Special Issue on Modelling, Simulation and Data Analysis in Acoustical Problems
1. Introduction
2. Modelling, Simulation and Data Analysis in Acoustical Problems
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Luo, P.; Cai, M. Calculation of Noise Barrier Insertion Loss Based on Varied Vehicle Frequencies. Appl. Sci. 2018, 8, 100. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Fan, W.; Guo, L. A CFD Results-Based Approach to Investigating Acoustic Attenuation Performance and Pressure Loss of Car Perforated Tube Silencers. Appl. Sci. 2018, 8, 545. [Google Scholar] [CrossRef] [Green Version]
- Cucis, P.; Berger-Vachon, C.; Hermann, R.; Millioz, F.; Truy, E.; Gallego, S. Hearing in Noise: The Importance of Coding Strategies—Normal-Hearing Subjects and Cochlear Implant Users. Appl. Sci. 2019, 9, 734. [Google Scholar] [CrossRef] [Green Version]
- Ito, T.; Kubota, T.; Furukawa, T.; Matsui, H.; Futai, K.; Hull, M.; Kakehata, S. The Role of Powered Surgical Instruments in Ear Surgery: An Acoustical Blessing or a Curse? Appl. Sci. 2019, 9, 765. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Yang, Y.; Li, C.; Guo, X.; Tu, J.; Zhang, D. Prediction of HIFU Propagation in a Dispersive Medium via Khokhlov–Zabolotskaya–Kuznetsov Model Combined with a Fractional Order Derivative. Appl. Sci. 2018, 8, 609. [Google Scholar] [CrossRef] [Green Version]
- Tan, Q.; Zou, X.; Ding, Y.; Zhao, X.; Qian, S. The Influence of Dynamic Tissue Properties on HIFU Hyperthermia: A Numerical Simulation Study. Appl. Sci. 2018, 8, 1933. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, M.; Ramos, A.; Gutierrez, J.; Vera, A.; Leija, L. Nonuniform Bessel-Based Radiation Distributions on A Spherically Curved Boundary for Modeling the Acoustic Field of Focused Ultrasound Transducers. Appl. Sci. 2019, 9, 911. [Google Scholar] [CrossRef] [Green Version]
- Choo, H.; Jun, H.; Yoon, H. Application of Elastic Wave Velocity for Estimation of Soil Depth. Appl. Sci. 2018, 8, 600. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, X.; Jiang, R.; Wang, W.; Chen, Q.; Wang, X. Channel Modelling and Estimation for Shallow Underwater Acoustic OFDM Communication via Simulation Platform. Appl. Sci. 2019, 9, 447. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Chen, Y.; Wan, J. In-Depth Exploration of Signal Self-Cancellation Phenomenon to Achieve DOA Estimation of Underwater Acoustic Sources. Appl. Sci. 2019, 9, 570. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.; Kim, M. Time-Domain Hydro-Elastic Analysis of a SFT (Submerged Floating Tunnel) with Mooring Lines under Extreme Wave and Seismic Excitations. Appl. Sci. 2018, 8, 2386. [Google Scholar] [CrossRef] [Green Version]
- Angulo, Á.; Tang, J.; Khadimallah, A.; Soua, S.; Mares, C.; Gan, T. Acoustic Emission Monitoring of Fatigue Crack Growth in Mooring Chains. Appl. Sci. 2019, 9, 2187. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Zhuang, L.; Xu, X.; Yu, Z.; Zhu, L. An Ultrasonic Guided Wave Mode Selection and Excitation Method in Rail Defect Detection. Appl. Sci. 2019, 9, 1170. [Google Scholar] [CrossRef] [Green Version]
- Dobrzycki, A.; Mikulski, S.; Opydo, W. Using ANN and SVM for the Detection of Acoustic Emission Signals Accompanying Epoxy Resin Electrical Treeing. Appl. Sci. 2019, 9, 1523. [Google Scholar] [CrossRef] [Green Version]
- Teng, X.; Zhang, X.; Fan, Y.; Zhang, D. Evaluation of Cracks in Metallic Material Using a Self-Organized Data-Driven Model of Acoustic Echo-Signal. Appl. Sci. 2019, 9, 95. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, A.; Ranjan, V.; Azam, M.; Rao, M. Theoretical and Numerical Estimation of Vibroacoustic Behavior of Clamped Free Parabolic Tapered Annular Circular Plate with Different Arrangement of Stiffener Patches. Appl. Sci. 2018, 8, 2542. [Google Scholar] [CrossRef]
