Optimization of the Calcium Alginate Capsules for Self-Healing Asphalt
Abstract
:Featured Application
Abstract
1. Introduction
2. Experimental Method
2.1. Materials and Preparation
2.1.1. Capsule Preparation Process
2.1.2. Asphalt Mortar Components
2.1.3. Ageing on Asphalt Mortar Mix
2.2. Characterization of Capsules
2.3. Three-Point-Bending Test and the Healing Efficiency of the Asphalt Mortar
3. Results and Discussion
3.1. Capsule Morphology
3.2. Capsule Microstructure
3.3. Thermogravimetric Analysis
3.4. Compressive Tests on Capsules
3.5. 3PB Tests
4. Conclusions
- The A/R ratios used in the capsule production process greatly influence the morphology, structure and performance of calcium alginate capsules. In principle, a higher rejuvenator content (lower A/R ratio) results in a larger diameter, larger inside pores, higher thermal resistance and less compressive strength;
- The optimum A/R ratio is 30/70, as the prepared capsules not only have sufficient thermal and mechanical resistance to survive the asphalt mixing and compaction process, but also contain as much rejuvenator as possible;
- The asphalt mortar beams with capsules, with blank capsules and without capsules demonstrated similar bending strengths for all testing cycles, which indicates that the intrinsic healing capacity of the asphalt mortar is relatively high and plays the main role in the healing process of asphalt mortar samples;
- The asphalt mortar beams with blank capsules do not showed significant difference initial bending strength than the other two mixes, which means calcium alginate, the encapsulation material of these capsules, hardly has any contribution to the bending strength of asphalt mortar beams;
- In the aged asphalt mortar beams, the samples with capsules showed a healing index of 40%, which is much higher than those without capsules (4%). This indicates that the encapsulated asphalt rejuvenator can be released upon cracking and rejuvenate the aged material to heal the crack.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Airey, G.D. State of the art report on ageing test methods for bituminous pavement materials. Int. J. Pavement Eng. 2003, 4, 165–176. [Google Scholar] [CrossRef]
- Pasetto, M.; Baldo, N. Fatigue performance of asphalt concretes with RAP aggregates and steel slags. In 7th RILEM International Conference on Cracking in Pavements; Springer: Dordrecht, The Netherlands, 2012; pp. 719–727. [Google Scholar]
- Morea, F.; Zerbino, R. Improvement of asphalt mixture performance with glass macro-fibers. Construct. Build. Mater. 2018, 164, 113–120. [Google Scholar] [CrossRef]
- Sun, Y.; Fang, C.; Wang, J.; Yuan, X.; Fan, D. Method of Fatigue-Life Prediction for an Asphalt Mixture Based on the Plateau Value of Permanent Deformation Ratio. Materials 2018, 11, 722. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; García, A.; Su, J.; Liu, Q.; Tabaković, A.; Schlangen, E. Self-Healing asphalt review: From idea to practice. Adv. Mater. Interf. 2018, 5, 1800536. [Google Scholar] [CrossRef]
- Shirzad, S.; Hassan, M.M.; Aguirre, M.A.; Mohammad, L.N.; Cooper, S.; Negulescu, I.I. Microencapsulated Sunflower Oil for Rejuvenation and Healing of Asphalt Mixtures. J. Mater. Civ. Eng. 2017, 29, 04017147. [Google Scholar] [CrossRef]
- Tabaković, A.; Schlangen, E. Self-healing technology for asphalt pavements. Self-Healing Mater. 2016, 285–306. [Google Scholar]
- Xiao, F.; Yao, S.; Wang, J.; Li, X.; Amirkhanian, S. A literature review on cold recycling technology of asphalt pavement. Construct. Build. Mater. 2018, 180, 579–604. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.; Li, C.; Xiao, Y.; Wu, S.; Pan, P. The rejuvenating effect in hot asphalt recycling by mortar transfer ratio and image analysis. Materials 2017, 10, 574. [Google Scholar] [CrossRef] [PubMed]
- Ayar, P.; Moreno-Navarro, F.; Rubio-Gámez, M.C. The healing capability of asphalt pavements: A state of the art review. J. Cleaner Prod. 2016, 113, 28–40. [Google Scholar] [CrossRef]
