Removal of Volatile Solids from Greywater Using Sand Filters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental set-up
2.2. Artificial greywater
2.3. Hydraulic loadings of filtering columns
2.4. Determination of specific deposit (VS) distribution in vertical profile of sand filter
- C = volatile solids concentration in greywater (VS, kg m−3);
- C0 = initial volatile solids concentration in greywater (VS, kg m−3);
- h = filter depth (m);
- σ = specific deposit of volatile solids (VS, kg m−3);
- q = hydraulic load of greywater (m d−1);
- λ = filter coefficient (1 m−1);
- t = time (d).
- σmax = constant (maximum specific deposit of solids) (VS kg m−3),
- λ0 = initial filter coefficient (1 m−1).
3. Results
3.1. Volatile Solids, Turbidity and Organic Compounds’ Removal Efficiency
3.2. Modelling simulation
4. Discussion
5. Conclusions
- The vertical distribution of TS in the sand filter was typical for gravitationally operated sand filters (from 2–5 mg cm−3 in the top layer of the filter to about 1 mg/cm3 at the end of the filter (50 cm of depth).
- Relatively high removal efficiency of VS (51–60%) was achieved in a short time (corresponding to hydraulic load of about 300 cm d−1).
- The average removal efficiency of 26.8% for COD was observed, which is a relatively high value, considering that only mechanical (physical) processes occurred during the experiment.
- The determined maximum VS deposit value (8.29 ± 0.66 kg m−3) was achieved for a cumulative hydraulic load of 363.6 m and corresponded to six years of operation (for daily hydraulic load 16–17 cm d−1).
- The conventional Iwasaki model does not offer a good simulation of vertical distribution of VS; much better results can be achieved after implementation of the filter coefficient value (λ), according to the function of measured specific deposit distribution. The relationship of the initial filter coefficient with filter depth can be described by the exponential function, λ0(h) = 0.3−0.5h.
Author Contributions
Funding
Conflicts of Interest
References
- Iwasaki, T.; Slade, J.J., Jr.; Stanley, W.E. Some notes on sand filtration. J. Am. Water Works Assoc. 1937, 29, 1591–1602. [Google Scholar] [CrossRef]
- Juan, Y.-K.; Chen, Y.; Lin, J.-M. Greywater Reuse System Design and Economic Analysis for Residential Buildings in Taiwan. Water 2016, 8, 546. [Google Scholar] [CrossRef]
- Lazarova, V.; Bahri, A. Water Reuse for Irrigation: Agriculture, Landscapes, and Turf Grass; CRC Press: Boca Raton, FL, USA, 2005; ISBN 1-56670-649-1. [Google Scholar]
- EEA (European Environment Agency). Water Resources acrossEurope—Confronting Wat er Scarcity and Drought. EEA Report No 2/2009. Available online: https://www.eea.europa.eu/publications/water-resources-across-europe/download (accessed on 19 January 2019).
- WWAP (United Nations World Water Assessment Programme). The United Nations World Water Development Report 2017. Wastewater: The Untapped Resource. Paris, UNESCO. Available online: http://unesdoc.unesco.org/images/0024/002471/247153e.pdf (accessed on 19 January 2019).
- WWF. Water Scarcity. Available online: https://www.worldwildlife.org/threats/water-scarcity (accessed on 19 January 2019).
- Ghaitidak, D.M.; Yadav, K.D. Characteristics and Treatment of Greywater—A Review. Environ. Sci. Pollut. Res. 2013, 20, 2795–2809. [Google Scholar] [CrossRef] [PubMed]
- Adi, M.; Friedler, E.; Gross, A. Parameters Affecting Greywater Quality and Its Safety for Reuse. Sci. Total Environ. 2014, 487, 20–25. [Google Scholar] [CrossRef]
- Al-Jayyousi, O.R. Greywater Reuse: Towards Sustainable Water Management. Desalination 2003, 156, 181–192. [Google Scholar] [CrossRef]
- Noutsopoulos, C.; Andreadakis, A.; Kouris, N.; Charchousi, D.; Mendrinou, P.; Galani, A.; Mantziaras, I.; Koumaki, E. Greywater Characterization and Loadings-Physicochemical Treatment to Promote Onsite Reuse. J. Environ. Manag. 2018, 216, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Chaillou, K.; Gerente, C.; Andres, Y.; Wolbert, D. Bathroom Greywater Characterization and Potential Treatments for Reuse. Water Air Soil Pollut. 2011, 215, 31–42. [Google Scholar] [CrossRef]
- Li, F.; Wichmann, K.; Otterpohl, R. Review of the technological approaches for grey water treatment and reuses. Sci. Total Environ. 2009, 407, 3439–3449. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.L.; Rahardianto, A.; DeShazo, J.R.; Stenstrom, M.K.; Cohen, Y. Critical Review: Regulatory Incentives and Impediments for Onsite Graywater Reuse in the United States. Water Environ. Res. 2013, 85, 650–662. [Google Scholar] [CrossRef] [PubMed]
- Gross, A.; Maimon, G.A.A.; Alfiya, Y.; Friedler, E. Greywater Reuse; Taylor & Francis Group: Milton Park, UK, 2015. [Google Scholar]
