Color Visual Secret Sharing for QR Code with Perfect Module Reconstruction
Abstract
:1. Introduction
- Compared with Fang’s algorithm [24], the proposed algorithm is module-based. The basic processing unit of VSS-QR is a module in QR code, not pixel. So, the computational complexity can be significantly reduced.
2. Related Background
2.1. QR Code
- Determine the type of data encoding according to the type of the input data.
- Convert data characters into bit stream.
- Convert the bit stream into codewords and assemble codewords into blocks for ECC encoding.
- Error correction codeword encoding, which calculates error correction codewords for each block.
- Place the codeword modules into the QR code matrix, along with the finder pattern, separator, timing pattern, and alignment pattern.
- Masking: XOR (exclusive OR) the QR code matrix with a selected masking pattern to balance the B/W modules in encoding region.
- Generate and place the format information and version information.
- Convert color QR code image into a binary image. The brightness component of the color QR code image is extracted and compared to a global/local threshold to get binary image.
- Use the binary image in last step to determine a sampling grid for modules and decode each module into bits: the dark and light modules are identified as “1” and “0”, respectively.
- Read the format and version information to determine the version of the symbol.
- Eliminate mask by “XOR” operation.
- Use error correction codeword decoder to obtain data codewords.
- Decode the data codewords to obtain the embedded data (such as text or numbers).
2.2. RGB Color Space and Color Stacking
2.2.1. RGB Color Space
- RGB color model has no color darkening while CMY color model has [30].
- RGB model is suitable for screen displaying. Considering the trend in QR code usage nowadays that more and more QR code are displayed on screen (computer monitor, screen of a smart phone or a tablet), VSS-QR using RGB color space complies with this trend.
2.2.2. Color Stacking in RGB Space
2.3. Requirements for VSS-QR
- Contrast condition: If all n shares are collected and stacked, then the recovered secret QR code should be decoded correctly by a standard QR code decoder.
- Security condition: If k shares are collected, then the secret QR code should not be decoded by stacking any combination of these k shares.
3. The Proposed VSS-QR
3.1. VSS-QR Encoder
Algorithm 1 (3,3)-threshold VSS-QR algorithm |
Input: Secret QR code Output: Three shares: .
|
3.2. VSS-QR Decoder
3.2.1. Color Stacking
3.2.2. Color to Grayscale Conversion
3.2.3. Binarization
3.2.4. Decoding by Standard QR Code Scanner
3.3. Computational Complexity
3.4. Timing Analysis
4. Security Analysis
4.1. Decoding from One Share
4.2. Decoding from Two Shares
5. Experiment
5.1. Experiment Results
5.2. Other Colors
5.3. Experiments for Security
5.4. Comparison with QRCSS
5.5. Summary of Experiments
6. Extension to -threshold VSS-QR
- l: the number of modules that can be modified in every share.
- : the ECC capability of QR code in every block.
- : the number of block in QR code.
- from Equation (49).
Algorithm 2-threshold VSS-QR algorithm |
Input: Secret QR code Output: n shares: .
|
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, C.M.; Xiang, B.; Liu, Y.; Wang, K.H. A secure authentication protocol for Internet of vehicles. IEEE Access 2019, 7, 12047–12057. [Google Scholar] [CrossRef]
- Chen, C.M.; Wang, K.H.; Yeh, K.H.; Xiang, B.; Wu, T.Y. Attacks and solutions on a three-party password-based authenticated key exchange protocol for wireless communications. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 3133–3142. [Google Scholar] [CrossRef]
- Pan, J.S.; Kong, L.; Sung, T.W.; Tsai, P.W.; Snášel, V. α-Fraction first strategy for hierarchical model in wireless sensor networks. J. Internet Technol. 2018, 19, 1717–1726. [Google Scholar]
- Wu, T.Y.; Chen, C.M.; Wang, K.H.; Meng, C.; Wang, E.K. A provably secure certificateless public key encryption with keyword search. J. Chin. Inst. Eng. 2019, 42, 20–28. [Google Scholar] [CrossRef]
- Pan, J.S.; Lee, C.Y.; Sghaier, A.; Zeghid, M.; Xie, J. Novel Systolization of Subquadratic Space Complexity Multipliers Based on Toeplitz Matrix-Vector Product Approach. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 1614–1622. [Google Scholar] [CrossRef]
- Lin, P.Y.; Chen, Y.H. High payload secret hiding technology for QR codes. EURASIP J. Image Video Process. 2017, 2017, 14. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.C.; Chang, C.C.; Li, Y.H.; Liu, Y. High-payload secret hiding mechanism for QR codes. Multimed. Tools Appl. 2019, 78, 22331–22350. [Google Scholar] [CrossRef]
