An Analytical Framework for the Investigation of Tropical Cyclone Wind Characteristics over Different Measurement Conditions
Abstract
:1. Introduction
2. Analytical Framework
2.1. Mean Wind Speed
2.1.1. Logarithmic Law Wind Profile
2.1.2. Super-Gradient Wind Profile
2.2. Turbulence Intensity
2.3. Integral Scale
2.4. Peak Factor
2.5. Gust Factor
3. Data Sources
3.1. Tropical Cyclones and Instruments
3.2. Data Quality Control and Data Source
4. Results and Discussions
4.1. Turbulence Intensity
4.2. Integral Scale
4.3. Peak Factor
4.4. Gust Factor
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, Q.S.; Zhi, L.H.; Hu, F. Boundary layer wind structure from observations on a 325 m tower. J. Wind Eng. Ind. Aerodyn. 2010, 98, 818–832. [Google Scholar] [CrossRef]
- Bradbury, W.M.S.; Deaves, D.M.; Hunt, J.C.R.; Kershaw, R.; Nakamura, K.; Hardman, M.E.; Bearman, P.W. The importance of convective gusts. Meteorol. Appl. 1994, 1, 365–378. [Google Scholar] [CrossRef]
- Powell, M.D.; Houston, S.H. Hurricane Andrew’s landfall in south Florida. 2. Surface wind fields and potential real-time applications. Weather Forecast. 1996, 11, 329–349. [Google Scholar] [CrossRef]
- Wurman, J.; Winslow, J. Intense sub-kilometer-scale boundary layer rolls observed in Hurricane Fran. Science 1998, 280, 555–557. [Google Scholar] [CrossRef] [PubMed]
- Melbourne, W.H.; Blackman, D.R. Wind turbulence over seas in tropical cyclones. In Proceedings of the 18th International Conference on Coastal Engineering, Cape Town, South Africa, 14–19 November 1982; pp. 370–383. [Google Scholar]
- Tamura, Y.; Shimada, K.; Hibi, K. Wind response of a tower (typhoon observation at the Nagasaki huis ten bosch domtoren). J. Wind Eng. Ind. Aerodyn. 1993, 50, 309–318. [Google Scholar] [CrossRef]
- Li, Q.; Fang, J.Q.; Jeary, A.P.; Wong, C.K. Full scale measurements of wind effects on tall buildings. J. Wind Eng. Ind. Aerodyn. 1998, 74–76, 741–750. [Google Scholar] [CrossRef]
- Sparks, P.R.; Huang, Z. Gust factors and surface-to-gradient wind-speed ratios in tropical cyclones. J. Wind Eng. Ind. Aerodyn. 2001, 89, 1047–1058. [Google Scholar] [CrossRef]
- Xu, Y.; Zhan, S. Field measurements of Di Wang Tower during Typhoon York. J. Wind Eng. Ind. Aerodyn. 2001, 89, 73–93. [Google Scholar] [CrossRef]
- Schroeder, J.L.; Smith, D.A. Hurricane Bonnie wind flow characteristics as determined from WEMITE. J. Wind Eng. Ind. Aerodyn. 2003, 91, 767–789. [Google Scholar] [CrossRef]
- Cao, S.; Tamura, Y.; Kikuchi, N.; Saito, M.; Nakayama, I.; Matsuzaki, Y. Wind characteristics of a strong typhoon. J. Wind Eng. Ind. Aerodyn. 2009, 97, 11–21. [Google Scholar] [CrossRef]
- Masters, F.J.; Tieleman, H.W.; Balderrama, J.A. Surface wind measurements in three Gulf Coast hurricanes of 2005. J. Wind Eng. Ind. Aerodyn. 2010, 98, 533–547. [Google Scholar] [CrossRef]
- Li, L.; Xiao, Y.; Kareem, A.; Song, L.; Qin, P. Modeling typhoon wind power spectra near sea surface based on measurements in the South China sea. J. Wind Eng. Ind. Aerodyn. 2012, 104–106, 565–576. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, L.; Song, L.; Qin, P. Study on wind characteristics of Typhoon Hagupit based on offshore sea surface measurements. Acta Aerodyn. Sin. 2012, 30, 380–387. [Google Scholar]
- Schroeder, J.L.; Edwards, B.P.; Giammanco, I.M. Observed tropical cyclone wind flow characteristics. Wind Struct. 2009, 12, 349–381. [Google Scholar] [CrossRef]