- Jefferson, B.; Palmer, P.A.; Stuetz, J.R.; Judd, S. Grey Water Characterisation and Its Impact on the Selection and Operation of Technologies for Urban Reuse. Water Sci. Technol. 2004, 50, 157–164. [Google Scholar] [CrossRef]
- Dalahmeh, S.S.; Lars, D.; Pell, H.M.; Jo, H.; Ingrid, O. Potential of Organic Filter Materials for Treating Greywater to Achieve Irrigation Quality: A Review. Water Sci. Technol. 2011, 63, 1832–1841. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Shafy, H. Greywater Treatment Using Different Designs of Sand Filters. Desalin. Water Treat. 2014, 52, 5237–5242. [Google Scholar] [CrossRef]
- Martikainen, K.; Kauppinen, A.; Matikka, V.; Veijalainen, A.-M.; Torvinen, E.; Pitkänen, T.; Ilkka, I.D.; Miettinen, T.; Heinonen-Tanski, H. Efficiency of Private Household Sand Filters in Removing Nutrients and Microbes from Wastewater in Finland. Water 2018, 10, 1000. [Google Scholar] [CrossRef]
- Ochoa, S.I.C.; Ushijima, K.; Hijikata, N.; Funamizu, N. Treatment of domestic greywater by geotextile filter and intermittent sand filtration bioreactor. J. Water Reuse Desalin. 2014, 5, 39–49. [Google Scholar] [CrossRef]
- Farajzadeh, R. Produced Water Re-Injection (PWRI): An Experimental Investigation into Internal Filtration and External Cake Build up. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2004. [Google Scholar]
- Elimelech, M.; O’Melia, C.R. Effect of particle size on collision efficiency in the deposition of Brownian particles with electrostatic barriers. Langmuir 1990, 6, 1153–1163. [Google Scholar] [CrossRef]
- Vigneswaran, S.; Jegatheesan, V.; Keir, G. Deep Bed Filtration: Modelling Theory and Practice; Waste; EOLSS Publishers: Oxford, UK, 2009; pp. 1–6. [Google Scholar]
- Jegatheesan, V.; Vigneswaran, S. The effect of concentration on the early stages of deep bed filtration of submicron particles. Water Res. 1997, 31, 2910–2913. [Google Scholar] [CrossRef]
- Knowles, P.; Dotrob, G.; Nivala, J.; García, J. Clogging in subsurface-flow treatment wetlands: Occurrence and contributing factors. Ecol. Eng. 2011, 37, 99–112. [Google Scholar] [CrossRef]
- Bedrikovetsky, P.; Siqueira, A.G.; de Souza, A.L.; Shecaira, F.S. Correction of basic equations for deep bed filtration with dispersion. J. Pet. Sci. Eng. 2006, 51, 68–84. [Google Scholar] [Green Version]
- Ornatski, N.V.; Sergeev, E.V.; Shekhtman, Y.M. Investigation of the Process of Clogging Sands; University of Moscow: Moscow, Russia, 1955. [Google Scholar]
- Ives, K.J. Simulation of filtration on electronic digitial computers. J. AWWA 1960, 52, 933–939. [Google Scholar] [CrossRef]
- Maroudos, A. Clarification of Suspension: A Study of Particle Deposition in Granular Filter Media. Ph.D. Thesis, University of London, London, UK, 1961. [Google Scholar]
- Litwiniszyn, J. Colmatage considered as certain stochastic process. Bull. Acad. Pol. Sci. Ser. Sci. Technol. 1963, 11, 81. [Google Scholar]
- Herzig, J.P.; Leclerc, D.M.; Le Goff, P. Flow of suspensions through porous media: Application to deep filtration. Ind. Eng. Chem. 1970, 62, 8–35. [Google Scholar] [CrossRef]
- Adin, A.; Rebhun, M. A model to predict concentration and head loss profiles in filtration. J. AWWA 1977, 69, 444–453. [Google Scholar] [CrossRef]
- Fallah, H.; Fathi, H.B.; Mohammadi, H. The mathematical model for particle suspension flow through porous medium. Geomaterials 2012, 2, 57–62. [Google Scholar] [CrossRef]
- Bedrikovetsky, P.; Siqueira, F.D.; Furtado, C.A.; Souza, A.L.S. Modified Particle Detachment Model for Colloidal Transport in Porous Media. Transp. Porous Media 2011, 86, 353–383. [Google Scholar] [CrossRef]
- Gitis, V.; Rubinstein, I.; Livshits, M.; Ziskind, G. Deep-bed filtration model with multistage deposition kinetics. Chem. Eng. J. 2010, 163, 78–85. [Google Scholar] [CrossRef]
- Alaziz, A.I.; Al-Saqer, N.F. The Reuse of Greywater Recycling for High Rise Buildings in Kuwait Country. Int. J. Eng. Res. Appl. 2014, 4, 208–215. [Google Scholar]
- Karlsson, S.C. Modeling of Bark-, Sand- and Activated Carbon Filters for Treatment of Greywater; Uppsala University: Uppsala, Sweden, 2012. [Google Scholar]
- ASTM D2487-06. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System); Technical Report; ASTM International: West Conshohocken, PA, USA, 2006. [Google Scholar]
- Harr, M.E. Geotechnical engineering. In The Civil Engineering Handbook; Chen, W.F., Ed.; CRS Press: Boca Raton, FL, USA, 1995; pp. 661–704. [Google Scholar]
- Berger, C. Biochar and Activated Carbon Filters for Greywater Treatment–Comparison of Organic Matter and Nutrients Removal. Master’s Thesis, SUAS, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2012. Available online: https://stud.epsilon.slu.se/5183/21/berger_c_130115.pdf (accessed on 19 January 2019).
