Numerical Study of the Blood Flow in a Deformable Human Aorta
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods
2.1. Simulated Geometry
2.2. Governing Equations
- Part 1:
- Fluid dynamics analysis which required to solve the Navier–Stokes equations. It included the calculation of the velocity field and the distribution of blood pressure (variable over time and in space).
- Part 2:
- Mechanical analysis of the deformation of the cardiac tissue and artery.
2.3. Initial and Boundary Conditions
2.4. Numerical Method
3. Results
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kroon, M.; Holzapfel, G.A. Modeling of saccular aneurysm growth in a human middle cerebral artery. J. Biomech. Eng. 2008, 130, 051012. [Google Scholar] [CrossRef] [PubMed]
- Kamalanand, K.; Srinivasan, S. Modelling and analysis of normal and atherosclerotic blood vessel mechanics using 3d finite element models. Intact J. Soft Comput. 2011, 2, 261–264. [Google Scholar] [CrossRef]
- Vito, R.P.; Dixon, S.A. Blood Vessel Constitutive models-1995–2002. Annu. Rev. Biomed. Eng. 2003, 5, 413–439. [Google Scholar] [CrossRef]
- Taylor, C.A.; Figueroa, C.A. Patient-specific model of cardiovascular mechanics. Annu. Rev. Biomed. Eng. 2009, 11, 109–134. [Google Scholar] [CrossRef] [PubMed]
- Gerbeau, J.-F.; Vidrascu, M. A quasi-newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows. Math. Model. Numer. Anal. 2003, 37, 631–647. [Google Scholar] [CrossRef]
- Zulliger, M.A.; Fridez, P.; Hayashi, K.; Stergiopulos, N. A strain energy function for arteries accounting for wall composition and structure. J. Biomech. 2004, 37, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- Spencer, A.J.M. Continuum Mechanics; Longman Scientific & Technical: Essex, UK, 1980. [Google Scholar]
- Ras, R.T.; Streppel, M.T.; Draijera, R.; Zock, P. Flow-mediated dilation and cardiovascular risk prediction: A systematic review with meta-analysis. Int. J. Cardiol. 2013, 20, 168, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Bastien, M.; Poirier, P.; Lemieux, I.; Després, J.-P. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog. Cardiovasc. Dis. 2014, 56, 369–381. [Google Scholar] [CrossRef]
- Regitz-Zagrosek, V.; Oertelt-Prigione, S.; Prescott, E.; Franconi, F.; Gerdts, E.; Foryst-Ludwig, A.; Maas, A.H.; Kautzky-Willer, A.; Knappe-Wegner, D.; Kintscher, U.; et al. Gender in cardiovascular diseases: Impact on clinical manifestations, management, and outcomes. Eur. Heart J. 2016, 37, 24–34. [Google Scholar] [CrossRef]
- Babu, G.C.; Shantharajah, S.P. Optimal body mass index cutoff point for cardiovascular disease and high blood pressure. Neural Comput. Appl. 2018. [Google Scholar] [CrossRef]
- Narayan, S.; Sathiyamoorthy, E. A novel recommender system based on FFT with machine learning for predicting and identifying heart diseases. Neural Comput. Appl. 2018. [Google Scholar] [CrossRef]
- Leo, M.C.; Jayashree, S.; Darren, R.G.; Marsel, M.M.; Todd, B.P. Hemodynamic response changes in cerebrovascular disease: Implications for functional MR imaging. AJNR Am. J. Neuroradiol. 2002, 23, 1222–1228. [Google Scholar]
- Pang, C.L.; Alcock, R.; Pilkington, N.; Reis, T.; Roobottom, C. Determining the haemodynamic significance of arterial stenosis: The relationship between CT angiography, computational fluid dynamics, and non-invasive fractional flow reserve. Clin. Radiol. 2016, 71, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Dirk, J.D.; Akos, K.; Daphne, M.; John, M.C.J. Regulation of coronary blood flow in health and ischemic heart disease. Prog. Cardiovasc. Dis. 2015, 57, 409–422. [Google Scholar]
