Detection and Removal of Moving Object Shadows Using Geometry and Color Information for Indoor Video Streams
Abstract
:1. Introduction
- Enhancing input images based on combined contrast enhancement.
- Extracting moving objects using background subtraction and removing unwanted noises from the enhanced images.
- Detecting and removing shadow pixels that are correctly included in the candidate foreground mask.
- Applying a morphological reconstruction method to eliminate small gaps and holes from the moving object regions.
- Delivering the final result (without shadows) to the object tracking tasks.
2. Literature Review
3. Moving Shadow Detection
4. Proposed Method
4.1. Combined Local and Global Contrast Enhancement
4.2. Moving Object Extraction
4.3. Median Noise Removing
4.4. Shadow Detection and Removal
4.5. Morphological Restoration
5. Experiment Results and Analysis
5.1. Qualitative Results
5.2. Quantitative Results
6. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khan, S.H.; Bennamoun, M. Automatic shadow detection and removal from a single image. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 6, 431–446. [Google Scholar] [CrossRef]
- Cucchiara, R.; Grana Piccardi, C.M.; Prati, A. Detecting moving objects, ghosts, and shadows in video streams. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 1337–1342. [Google Scholar] [CrossRef]
- Sanin, C.; Sanderson, C.; Lovell, B.C. Shadow detection: A survey and comparative evaluation of recent methods. Pattern Recognit. 2012, 45, 1684–1695. [Google Scholar] [CrossRef]
- Leone, A.; Distante, C.; Buccolieri, F. A texture-based approach for shadow detection. In Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance, Como, Italy, 15–16 September 2005; pp. 371–376. [Google Scholar]
- Wan, Y.; Miao, Z. Automatic panorama image mosaic and ghost eliminating. In Proceedings of the International Conference on Multimedia and Expo, Hannover, Germany, 26 April–23 June 2008; pp. 945–948. [Google Scholar]
- Cucchiara, R.; Grana, C.; Piccardi, M.; Prati, A.; Sirotti, S. Improving shadow suppression in moving object detection with hsv color information. In Proceedings of the IEEE Intelligent Transportation Systems, Oakland, CA, USA, 25–29 August 2001; pp. 334–339. [Google Scholar]
- Abdusalomov, A.; Whangbo, T.K.; Djuraev, O. A Review on various widely used shadow detection methods to identify a shadow from images. Int. J. Sci. Res. Publ. 2016, 6, 2250–3153. [Google Scholar]
- Horprasert, T.; Harwood, D.; Davis, L.S. A statistical approach for real-time robust background subtraction and shadow detection. In ICCV Frame-Rate WS. IEEE 1999, 99, 1–19. [Google Scholar]
- Kim, K.; Chalidabhongse, T.H.; Harwood, D.; Davis, L.S. Real-time foregroundbackground segmentation using codebook model. Real Time Imaging 2005, 11, 172–185. [Google Scholar] [CrossRef]
- Yuan, C.; Yang, C.; Xu, Z. Simple vehicle detection with shadow removal at intersection. In Proceedings of the 2nd International Conference on Multimedia and Information Technology, Hong Kong, China, 28–30 December 2010; pp. 188–191. [Google Scholar]
- Stauder, J.; Mech, R.; Ostermann, J. Detection of moving cast shadows for object segmentation. IEEE Trans. Multimed. 1999, 1, 65–76. [Google Scholar] [CrossRef]
- Amato, A.; Huerta, I.; Mozerov, M.; Gonsalez, J. Moving Cast Shadows Detection Methods for Video Surveillance Applications. In Wide Area Surveillance; Vijayan Asari, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 23–47. [Google Scholar] [CrossRef]
- Katharavayan, R.S.; Nagarathinam, K. A Survey of Moving Cast Shadow Detection Methods. Int. J. Sci. Eng. Res. 2014, 5, 752–764. [Google Scholar]
- Kim, D.; Arsalan, M.; Park, K. Convolutional Neural Network-Based Shadow Detection in Images Using Visible Light Camera Sensor. Sensors 2018, 18, 960. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.T.; Kang, H.; Lim, K.T. Moving Shadow Detection using Deep Learning and Markov Random Field. J. Korea Multimed. Soc. 2015, 18, 1432–1438. [Google Scholar] [CrossRef]
- Lo, B.P.L.; Yang, G.-Z. Neuro-Fuzzy Shadow Filter; Imperial College of Science, Technology and Medicine: London, UK, 2014. [Google Scholar]