- Chatterjee, A.; Ranjan, V.; Azam, M.; Rao, M. Comparison for the Effect of Different Attachment of Point Masses on Vibroacoustic Behavior of Parabolic Tapered Annular Circular Plate. Appl. Sci. 2019, 9, 745. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Ma, H.; Wang, C.; Li, J.; Zhu, J. Numerical Analysis of a Sensorized Prodder for Landmine Detection by Using Its Vibrational Characteristics. Appl. Sci. 2019, 9, 744. [Google Scholar] [CrossRef] [Green Version]
- Qian, C.; Ménard, S.; Bard, D.; Negreira, J. Development of a Vibroacoustic Stochastic Finite Element Prediction Tool for a CLT Floor. Appl. Sci. 2019, 9, 1106. [Google Scholar] [CrossRef] [Green Version]
- Flückiger, M.; Grosshauser, T.; Tröster, G. Influence of Piano Key Vibration Level on Players’ Perception and Performance in Piano Playing. Appl. Sci. 2018, 8, 2697. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.; Xie, Y.; Qu, Z.; Liu, Z. A Pseudo-3D Model for Electromagnetic Acoustic Transducers (EMATs). Appl. Sci. 2018, 8, 450. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Xu, D.; Jiang, Z.; Kim, J.; Hwang, S. Comparison of Multi-Physical Coupling Analysis of a Balanced Armature Receiver between the Lumped Parameter Method and the Finite Element/Boundary Element Method. Appl. Sci. 2019, 9, 839. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Liu, Z.; Ritz, C. Enhancing Target Speech Based on Nonlinear Soft Masking Using a Single Acoustic Vector Sensor. Appl. Sci. 2018, 8, 1436. [Google Scholar] [CrossRef] [Green Version]
- Tronchin, L.; Kob, M.; Guarnaccia, C. Spatial Information on Voice Generation from a Multi-Channel Electroglottograph. Appl. Sci. 2018, 8, 1560. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Song, J.; Shang, D. Experimental Investigation of Acoustic Propagation Characteristics in a Fluid-Filled Polyethylene Pipeline. Appl. Sci. 2019, 9, 213. [Google Scholar] [CrossRef] [Green Version]
- Bo, E.; Shtrepi, L.; Pelegrín Garcia, D.; Barbato, G.; Aletta, F.; Astolfi, A. The Accuracy of Predicted Acoustical Parameters in Ancient Open-Air Theatres: A Case Study in Syracusae. Appl. Sci. 2018, 8, 1393. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Yang, P.; Sun, H. Fingerprinting Acoustic Localization Indoor Based on Cluster Analysis and Iterative Interpolation. Appl. Sci. 2018, 8, 1862. [Google Scholar] [CrossRef] [Green Version]
- Sato, R.; Emoto, T.; Gojima, Y.; Akutagawa, M. Automatic Bowel Motility Evaluation Technique for Noncontact Sound Recordings. Appl. Sci. 2018, 8, 999. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhao, X.; Xie, X.; Kuang, J. A Multi-Frame PCA-Based Stereo Audio Coding Method. Appl. Sci. 2018, 8, 967. [Google Scholar] [CrossRef] [Green Version]
- Tarrazó-Serrano, D.; Castiñeira-Ibáñez, S.; Sánchez-Aparisi, E.; Uris, A.; Rubio, C. MRI Compatible Planar Material Acoustic Lenses. Appl. Sci. 2018, 8, 2634. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Xiong, C.; Wang, W. Acoustic Localization for a Moving Source Based on Cross Array Azimuth. Appl. Sci. 2018, 8, 1281. [Google Scholar] [CrossRef] [Green Version]
- Kirkup, S. The Boundary Element Method in Acoustics: A Survey. Appl. Sci. 2019, 9, 1642. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.; Lee, S. Regularization Factor Selection Method for l1-Regularized RLS and Its Modification against Uncertainty in the Regularization Factor. Appl. Sci. 2019, 9, 202. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guarnaccia, C.; Tronchin, L.; Viscardi, M. Special Issue on Modelling, Simulation and Data Analysis in Acoustical Problems. Appl. Sci. 2019, 9, 5261. https://doi.org/10.3390/app9235261
Guarnaccia C, Tronchin L, Viscardi M. Special Issue on Modelling, Simulation and Data Analysis in Acoustical Problems. Applied Sciences. 2019; 9(23):5261. https://doi.org/10.3390/app9235261
Chicago/Turabian StyleGuarnaccia, Claudio, Lamberto Tronchin, and Massimo Viscardi. 2019. "Special Issue on Modelling, Simulation and Data Analysis in Acoustical Problems" Applied Sciences 9, no. 23: 5261. https://doi.org/10.3390/app9235261