- Mark, S.S.; Francis, D.P.; Joseph, G.R.; Leslie, W.M.; Benjamin, S.; Stuart, D.R.; Randall, C.S.; Leway, C.; Andrew, J.B.; Suzanne, C.; et al. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J. Heart Lung Transplant. 2010, 29, S1–S39. [Google Scholar]
- Xenosa, M.; Girdhara, G.; Alemua, Y.; Jesty, J.; Slepian, M.; Einava, S.; Bluestein, D. Device Thrombogenicity Emulator (DTE)-Design optimization methodology for cardiovascular devices: A Study in two bileaflet MHV designs. J. Biomech. 2010, 43, 2400–2409. [Google Scholar] [CrossRef] [PubMed]
- Purkayastha, S.; Fadar, O.; Mehregan, A.; Salat, D.H.; Moscufo, N.; Meier, D.S.; Guttmann, C.R.G.; Fisher, N.D.L.; Lipsitz, L.A.; Sorond, F.A. Impaired cerebrovascular hemodynamics are associated withcerebral white matter damage. J. Cereb. Blood Flow Metab. 2014, 34, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.D.; Bossone, E.; Naeije, R.; Grünig, E.; Saggar, R.; Lancellotti, P.; Ghio, S.; Varga, J.; Rajagopalan, S.; Oudiz, R.; et al. Pulmonary vascular hemodynamic response to exercise in cardiopulmonary diseases. Circulation 2013, 128, 1470–1479. [Google Scholar] [CrossRef] [PubMed]
- Panta, Y.M.; Harvey, M. Technical brief: Computational fluid dynamic (CFD) analysis of blood flow through human arteries. J. Comput. Simul. Model. 2012, 2, 27–29. [Google Scholar]
- Wood, N.B.; Weston, S.J.; Kilner, P.J.; Gosman, A.D.; Firmin, D.N. Combined MR imaging and CFD simulation of flow in the human descending aorta. J. Magn. Reson. Imaging 2001, 13, 699–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokuda, Y.; Song, M.H.; Ueda, Y.; Usui, A.; Akita, T.; Yoneyama, S.; Maruyama, S. Three-dimensional numerical simulation of blood flow in the aortic arch during cardiopulmonary bypass. Eur. J. Cardiothorac. Surg. 2008, 33, 164–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduyard, T.E. Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space–time formulation. Comput. Methods Appl. Mech. Eng. 2006, 195, 1885–1895. [Google Scholar] [CrossRef]
- Bazilevs, Y.; Hsu, M.C.; Zhang, Y.; Wang, W.; Kvamsdal, T.; Hentschel, S.; Isaksen, J.G. Computational vascular fluid–Structure interaction: Methodology and application to cerebral aneurysms. Biomech. Model. Mechanobiol. 2010, 9, 481–498. [Google Scholar] [CrossRef] [PubMed]
- Crosettoa, P.; Reymond, P.; Deparis, S.; Kontaxakis, D.; Stergiopulos, N.; Quarteroni, A. Fluid–Structure interaction simulation of aortic blood flow. Comput. Fluids 2011, 43, 46–57. [Google Scholar] [CrossRef]
- Garje, A.; Adhav, Y.G.; Bodas, D. Design and simulation of blocked blood vessel for early detection of heart diseases. In Proceedings of the 2015 2nd International Symposium on Physics and Technology of Sensors Pune, India, 7–10 March 2015; pp. 204–208. [Google Scholar]
- Priyadharshini, S.; Ponalagusamy, R. Mathematical modelling for pulsatile flow of Casson fluid along with magnetic nanoparticles in a stenosed artery under external magnetic field and body acceleration. Neural Comput. Appl. 2017. [Google Scholar] [CrossRef]
- McDonald, D.A. Blood Flow in Arteries, 2nd ed.; Edward Arnold: London, UK, 1974. [Google Scholar]