- Amato, I.; Huerta, M.; Mozerov, M.G.; Roca, X.; Gonzalez, J. Moving Cast Shadow Detection Method for Video Surveillance Applications; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Usmanov, R.; Abdusalomov, A.; Kuchkorov, T.; Mukhiddinov, M. Image enhancement based on histogram equalization for indoor environment objects. In Proceedings of the International Scientific-Practical and Spiritual-Educational Conference Dedicated to the 1235th Anniversary of Muhammad al-Khwarizmi, Tashkent, Uzbekistan, 5–6 April 2018. [Google Scholar]
- Singh, A.; Kumar, N. A Global-Local Contrast based Image Enhancement Technique based on Local Standard Deviation. Int. J. Comput. Appl. 2014, 93, 975–8887. [Google Scholar] [CrossRef]
- Bradski, G.; Kaehler, A. Learning OpenCV: Computer Vision with the OpenCV Library; O’Reilly Media: Newton, MA, USA, 2008. [Google Scholar]
- Jacques, J.C.S.; Jung, C.R.; Musse, S.R. Background subtraction and shadow detection in grayscale video sequences. In Proceedings of the 18th Brazilian Symposium on Computer Graphics and Image Processing, SIBGRAPI ’05, Washington, DC, USA, 9–12 October 2005. [Google Scholar]
- Abdukholikov, M.; Whangbo, T. Fast image stitching method for handling dynamic object problems in Panoramic Images. Ksii Trans. Internet Inf. Syst. 2017, 11. [Google Scholar] [CrossRef]
- Abdusalomov, A.; Whangbo, T.K. An Improvement for the Foreground Recognition Method using Shadow Removal Technique for Indoor Environments. Int. J. Wavelets Multiresolution Inf. Process. 2017, 15, 1750039. [Google Scholar] [CrossRef]
- Sanin, A.; Sanderson, C.; Lovell, B. Improved shadow removal for robust person tracking in surveillance scenarios. In Proceedings of the 10th International Conference on Pattern Recognition Systems, Tours, France, 8–10 July 2019; pp. 141–144. [Google Scholar]
- Hsieh, J.-W.; Hu, W.-F.; Chang, C.-J.; Chen, Y.-S. Shadow elimination for effective moving object detection by Gaussian shadow modeling. Image Vis. Comput. 2003, 21, 505–516. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, W. A Robust Algorithm for Shadow Removal of Foreground Detection in Video Surveillance. In Proceedings of the Asia-Pacific Conference on Information Processing, Shenzhen, China, 18–19 July 2009. [Google Scholar]
- CAVIAR Test Case Scenarios. Available online: http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/ (accessed on 15 May 2019).
- Shadow Detection. Available online: http://cvrr.ucsd.edu/aton/shadow/ (accessed on 15 May 2019).
- Huang, J.-B.; Chen, C.-S. Moving cast shadow detection using physics-based features. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 2310–2317. [Google Scholar]
- Shan, Y.; Yang, F.; Wang, R. Color space selection for moving shadow elimination. In Proceedings of the 4th International Conference on Image and Graphics, Sichuan, China, 22–24 August 2007; pp. 496–501. [Google Scholar]
- Leone, A.; Distante, C. Shadow detection for moving objects based on texture analysis. Pattern Recognit. 2007, 40, 1222–1233. [Google Scholar] [CrossRef]
Methods | Color-Based Method (CBM) | Gradient-Based Method (GBM) | Texture-Based Method (TBM) | Ours |
---|---|---|---|---|
Precision | 0.85 | 0.87 | 0.89 | 0.92 |
Recall | 0.73 | 0.76 | 0.78 | 0.79 |
F-Measure | 0.82 | 0.85 | 0.88 | 0.90 |
Processing Time (In Seconds) | |||
---|---|---|---|
Gradient Based Method | Physical Based Method | Our Result | |
Gachon University | 0.30 | 0.36 | 0.32 |
TUIT University | 0.25 | 0.29 | 0.26 |
Corridor (dataset) | 0.20 | 0.27 | 0.22 |
Average | 0.25 | 0.30 | 0.27 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdusalomov, A.; Whangbo, T.K. Detection and Removal of Moving Object Shadows Using Geometry and Color Information for Indoor Video Streams. Appl. Sci. 2019, 9, 5165. https://doi.org/10.3390/app9235165
Abdusalomov A, Whangbo TK. Detection and Removal of Moving Object Shadows Using Geometry and Color Information for Indoor Video Streams. Applied Sciences. 2019; 9(23):5165. https://doi.org/10.3390/app9235165
Chicago/Turabian StyleAbdusalomov, Akmalbek, and Taeg Keun Whangbo. 2019. "Detection and Removal of Moving Object Shadows Using Geometry and Color Information for Indoor Video Streams" Applied Sciences 9, no. 23: 5165. https://doi.org/10.3390/app9235165
APA StyleAbdusalomov, A., & Whangbo, T. K. (2019). Detection and Removal of Moving Object Shadows Using Geometry and Color Information for Indoor Video Streams. Applied Sciences, 9(23), 5165. https://doi.org/10.3390/app9235165