
18 October 2010 | 2.7 | 62.1 | 2120 | 1203 | 8.2 |
Rainfall (mm) | Leaching at 90 cm (mm) | N-Tot Leaching (kg ha−1) | |
---|---|---|---|
A0 | 1603 | 564 ± 113 | 35.2 ± 2.8 |
A1 | 81.4 ± 4.0 | ||
A2 | 111.2 ± 7.6 | ||
P0 | 1603 | 536 ± 107 | 14.8 ± 0.6 |
P1 | 34.9 ± 4.2 | ||
P2 | 82.9 ± 7.8 |
Depth (cm) | May 2010 (kg-N ha−1) | May 2011 (kg-N ha−1) | ||||||||||
A0 | A1 | A2 | P0 | P1 | P2 | A0 | A1 | A2 | P0 | P1 | P2 | |
0–30 | 39.1 | 41.3 | 40.7 | 50.2 | 51.1 | 53.7 | 36.9 | 26.7 | 25.6 | 19.9 | 22.4 | 30 |
30–50 | 54.7 | 59.3 | 56.9 | 63.6 | 65.9 | 59.6 | 56.1 | 34.7 | 39.3 | 12.5 | 41.5 | 33.2 |
50–80 | 60.5 | 68.1 | 65.1 | 64.8 | 63.4 | 69.1 | 53.1 | 49.5 | 59.8 | 9.6 | 41.8 | 47.4 |
80–90 | 49.9 | 50.7 | 47.2 | 63.2 | 64.8 | 59.9 | 46.7 | 49.5 | 59.8 | 10.2 | 39.1 | 41.9 |
TOT | 204.2 | 219.4 | 210 | 241.8 | 245.3 | 242.3 | 192.8 | 160.4 | 184.4 | 52.2 | 144.8 | 152.6 |
Depth(cm) | Difference * (kg-N ha−1) | |||||||||||
A0 | A1 | A2 | P0 | P1 | P2 | |||||||
0–30 | −2.2 | −14.6 | −15.1 | −30.3 | −28.7 | −23.7 | ||||||
30–50 | 1.4 | −24.6 | −17.6 | −51.1 | −24.4 | −26.4 | ||||||
50–80 | −7.4 | −18.6 | −5.3 | −55.2 | −21.6 | −21.7 | ||||||
80–90 | −3.2 | −1.2 | 12.6 | −53.0 | −25.7 | −18.0 | ||||||
TOT | −11.4 | −59.0 | −25.4 | −189.6 | −100.4 | −89.8 |
Dry Herbaceous Biomass (t ha−1 y−1) | Available N (kg ha−1 y−1) | N Removed (kg ha−1 y−1) | |
---|---|---|---|
A0 | 6 | 152 | 6 |
A1 | 9 | 218 | 24 |
A2 | 10 | 246 | 36 |
P0 | 8 | 0 | 188 |
P1 | 10 | 0 | 256 |
P2 | 13 | 0 | 340 |
A0 | A1 | A2 | P0 | P1 | P2 | |
---|---|---|---|---|---|---|
Nf | 0.0 | 163 | 313 | 0.0 | 156 | 311 |
Nr | 28 | 28 | 28 | 34 | 34 | 34 |
Total input | 28 | 191 | 341 | 34 | 190 | 345 |
NL | 35 | 81 | 111 | 15 | 35 | 83 |
Nhb | 6.0 | 24 | 36 | 188 | 256 | 340 |
Nwb | 20 | 19 | 26 | 0.0 | 0.0 | 0.0 |
Ne | 0.0 | 3.5 | 4.6 | 0.0 | 5.3 | 8.0 |
Total output | 61 | 127 | 177 | 203 | 296 | 431 |
Nden + Nerr + Na | −33 | 64 | 164 | −169 | −106 | −86 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gumiero, B.; Candoni, F.; Boz, B.; Da Borso, F.; Colombani, N. Nitrogen Budget of Short Rotation Forests Amended with Digestate in Highly Permeable Soils. Appl. Sci. 2019, 9, 4326. https://doi.org/10.3390/app9204326
Gumiero B, Candoni F, Boz B, Da Borso F, Colombani N. Nitrogen Budget of Short Rotation Forests Amended with Digestate in Highly Permeable Soils. Applied Sciences. 2019; 9(20):4326. https://doi.org/10.3390/app9204326
Chicago/Turabian StyleGumiero, Bruna, Francesco Candoni, Bruno Boz, Francesco Da Borso, and Nicolò Colombani. 2019. "Nitrogen Budget of Short Rotation Forests Amended with Digestate in Highly Permeable Soils" Applied Sciences 9, no. 20: 4326. https://doi.org/10.3390/app9204326
APA StyleGumiero, B., Candoni, F., Boz, B., Da Borso, F., & Colombani, N. (2019). Nitrogen Budget of Short Rotation Forests Amended with Digestate in Highly Permeable Soils. Applied Sciences, 9(20), 4326. https://doi.org/10.3390/app9204326