- White, S.R.; Sottos, N.R.; Geubelle, P.H.; Moore, J.S.; Kessler, M.; Sriram, S.R.; Brown, E.N.; Wiswanathan, S. Autonomic healing of polymer composites. Nature 2001, 409, 794. [Google Scholar] [CrossRef] [PubMed]
- García, Á.; Schlangen, E.; Van de Ven, M. Properties of capsules containing rejuvenators for their use in asphalt concrete. Fuel 2011, 90, 583–591. [Google Scholar] [CrossRef]
- Su, J.; Qiu, J.; Schlangen, E. Stability investigation of self-healing microcapsules containing rejuvenator for bitumen. Polym. Degrad. Stab. 2013, 98, 1205–1215. [Google Scholar] [CrossRef]
- Prajer, M.; Wu, X.; Garcia, S.J.; van der Zwaag, S. Direct and indirect observation of multiple local healing events in successively loaded fibre reinforced polymer model composites using healing agent-filled compartmented fibres. Compos. Sci. Technol. 2015, 106, 127–133. [Google Scholar] [CrossRef]
- Tabaković, A.; Post, W.; Cantero, D.; Copuroglu, O.; Garcia, S.; Schlangen, E. The reinforcement and healing of asphalt mastic mixtures by rejuvenator encapsulation in alginate compartmented fibres. SmMaS 2016, 25, 084003. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Tabaković, A.; Liu, X.; Schlangen, E. Calcium alginate capsules encapsulating rejuvenator as healing system for asphalt mastic. Construct. Build. Mater. 2018, 169, 379–387. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Liu, X.; Tabaković, A.; Schlangen, E. Investigation of the Potential Use of Calcium Alginate Capsules for Self-Healing in Porous Asphalt Concrete. Mater. 2019, 12, 168. [Google Scholar] [CrossRef]
- Draget, K.I.; Skjåk-Bræk, G.; Smidsrød, O. Alginate based new materials. Int. J. Biol. Macromol. 1997, 21, 47–55. [Google Scholar] [CrossRef]
- Muraya, P.M. Permanent Deformation of Asphalt Mixes; Delft University of Technology: Delft, The Netherlands, 2007. [Google Scholar]
- Woldekidan, M.F. Response Modelling of Bitumen, Bituminous Mastic and Mortar; Delft University of Technology: Delft, The Netherlands, 2011. [Google Scholar]
- CROW, I. Standaard RAW Bepalingen; CROW: Ede, The Netherlands, 2005. [Google Scholar]
- Brown, E.R.; Kandhal, P.S.; Zhang, J. Performance Testing for Hot Mix Asphalt; National Center for Asphalt Technology at Auburn University’: Auburn, AL, USA, 2001. [Google Scholar]
- Tabaković, A.; Karač, A.; Ivanković, A.; Gibney, A.; McNally, C.; Gilchrist, M.D. Modelling the quasi-static behaviour of bituminous material using a cohesive zone model. Eng. Fract. Mech. 2010, 77, 2403–2418. [Google Scholar] [CrossRef] [Green Version]
Mix Constituent | Percentage by Weight | ||
---|---|---|---|
Without Capsules | 2.6% Capsules | 2.6% Blank Capsules | |
Sand <0.5mm | 34.8 | 34.8 | 34.8 |
Filler (Wigro60k) | 32.6 | 32.6 | 32.6 |
Bitumen (70/100) | 32.6 | 30.0 | 30.0 |
Capsules | 0 | 2.6 | 0 |
Blank Capsules | 0 | 0 | 2.6 |
Alginate/Rejuvenator Ratio (%) | Diameter (μm) | Minor Axis (μm) | Morphology |
---|---|---|---|
100/0 | 1500 | 980 | Ellipsoid |
60/40 | 1920 | 1670 | |
50/50 | 1640 | 1310 | |
40/60 | 1740 | 1600 | |
30/70 | 1950 | 1950 | Sphere |
20/80 | 2170 | 2170 | |
10/90 | 2450 | 2450 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Tabaković, A.; Liu, X.; Palin, D.; Schlangen, E. Optimization of the Calcium Alginate Capsules for Self-Healing Asphalt. Appl. Sci. 2019, 9, 468. https://doi.org/10.3390/app9030468
Xu S, Tabaković A, Liu X, Palin D, Schlangen E. Optimization of the Calcium Alginate Capsules for Self-Healing Asphalt. Applied Sciences. 2019; 9(3):468. https://doi.org/10.3390/app9030468
Chicago/Turabian StyleXu, Shi, Amir Tabaković, Xueyan Liu, Damian Palin, and Erik Schlangen. 2019. "Optimization of the Calcium Alginate Capsules for Self-Healing Asphalt" Applied Sciences 9, no. 3: 468. https://doi.org/10.3390/app9030468
APA StyleXu, S., Tabaković, A., Liu, X., Palin, D., & Schlangen, E. (2019). Optimization of the Calcium Alginate Capsules for Self-Healing Asphalt. Applied Sciences, 9(3), 468. https://doi.org/10.3390/app9030468