- Li, L.; Kareem, A.; Xiao, Y.Q.; Song, L.L.; Zhou, C.Y. A comparative study of field measurements of the turbulence characteristics of typhoon and hurricane winds. J. Wind Eng. Ind. Aerodyn. 2015, 140, 49–66. [Google Scholar] [CrossRef]
- ASCE. Minimum Design Loads for Buildings and Other Structures; American Society of Civil Engineering: Reston, VA, USA, 2010. [Google Scholar]
- AIJ-RLB-2004. Recommendations for Loads on Buildings; Architectural Institute of Japan: Tokyo, Japan, 2004. [Google Scholar]
- Clauser, F.H. The turbulent boundary layer. Adv. Appl. Mech. 1956, 4, 1–51. [Google Scholar]
- Vickery, P.J.; Skerlj, P.F. Hurricane gust factors revisited. J. Struct. Eng. 2005, 131, 825–832. [Google Scholar] [CrossRef]
- Franklin, J.L.; Black, M.L.; Valde, K. GPS dropwindsonde wind profiles in hurricanes and their operational implications. Weather Forecast. 2003, 18, 32–44. [Google Scholar] [CrossRef]
- Powell, M.D.; Vickery, P.J.; Reinhold, T.A. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 2003, 422, 279–283. [Google Scholar] [CrossRef]
- Giammanco, I.M.; Schroeder, J.L.; Powell, M.D. Observed characteristics of tropical cyclone vertical wind profiles. Wind Struct. 2012, 15, 65–86. [Google Scholar] [CrossRef]
- Li, L.; Kareem, A.; Xiao, Y.; Song, L.; Qin, P. Wind profile and spectra in typhoon-prone regions in south China. In Proceedings of the ATC & SEI Conference on Advances in Hurricane Engineering, Miami, FL, USA, 24–26 October 2012; pp. 929–940. [Google Scholar]
- Tse, K.T.; Li, S.W.; Chan, P.W.; Mok, H.Y.; Weerasuriya, A.U. Wind profile observations in tropical cyclone events using wind-profilers and doppler SODARs. J. Wind Eng. Ind. Aerodyn. 2013, 115, 93–103. [Google Scholar] [CrossRef]
- Baklanov, A.; Grisogono, B. Atmospheric Boundary Layers: Nature, Theory and Application to Environmental Modelling and Security; Springer: New York, NY, USA, 2007. [Google Scholar]
- Song, L.; Chen, W.; Wang, B.; Zhi, S.; Liu, A. Characteristics of wind profiles in the landfalling typhoon boundary layer. J. Wind Eng. Ind. Aerodyn. 2016, 149, 77–88. [Google Scholar] [CrossRef]
- ESDU. Strong Winds in the Atmospheric Boundary Layer Part 1: Hourly-Mean Wind Speeds; Engineering Sciences Data Units: London, UK, 2002. [Google Scholar]
- Simiu, E.; Vickery, P.; Kareem, A. Relation between Saffir-Simpson hurricane scale wind speeds and peak 3-s gust speeds over open terrain. J. Struct. Eng. 2007, 133, 1043–1045. [Google Scholar] [CrossRef] [Green Version]
- Willoughby, H.E. Gradient balance in tropical cyclones. J. Atmos. Sci. 1990, 47, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Giammanco, I.M.; Schroeder, J.L.; Powell, M.D. GPS dropwindsonde and WSR-88D observations of tropical cyclone vertical wind profiles and their characteristics. Weather Forecast. 2013, 28, 77–99. [Google Scholar] [CrossRef]
- Tse, K.T.; Li, S.W.; Lin, C.Q.; Chan, P.W. Wind characteristics observed in the vicinity of tropical cyclones: An investigation of the gradient balance and super-gradient flow. Wind Struct. 2014, 19, 249–270. [Google Scholar] [CrossRef]
- Simiu, E.; Scanlan, R.H. Wind Effects on Structures: Fundamentals and Applications to Design, 3rd ed.; John Wiley: New York, NY, USA, 1996. [Google Scholar]
- Vickery, P.J.; Wadhera, D.; Powell, M.D.; Chen, Y.Z. A hurricane boundary layer and wind field model for use in engineering applications. J. Appl. Meteorol. Climatol. 2009, 48, 381–405. [Google Scholar] [CrossRef]