- Chuchard, P.; Puapansawat, T.; Siriapisith, T.; Wu, Y.H.; Wiwatanapataphee, B. Numerical simulation of blood flow through the system of coronary arteries with diseased left anterior descending. Int. J. Math. Comput. Simul. 2011, 5, 334–341. [Google Scholar]
- Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduyard, T.E. Influence of wall elasticity in patient-specific hemodynamic simulations. Comput. Fluids 2007, 36, 160–168. [Google Scholar] [CrossRef]
- Choudhari, P.; Panse, M.S. Finite Element Modeling and simulation of arteries in the human arm to study the aortic pulse wave propagation. Procedia Comput. Sci. 2016, 93, 721–727. [Google Scholar] [CrossRef]
- Rao, S.S.; Chen, Z. The Finite Element Methods in Engineering; Elsevier Science & Technology Books: Miami, FL, USA, 2004. [Google Scholar]
- Urquiza, S.A.; Blanco, P.J.; Venere, M.J.; Feijoo, R.A. Multidimensional modelling for the carotid artery blood flow. Comput. Methods Appl. Mech. Eng. 2006, 195, 4002–4017. [Google Scholar] [CrossRef]
- Wang, Y.; Quaini, A.; Čanić, S. A higher-order discontinuous Galerkin/arbitrary Lagrangian Eulerian partitioned approach to solving fluid–Structure interaction problems with incompressible, viscous fluids and elastic structures. J. Sci. Comput. 2018, 76, 481–520. [Google Scholar] [CrossRef]
- Kim, K.; Kim, J.U.; Beak, H.M.; Kim, S.K. Modeling of the artery tree in the human upper extremity and numerical simulation of blood flow in the artery tree. Trans. Korean Soc. Mech. Eng. B. 2016, 40, 221–226. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, X.; Pan, L.; Tao, W.; Qian, C. Simulation analysis of blood flow in arteries of the human arm. Biomed. Eng. 2017, 29, 1750031. [Google Scholar] [CrossRef]
- Marie, W.; Valerie, L.; Emilie, M. Inlet boundary conditions for blood flow simulations in truncated arterial networks. J. Biomech. 2011, 44, 897–903. [Google Scholar]
- Jinqiang, N.; Steven, Y.L. Inverse identification of Johnson-Cook material constants based on modified chip formation model and iterative gradient search using temperature and force measurements. Int. J. Adv. Manuf. Technol. 2019. [Google Scholar] [CrossRef]
- Jinqiang, N.; Vinh, N.; Yong, H.; Karl, T.H.; Steven, Y.L. Inverse determination of Johnson–Cook model constants of ultra-fine-grained titanium based on chip formation model and iterative gradient search. Int. J. Adv. Manuf. Technol. 2018, 99, 1131–1140. [Google Scholar]
Parameter | Value |
---|---|
Density | kg/m3 |
Shear modulus | N/m2 |
Bulk modulus | N/m2 |
Fluid Elements | Solid Elements | Total Elements | Total Nodes |
---|---|---|---|
85,083 | 109,967 | 195,050 | 33,506 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selmi, M.; Belmabrouk, H.; Bajahzar, A. Numerical Study of the Blood Flow in a Deformable Human Aorta. Appl. Sci. 2019, 9, 1216. https://doi.org/10.3390/app9061216
Selmi M, Belmabrouk H, Bajahzar A. Numerical Study of the Blood Flow in a Deformable Human Aorta. Applied Sciences. 2019; 9(6):1216. https://doi.org/10.3390/app9061216
Chicago/Turabian StyleSelmi, Marwa, Hafedh Belmabrouk, and Abdullah Bajahzar. 2019. "Numerical Study of the Blood Flow in a Deformable Human Aorta" Applied Sciences 9, no. 6: 1216. https://doi.org/10.3390/app9061216
APA StyleSelmi, M., Belmabrouk, H., & Bajahzar, A. (2019). Numerical Study of the Blood Flow in a Deformable Human Aorta. Applied Sciences, 9(6), 1216. https://doi.org/10.3390/app9061216