Application Potential Analysis of Enhanced Oil Recovery by Biopolymer-Producing Bacteria and Biosurfactant-Producing Bacteria Compound Flooding
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Microorganisms and Culture Conditions
2.2. Oil and Water Samples
2.3. Detection of Growth and Metabolism of Different Strains in Crude Oil Degradation Medium
2.4. Detection of Growth of Different Strains in Polymer-Producing Medium
2.5. Analysis of Content and Group Component of Degraded Petroleum
2.6. Gas Chromatographic Analysis of Saturated Hydrocarbons in Degraded Petroleum
2.7. Physical Simulation Experiment of Oil Displacement
3. Results and Discussion
3.1. Effect of FY-07 on the Growth and Metabolism of WJ-1
3.2. Effect of the Strain WJ-1 on Growth of Strain FY-07
3.3. Effect of Strain FY-07 on Degradation of Strain WJ-1
3.4. Comparative Analysis of the Ability of Composite Strains to Improve Oil Recovery
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brown, L.R. Microbial enhanced oil recovery (MEOR). Curr. Opin. Microbiol. 2010, 13, 316–320. [Google Scholar] [CrossRef]
- Maugeri, L. Squeezing more oil from the ground. Sci. Am. 2009, 301, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Negin, C.; Ali, S.; Xie, Q. Most common surfactants employed in chemical enhanced oil recovery. Petroleum 2017, 3, 197–211. [Google Scholar] [CrossRef]
- Hadia, N.J.; Ottenheim, C.; Li, S.; Hua, N.Q.; Stubbs, L.P.; Lau, H.C. Experimental investigation of biosurfactant mixtures of surfactin produced by Bacillus Subtilis for EOR application. Fuel 2019, 251, 789–799. [Google Scholar] [CrossRef]
- Mishra, G.; Mittal, N.; Sharma, A. Multifunctional mesoporous carbon capsules and their robust coatings for encapsulation of actives: Antimicrobial and anti-bioadhesion functions. ACS Appl. Mater. Interfaces 2016, 9, 19371–19379. [Google Scholar] [CrossRef] [PubMed]
- Mittal, N.; Ansari, F.; Gowda, V.K.; Brouzet, C.; Chen, P.; Larsson, P.T.; Roth, S.V.; Lundell, F.; Wagberg, L.; Kotov, N.A. Multiscale control of nanocellulose assembly: Transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano 2018, 12, 6378–6388. [Google Scholar] [CrossRef]
- Mohanty, A.; Misra, M.a.; Hinrichsen, G. Biofibres, biodegradable polymers and biocomposites: An overview. Macromol. Mater. Eng. 2000, 276, 1–24. [Google Scholar] [CrossRef]
- Sun, S.; Luo, Y.; Cao, S.; Li, W.; Zhang, Z.; Jiang, L.; Dong, H.; Yu, L.; Wu, W.-M. Construction and evaluation of an exopolysaccharide-producing engineered bacterial strain by protoplast fusion for microbial enhanced oil recovery. Bioresour. Technol. 2013, 144, 44–49. [Google Scholar] [CrossRef]
- Mittal, N.; Jansson, R.; Widhe, M.; Benselfelt, T.; Håkansson, K.M.; Lundell, F.; Hedhammar, M.; Söderberg, L.D. Ultrastrong and bioactive nanostructured bio-based composites. ACS Nano 2017, 11, 5148–5159. [Google Scholar] [CrossRef]
- Patel, J.; Borgohain, S.; Kumar, M.; Rangarajan, V.; Somasundaran, P.; Sen, R. Recent developments in microbial enhanced oil recovery. Renew. Sustain. Energy Rev. 2015, 52, 1539–1558. [Google Scholar] [CrossRef]
- Joy, S.; Rahman, P.K.; Sharma, S. Biosurfactant production and concomitant hydrocarbon degradation potentials of bacteria isolated from extreme and hydrocarbon contaminated environments. Chem. Eng. J. 2017, 317, 232–241. [Google Scholar] [CrossRef]
- Muggeridge, A.; Cockin, A.; Webb, K.; Frampton, H.; Collins, I.; Moulds, T.; Salino, P. Recovery rates, enhanced oil recovery and technological limits. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20120320. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Luo, Z.; Dong, H.; Yu, L. Studies of biosurfactant for microbial enhanced oil recovery by using bacteria isolated from the formation water of a petroleum reservoir. Pet. Sci. Technol. 2013, 31, 2311–2317. [Google Scholar] [CrossRef]