- Huang, H.C.; Chang, F.C.; Fang, W.C. Reversible data hiding with histogram-based difference expansion for QR code applications. IEEE Trans. Consum. Electron. 2011, 57, 779–787. [Google Scholar] [CrossRef]
- Thodi, D.M.; Rodriguez, J.J. Expansion Embedding Techniques for Reversible Watermarking. IEEE Trans. Image Process. 2007, 16, 721–730. [Google Scholar] [CrossRef]
- Shi, Y.; Li, X.; Zhang, X.; Wu, H.; Ma, B. Reversible data hiding: Advances in the past two decades. IEEE Access 2016, 4, 3210–3237. [Google Scholar] [CrossRef]
- Weng, S.; Pan, J.S. Reversible watermarking based on two embedding Schemes. Multimed. Tools Appl. 2016, 75, 7129–7157. [Google Scholar] [CrossRef]
- Weng, S.; Zhang, G.; Pan, J.S.; Zhou, Z. Optimal PPVO-based reversible data hiding. J. Vis. Commun. Image Represent. 2017, 48, 317–328. [Google Scholar] [CrossRef]
- Weng, S.; Pan, J.S.; Zhou, L. Reversible data hiding based on the local smoothness estimator and optional embedding strategy in four prediction modes. Multimed. Tools Appl. 2017, 76, 13173–13195. [Google Scholar] [CrossRef]
- Hong, W.; Zhou, X.; Weng, S. Joint adaptive coding and reversible data hiding for AMBTC compressed images. Symmetry 2018, 10, 254. [Google Scholar] [CrossRef]
- Weng, S.; Chen, Y.; Ou, B.; Chang, C.C.; Zhang, C. Improved K-Pass Pixel Value Ordering Based Data Hiding. IEEE Access 2019, 7, 34570–34582. [Google Scholar] [CrossRef]
- Weng, S.; Zhao, Y.; Pan, J.S.; Ni, R. A novel reversible watermarking based on an integer transform. In Proceedings of the 2007 IEEE International Conference on Image Processing, San Antonio, TX, USA, 16 September–19 October 2007; Volume 3, pp. 241–244. [Google Scholar]
- Naor, M.; Shamir, A. Visual Cryptography; Springer: Boston, MA, USA, 1994; pp. 1–12. ISBN 978-3-540-60176-0. [Google Scholar]
- Hou, Y.C. Visual cryptography for color images. Pattern Recognit. 2003, 36, 1619–1629. [Google Scholar] [CrossRef]
- Fang, W.P.; Lin, J.C. Visual cryptography with extra ability of hiding confidential data. J. Electron. Imaging 2006, 15, 023020. [Google Scholar] [CrossRef]
- Lin, S.J.; Lin, J.C.; Fang, W.P. Visual Cryptography (VC) with non-expanded shadow images: Hilbert-curve approach. In Proceedings of the 2008 IEEE International Conference on Intelligence and Security Informatics, Taipei, Taiwan, 17 June 2008; pp. 271–272. [Google Scholar]
- Fang, W.P. Friendly progressive visual secret sharing. Pattern Recognit. 2008, 41, 1410–1414. [Google Scholar] [CrossRef]
- Suklabaidya, A.; Sahoo, G. Visual cryptographic applications. Int. J. Comput. Sci. Eng. 2013, 5, 464. [Google Scholar]
- ISO, B. IEC 16022: Information Technology-Automatic Identification and Data Capture Techniques-Data Matrix Bar Code Symbology Specification. BS ISO/IEC 2006, 16022. [Google Scholar]
- Fang, W.P. Offline QR code authorization based on visual cryptography. In Proceedings of the 2011 Seventh International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Dalian, China, 14–16 October 2011; pp. 89–92. [Google Scholar]
- Lin, P.Y. Distributed secret sharing approach with cheater prevention based on QR code. IEEE Trans. Ind. Inform. 2016, 12, 384–392. [Google Scholar] [CrossRef]
- Chow, Y.W.; Susilo, W.; Yang, G.; Phillips, J.G.; Pranata, I.; Barmawi, A.M. Exploiting the error correction mechanism in QR codes for secret sharing. In Australasian Conference on Information Security and Privacy; Springer: Cham, Switzerland, 2016; pp. 409–425. [Google Scholar]
- Cheng, Y.; Fu, Z.; Yu, B. Improved Visual Secret Sharing Scheme for QR Code Applications. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2393–2403. [Google Scholar] [CrossRef]
- Shyu, S.J. Image Encryption by Random Grids. Pattern Recognit. 2007, 40, 1014–1031. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Wintz, P. Digital Image Processing; Addison-Wesley Publishing Co., Inc. Applied Mathematics and Computation: Reading, MA, USA, 1977; pp. 290–294. [Google Scholar]
- Cimato, S.; Yang, C.N. Visual Cryptography and Secret Image Sharing; CRC Press: Boca Raton, FL, USA, 2017; pp. 38–39. [Google Scholar]
- Burger, W.; Burge, M.J. Principles of Digital Image Processing: Fundamental Techniques; Springer: Boston, MA, USA, 2010; pp. 200–204. ISBN 978-1-84800-190-9. [Google Scholar]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Zxing Library. 2019. Available online: https://github.com/zxing/zxing (accessed on 30 September 2015).