- Snaiki, R.; Wu, T. A semi-empirical model for mean wind velocity profile of landfalling hurricane boundary layers. J. Wind Eng. Ind. Aerodyn. 2018, 180, 249–261. [Google Scholar] [CrossRef]
- Deaves, D.M. Terrain-dependence of longitudinal rms velocities in the neutral atmosphere. J. Wind Eng. Ind. Aerodyn. 1981, 8, 259–274. [Google Scholar] [CrossRef]
- Kameda, T.; Mochizuki, S.; Osaka, H. Non-equilibrium and equilibrium boundary layers without pressure gradient. In IUTAM Symposium on Computational Physics and New Perspectives in Turbulence; Kaneda, Y., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 197–202. [Google Scholar]
- Harris, R.I.; Deaves, D.M. The structure of strong winds. In Proceedings of the CIRIA Conference on Wind Engineering in the Eightites, London, UK, 12–13 November 1980. [Google Scholar]
- ESDU. Strong Winds in the Atmospheric Boundary Layer Part 2: Discrete Gust Speeds; Engineering Sciences Data Units: London, UK, 2002. [Google Scholar]
- Yu, B.; Chowdhury, A.G.; Masters, F.J. Hurricane wind power spectra, cospectra, and integral length scales. Bound.-Layer Meteorol. 2008, 129, 411–430. [Google Scholar] [CrossRef]
- Von Kármán, T. Progress in the statistical theory of turbulence. Proc. Natl. Acad. Sci. USA 1948, 34, 530–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davenport, A.G. Note on the Distribution of the Largest Value of a Random Function with Application to Gust Loading. Proc. Inst. Civil Eng. 1964, 28, 187–196. [Google Scholar] [CrossRef]
- Balderrama, J.A.; Masters, F.J.; Gurley, K.R. Peak factor estimation in hurricane surface winds. J. Wind Eng. Ind. Aerodyn. 2012, 102, 1–13. [Google Scholar] [CrossRef]
- Beljaars, A.C.M. The influence of sampling and filtering on measured wind gusts. J. Atmos. Ocean. Technol. 1987, 4, 613–626. [Google Scholar] [CrossRef] [Green Version]
- Bendat, J.S.; Piersol, A.G. Random Data: Analysis and Measurement Procedures, 3rd ed.; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Wackerly, D.D.; Mendenhall, W.; Scheaffer, R.L. Mathematical Statistics with Applications, 7th ed.; Thomson Brooks/Cole: Belmont, CA, USA, 2008. [Google Scholar]
- Krayer, W.R.; Marshall, R.D. Gust factors applied to hurricane winds. Bull. Am. Meteorol. Soc. 1992, 73, 613–617. [Google Scholar] [CrossRef] [Green Version]
- Vickery, P.J.; Wadhera, D.; Galsworthy, J.; Peterka, J.A.; Irwin, P.A.; Griffis, L.A. Ultimate wind load design gust wind speeds in the united states for use in ASCE-7. J. Struct. Eng. 2010, 136, 613–625. [Google Scholar] [CrossRef]
- Bardal, L.M.; Setran, L.R. Wind gust factors in a coastal wind climate. In Proceedings of the Eera Deepwind’2016, 13th Deep Sea Offshore Wind R&D Conference, Trondheim, Norway, 20–22 January 2016; Volume 94, pp. 417–424. [Google Scholar]
- Durst, C.S. Wind speeds over short periods of time. Meteor. Mag. 1960, 89, 181–187. [Google Scholar]
Tropical Cyclones | Tower | Latitude | Longitude |
---|---|---|---|
Chanchu | RBT | 22.7337° | 115.5734° |
OT | 23.5510° | 117.0020° | |
Prapiroon | BT | 21.4519° | 111.3149° |
Nuri | MFB | 22.1810° | 113.5630° |
DIT | 22.1413° | 113.7096° | |
Hagupit | ZT | 21.4509° | 111.3745° |
ST | 21.2538° | 110.6541° | |
Katrina | T1 | 29.8253° | −90.0319° |
T2 | 29.4441° | −90.2628° | |
T3 | 30.4720° | −88.5308° | |
Rita | T0 | 29.9512° | −94.0220° |