- Cui, Q.; Sun, S.; Luo, Y.; Yu, L.; Zhang, Z. Comparison of in-situ and ex-situ microbial enhanced oil recovery by strain Pseudomonas aeruginosa WJ-1 in laboratory sand-pack columns. Pet. Sci. Technol. 2017, 35, 2044–2050. [Google Scholar] [CrossRef]
- Bi, Y.; Yu, L.; Huang, L.; Ma, T.; Xiu, J.; Yi, L. Microscopic profile control mechanism and potential application of the biopolymer-producing strain FY-07 for microbial enhanced oil recovery. Pet. Sci. Technol. 2016, 34, 1952–1957. [Google Scholar] [CrossRef]
- Couto, M.R.; Gudiña, E.J.; Ferreira, D.; Teixeira, J.A.; Rodrigues, L.R. The biopolymer produced by Rhizobium viscosum CECT 908 is a promising agent for application in microbial enhanced oil recovery. New Biotechnol. 2019, 49, 144–150. [Google Scholar] [CrossRef]
- Qi, Y.-B.; Zheng, C.-G.; Lv, C.-Y.; Lun, Z.-M.; Ma, T. Compatibility between weak gel and microorganisms in weak gel-assisted microbial enhanced oil recovery. J. Biosci. Bioeng. 2018, 126, 235–240. [Google Scholar] [CrossRef]
- Dhanarajan, G.; Rangarajan, V.; Bandi, C.; Dixit, A.; Das, S.; Ale, K.; Sen, R. Biosurfactant-biopolymer driven microbial enhanced oil recovery (MEOR) and its optimization by an ANN-GA hybrid technique. J. Biotechnol. 2017, 256, 46. [Google Scholar] [CrossRef]
- Ma, T.; Ji, K.; Wang, W.; Wang, J.; Li, Z.; Ran, H.; Liu, B.; Li, G. Cellulose synthesized by Enterobacter sp. FY-07 under aerobic and anaerobic conditions. Bioresour. Techno. 2012, 126, 18–23. [Google Scholar] [CrossRef]
- Xia, W.-J.; Luo, Z.-b.; Dong, H.-P.; Yu, L.; Cui, Q.-F.; Bi, Y.-Q. Synthesis, characterization, and oil recovery application of biosurfactant produced by indigenous Pseudomonas aeruginosa WJ-1 using waste vegetable oils. Appl. Biochem. Biotechnol. 2012, 166, 1148–1166. [Google Scholar] [CrossRef]
- Ji, S.; Zhou, Y.; Ge, D.; Chen, K.; Wang, Z. Synergism of Hydrogen and Oil Composition in Noncatalytic Upgrading of Petroleum Residues. Pet. Sci. Technol. 2014, 32, 2903–2910. [Google Scholar] [CrossRef]
- Zheng, C.; Li, Y.; Huang, L.; Xiu, J.; Huang, Z. Investigation of a hydrocarbon-degrading strain, Rhodococcus ruber Z25, for the potential of microbial enhanced oil recovery. J. Pet. Sci. Eng. 2012, 81, 49–56. [Google Scholar] [CrossRef]
No. | Tested Project | Length × Width × Height (cm × cm × cm) | Permeability (10−3 μm2) |
---|---|---|---|
1 | Control | 30.0 × 4.5 × 4.5 | 1138 |
2 | WJ-1 | 30.0 × 4.5 × 4.5 | 1118 |
3 | FY-07 | 30.0 × 4.5 × 4.5 | 1048 |
4 | FY-07+WJ-1 | 30.0 × 4.5 × 4.5 | 1092 |
No. | Tested Slug | Porosity (%) | Initial Oil Saturation (%) | Oil Recovery (%) | ||
---|---|---|---|---|---|---|
Water Flooding Oil Recovery | Final Recovery | EOR Efficiency | ||||
1 | Control | 28.2 | 78.1 | 18.4 | 21.3 | 2.9 |
2 | FY-07 | 27.5 | 78.7 | 21.2 | 31.6 | 10.4 |
3 | WJ-1 | 28.0 | 77.9 | 18.6 | 26.5 | 7.9 |
4 | FY-07+WJ-1 | 28.4 | 77.4 | 20.9 | 38.3 | 17.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, Y.; Xiu, J.; Ma, T. Application Potential Analysis of Enhanced Oil Recovery by Biopolymer-Producing Bacteria and Biosurfactant-Producing Bacteria Compound Flooding. Appl. Sci. 2019, 9, 5119. https://doi.org/10.3390/app9235119
Bi Y, Xiu J, Ma T. Application Potential Analysis of Enhanced Oil Recovery by Biopolymer-Producing Bacteria and Biosurfactant-Producing Bacteria Compound Flooding. Applied Sciences. 2019; 9(23):5119. https://doi.org/10.3390/app9235119
Chicago/Turabian StyleBi, Yongqiang, Jianlong Xiu, and Ting Ma. 2019. "Application Potential Analysis of Enhanced Oil Recovery by Biopolymer-Producing Bacteria and Biosurfactant-Producing Bacteria Compound Flooding" Applied Sciences 9, no. 23: 5119. https://doi.org/10.3390/app9235119
APA StyleBi, Y., Xiu, J., & Ma, T. (2019). Application Potential Analysis of Enhanced Oil Recovery by Biopolymer-Producing Bacteria and Biosurfactant-Producing Bacteria Compound Flooding. Applied Sciences, 9(23), 5119. https://doi.org/10.3390/app9235119