- Kay, S. Fundamentals of Statistical Signal Processing: Detection Theory; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
Color 1 () | Color 2 () | Color 3 () | (⊓⊓) |
---|---|---|---|
Color(c) | |||
---|---|---|---|
0 | 1 | ||
Color(c) | |||
---|---|---|---|
1 | 0 | ||
1 | 0 | ||
0 | 1 | ||
0 | 1 |
Hardware | Development Environment |
---|---|
CPU: Intel(R) Core(TM): i5-8500@ 3.00GHZ Memory: 8 G | MATLAB R2016b |
1 | 24.291 | 24.4871 | 24.2361 | 24.5258 |
2 | 24.2984 | 24.4949 | 24.2484 | 24.5226 |
3 | 24.2856 | 24.4965 | 24.2371 | 24.5253 |
4 | 24.3002 | 24.4888 | 24.2372 | 24.5141 |
5 | 24.297 | 24.486 | 24.2269 | 24.5322 |
6 | 24.3092 | 24.4925 | 24.2502 | 24.5278 |
7 | 24.2879 | 24.4938 | 24.2259 | 24.5231 |
8 | 24.3024 | 24.4942 | 24.2352 | 24.5273 |
9 | 24.2877 | 24.4962 | 24.2464 | 24.5285 |
10 | 24.2905 | 24.5031 | 24.2419 | 24.5299 |
1 | 19.0803 | 19.9352 | 19.4074 | 19.9332 |
2 | 19.048 | 19.9127 | 19.4067 | 19.9441 |
3 | 19.0621 | 19.9514 | 19.4229 | 19.9422 |
4 | 19.0651 | 19.9321 | 19.3731 | 19.9392 |
5 | 19.0079 | 19.9016 | 19.3957 | 19.9312 |
6 | 19.0141 | 19.9323 | 19.4219 | 19.9458 |
7 | 19.0258 | 19.9303 | 19.3769 | 19.903 |
8 | 19.0909 | 19.9517 | 19.4297 | 19.9377 |
9 | 19.0548 | 19.9258 | 19.3743 | 19.9386 |
10 | 19.0421 | 19.9196 | 19.4264 | 19.9417 |
10000 | 4975 | 1084 | 273 | 128 | 0 | 0 | 0 | 0 | |
10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Yan, B.; Pan, J.-S. Color Visual Secret Sharing for QR Code with Perfect Module Reconstruction. Appl. Sci. 2019, 9, 4670. https://doi.org/10.3390/app9214670
Liu T, Yan B, Pan J-S. Color Visual Secret Sharing for QR Code with Perfect Module Reconstruction. Applied Sciences. 2019; 9(21):4670. https://doi.org/10.3390/app9214670
Chicago/Turabian StyleLiu, Tao, Bin Yan, and Jeng-Shyang Pan. 2019. "Color Visual Secret Sharing for QR Code with Perfect Module Reconstruction" Applied Sciences 9, no. 21: 4670. https://doi.org/10.3390/app9214670
APA StyleLiu, T., Yan, B., & Pan, J.-S. (2019). Color Visual Secret Sharing for QR Code with Perfect Module Reconstruction. Applied Sciences, 9(21), 4670. https://doi.org/10.3390/app9214670