- Sangeetha, S.P.; Nair, S.K.; Lakshminarayana, V. An experimental analysis on grey water treatment using drawer sand filters. J. Ind. Pollut. Control 2017, 33, 1487–1489. [Google Scholar]
- Nieć, J.; Spychała, M.; Zawadzki, P. New approach to modelling of sand filter clogging by septic tank effluent. J. Ecol. Eng. 2016, 17, 97–107. [Google Scholar] [CrossRef]
- Zielina, M. Modelowanie procesu filtrowania niejednorodnych zawiesin przez ośrodek porowaty. Monografia, Seria Inżynierią Środowiska, Wyd. Politechniki Krakowskiej. 2011. (In Polish). Available online: https://suw.biblos.pk.edu.pl/downloadResource&mId=505690 (accessed on 19 January 2019).
- Zipf, M.S.; Pinheiro, I.G.; Conegero, M.G. Simplified greywater treatment systems: Slow filters of sand and slate waste followed by granular activated carbon. J. Environ. Manag. 2016, 176, 11–127. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.; Taveira-Pinto, F.; Cheng, C.Y.; Leite, D. Development of an experimental system for greywater reuse. Desalination 2012, 285, 301–305. [Google Scholar] [CrossRef]
- Alsulaili, D.; Abdalrahman, M.; Hamoda, F.; Al-Jarallh, R. Treatment and Potential Reuse of Greywater from Schools: A Pilot Study. Water Sci. Technol. 2017, 75, 2119–2129. [Google Scholar] [CrossRef] [PubMed]
- Moges, M.A.; Shmitter, P.; Tilahun, S.; Steenhuis, T.S. Watershed modeling for reducing future non-point source sediment and phosphorus load in the Lake Tana Basin, Ethiopia. J. Soil Sediments 2017, 18, 309–322. [Google Scholar] [CrossRef]
- Khalaphallah, R. Greywater Treatment for Reuse by Slow Sand Filtration: Study of Pathogenic Microorganisms and Phage Survival. Chemical and Process Engineering. Ecole des Mines de Nantes. English. Diploma Thesis, 2012. Available online: https://tel.archives-ouvertes.fr/tel-00735857/document (accessed on 19 January 2019).
Specification | Concentration | Standard Deviation/(Number of Repetitions) |
---|---|---|
Chemical oxygen demand (COD) | 199.6 mg O2 dm−3 | 4.8/(16) |
pH | 9.0 | 0.5/(6) |
Volatile solids (VS) | 160.3 mg dm−3 | 4.8/(11) |
electrical conductivity (EC) | 1060 S m−1 | 60/(6) |
Column number | Hydraulic Load (cm d−1) | Standard Deviation (cm d−1) | Filter Operation Time (Day) |
---|---|---|---|
1 | 144.4 | 7.9 | 14 days |
2 | 182.6 | 10.5 | 6 days |
3 | 181.9 | 10.4 | 6 days |
4 | 150.9 | 7.0 | 14 days |
5 | 152.3 | 6.3 | 21 days |
6 | 152.3 | 6.9 | 21 days |
7 | 180.8 | 10.5 | 6 days |
8 | 142.9 | 6.8 | 14 days |
9 | 163.5 | 6.6 | 21 days |
Filter Operation Time (Day) | Mean Removal Efficiency (%) |
---|---|
6 | 60 |
14 | 57 |
21 | 51 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spychała, M.; Nieć, J.; Zawadzki, P.; Matz, R.; Nguyen, T.H. Removal of Volatile Solids from Greywater Using Sand Filters. Appl. Sci. 2019, 9, 770. https://doi.org/10.3390/app9040770
Spychała M, Nieć J, Zawadzki P, Matz R, Nguyen TH. Removal of Volatile Solids from Greywater Using Sand Filters. Applied Sciences. 2019; 9(4):770. https://doi.org/10.3390/app9040770
Chicago/Turabian StyleSpychała, Marcin, Jakub Nieć, Paweł Zawadzki, Radosław Matz, and Thanh Hung Nguyen. 2019. "Removal of Volatile Solids from Greywater Using Sand Filters" Applied Sciences 9, no. 4: 770. https://doi.org/10.3390/app9040770
APA StyleSpychała, M., Nieć, J., Zawadzki, P., Matz, R., & Nguyen, T. H. (2019). Removal of Volatile Solids from Greywater Using Sand Filters. Applied Sciences, 9(4), 770. https://doi.org/10.3390/app9040770