T3 | 29.9548° | −93.9542° | |
T5 | 30.0797° | −93.7841° | |
Wilma | T0 | 25.9008° | −81.3114° |
T1 | 26.1458° | −80.5067° | |
T2 | 25.8681° | −80.8997° | |
T3 | 25.7516° | −80.3780° |
Anemometers | Specifications | ||
---|---|---|---|
05103L | Wind speed | Range | 0~100 m/s |
Threshold Sensitivity | 1 m/s | ||
Distance constant | 2.7 m for 63% recovery | ||
Wind direction | Ranges | 0 ~ 360° | |
Threshold Sensitivity | 1.1 m/s at 10° displacement | ||
Delay Distance | 1.3 m for 50% recovery | ||
Damped Natural Wavelength | 7.4 m | ||
27106R | Wind speed | Range | 0~25 m/s |
Threshold Sensitivity | 0.3 m/s | ||
Distance constant | 2.7 m for 63% recovery | ||
Damped Natural Wavelength | 7.4 m | ||
WindMasterTM Pro | Wind speed | Range | 0~ 65 m/s |
Resolution | 0.01 m/s | ||
Wind direction | Ranges | 0~359° | |
Resolution | 0.1° | ||
HD2003 | Wind speed | Range | 0~60 m/s |
Resolution | 0.01 m/s | ||
Wind direction | Ranges | 0~359° | |
Resolution | 0.1° |
Tropical Cyclones | Sites | Height (m) | Anemometer Types | Number of Runs | Average of the 10 min Mean Wind Speed (m/s) |
---|---|---|---|---|---|
Chanchu | RBT | 10 | Sonic | 26 | 19.19 |
Propeller | 15 | 18.87 | |||
30 | Sonic | 37 | 21.96 | ||
60 | Propeller | 58 | 22.19 | ||
OT | 5 | Sonic | 21 | 24.69 | |
10 | Sonic | 45 | 24.28 | ||
Prapiroon | BT | 10 | Sonic | 18 | 20.13 |
Propeller | 4 | 22.69 | |||
Nuri | MFB | 30 | Sonic | 8 | 18.25 |
DIT | 10 | Sonic | 83 | 24.26 | |
60 | Sonic | 100 | 25.11 | ||
Hagupit | ZT | 60 | Sonic | 38 | 28.53 |
ST | 5 | Sonic | 18 | 20.34 | |
Propeller | 27 | 20.34 | |||
10 | Sonic | 61 | 21.30 | ||
Propeller | 58 | 20.93 | |||
Katrina | T1 | 5 | Propeller | 16 | 21.98 |
10 | Propeller | 43 | 22.45 | ||
T2 | 5 | Propeller | 34 | 21.50 | |
10 | Propeller | 40 | 24.42 | ||
T3 | 5 | Propeller | 5 | 23.02 | |
10 | Propeller | 14 | 22.46 | ||
Rita | T0 | 5 | Propeller | 46 | 21.05 |
10 | Propeller | 60 | 22.17 | ||
T3 | 10 | Propeller | 15 | 18.85 | |
T5 | 5 | Propeller | 19 | 18.86 | |
10 | Propeller | 32 | 19.55 | ||
Wilma | T0 | 5 | Propeller | 13 | 21.08 |
10 | Propeller | 19 | 22.41 | ||
T1 | 5 | Propeller | 23 | 23.65 | |
10 | Propeller | 37 | 26.17 | ||
T2 | 5 | Propeller | 16 | 21.34 | |
10 | Propeller | 18 | 23.66 | ||
T3 | 5 | Propeller | 9 | 21.36 | |
10 | Propeller | 14 | 22.63 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zhou, Y.; Wang, H.; Zhou, H.; He, X.; Wu, T. An Analytical Framework for the Investigation of Tropical Cyclone Wind Characteristics over Different Measurement Conditions. Appl. Sci. 2019, 9, 5385. https://doi.org/10.3390/app9245385
Li L, Zhou Y, Wang H, Zhou H, He X, Wu T. An Analytical Framework for the Investigation of Tropical Cyclone Wind Characteristics over Different Measurement Conditions. Applied Sciences. 2019; 9(24):5385. https://doi.org/10.3390/app9245385
Chicago/Turabian StyleLi, Lixiao, Yizhuo Zhou, Haifeng Wang, Haijun Zhou, Xuhui He, and Teng Wu. 2019. "An Analytical Framework for the Investigation of Tropical Cyclone Wind Characteristics over Different Measurement Conditions" Applied Sciences 9, no. 24: 5385. https://doi.org/10.3390/app9245385
APA StyleLi, L., Zhou, Y., Wang, H., Zhou, H., He, X., & Wu, T. (2019). An Analytical Framework for the Investigation of Tropical Cyclone Wind Characteristics over Different Measurement Conditions. Applied Sciences, 9(24), 5385. https://doi.org/10.3390/app9245385