Circulating Current Reduction in MMC-HVDC System Using Average Model
Abstract
:1. Introduction
- (1)
- The existing direct modulation technique generates sinusoidal arm currents that cause variations in capacitor energy, leading to capacitor voltage fluctuations. In the past, different approaches were adopted to minimize capacitor voltage fluctuations.
- (2)
- In some papers, harmonics were injected inside the circulating current, which reduced voltage fluctuations but led to increases in RMS values of arm currents, causing excessive power loss.
- (3)
- In another approach, differential current controllers were used to control capacitor voltage fluctuations, which increases the hardware burden on system as well as additional controller specific adjustments.
- (4)
- However, in this research work, a new method is proposed to minimize capacitor energy variations by injecting even order harmonics to the upper and lower arm currents, which restricts excessive negative currents in each arm of the MMC, leading to the presence of DC current components. This also results in the reduction of circulating currents and RMS values of the arm current inside each leg of the MMC, which is evident from analytical and simulation results reported in this paper.
- (5)
- The proposed method is implemented on a point-to-point MMC-HVDC test system based on a non-linear AVM model using the vector current control method.
2. MMC-HVDC System Structure
3. MMC Control System
- System level (DC voltage control/active and reactive power);
- Lower level control (circulating current control);
- Capacitor voltage balancing control.
4. Average Model of MMC
5. Direct and Proposed Direct Modulation
6. Analytical and Simulation Results
- (a)
- Direct modulation
- (b)
- Proposed method
- The AC component of the circulating current needs to be reshaped to reduce the voltage ripple in the capacitor; otherwise, it increases loss. Its DC current component is important to keep the capacitor voltages around a reference value.
- In the proposed method, the circulating current amplitude is reduced while keeping a balance between higher order harmonics and lower order harmonics inside the arm current.
- The RMS value of the arm current is also reduced compared to other techniques as clearly mentioned in the literature review.
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
P | Number of phases |
n | Number of sub modules per arm |
IGBTs | Insulated Gate Bipolar Transistors |
PI | Proportional Integral |
PR | Proportional Resonant |
RMS | Root Mean Square Value |
C | Sub module capacitance |
Dc bus voltage per pole | |
Dc bus voltage pole-to-pole | |
Transformer inductance | |
Arm inductance | |
Equivalent transformer and arm inductance | |
R | Arm resistance |
Time constant of the closed-loop step response | |
Sum capacitor voltages in upper arm | |
Sum capacitor voltages in lower arm | |
Total capacitor voltage | |
, | Insertion indices upper and lower arm |
Converter output voltage in phase a | |
Inserted voltages in phase a upper arm | |
Inserted voltages in phase a lower arm | |
I | Inner generated voltage in phase a |
Capacitance of series connected n cells | |
AC current in phase a | |
Circulating current | |
DCcurrent | |
) | Reference for |
Internal voltage (driving ) | |
Reference for | |
f | AC side system frequency |
Angular frequency | |
Vg | Grid voltage |
Appendix A
References
- Adam, G.P.; Finney, S.J.; Ahmed, K.H.; Williams, B.W. Modular multilevel converter modeling for power system studies. Presented at 4th International Conference on Power Engineering, Energy and Electrical Drives, Istanbul, Turkey, 13–17 May 2013. [Google Scholar]
- Perez, M.A.; Bernet, S.; Rodriguez, J.; Kouro, S.; Lizana, R. Circuit Topologies, Modeling, Control Schemes, and Applications of Modular Multilevel Converters. IEEE Trans. Power Electr. 2015, 30, 4–17. [Google Scholar] [CrossRef]
- Chaudhuri, N.R.; Oliveira, R.; Yazdani, A. Modeling and Stability Analysis of Modular Multilevel HVDC Converters. In Proceedings of the IEEE Power and Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015. [Google Scholar]
- Manitoba HVDC Research Center PSCAD. EMTDC 4.1 User’s Manual. Available online: https://hvdc.ca/uploads/knowledge_base/pscad_manual_v4_6.pdf?t=1528395602 (accessed on 4 March 2019).
- Saad, H.; Dennetiere, S.; Mahseredjian, J.; Delarue, P.; Guillaud, X.; Peralta, J.; Nguefeu, S. Modular Multilevel Converter Models for Electromagnetic Transients. IEEE Trans. Power Deliver. 2014, 29, 1481–1489. [Google Scholar] [CrossRef]
- Teeuwsen, S.P. Simplified dynamic model of a voltage-sourced converter with modular multilevel converter design. In Proceedings of the IEEE/PES, Power System, Seatle, WA, USA, 15–18 March 2009; pp. 1–6. [Google Scholar]
- Peralta, J.; Saad, H.; Dennetiere, S.; Mahseredijan, J.; Nguefeu, S. Detailed and averaged models for a 401-level MMC/HVDC system. IEEE Trans. Power Deliver. 2012, 27, 1501–1508. [Google Scholar] [CrossRef]
- Krein, P.T.; Bentsman, J.; Bass, R.M.; Lesieutre, B.L. On the use of averaging for the analysis of power electronic systems. IEEE Trans. Power Electr. 1990, 5, 182–190. [Google Scholar] [CrossRef]
- Peralta, J.; Saad, H.; Dennetiere, S.; Mahseredjian, J. Dynamic performance of averaged-value models for multi-terminal VSC-HVDC systems. In Proceedings of the IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–8. [Google Scholar]
- Cigre, W.G. B4-57 Guide for the Development of Models for HVDC Converters in a HVDC Grid. Technical Brochures. Pairs, France, 2014. Available online: https://e-cigre.org/publication/604-guide-for-the-development-of-models-for-hvdc-converters-in-a-hvdc-grid (accessed on 3 March 2019).
- Khan, S.; Tedeschi, T. Modeling of MMCfor Fast and Accurate Simulation of Electromagnetic Transients: A Review. Energies 2017, 10, 1161. [Google Scholar] [CrossRef]
- Martinez-Rodrigo, F.; Ramirez, D.; Rey-Boue, A. Modular Multilevel Converters: Control and Applications. Energies 2017, 10, 1709. [Google Scholar] [CrossRef]
- Rohner, S.; Weber, J.; Bernet, S. Continuous model of Modular Multilevel Converter with experimental verification. In Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA, 17–22 September 2011; pp. 4021–4028. [Google Scholar]
- Chaudhuri, N.R.; Oliveira, R.; Yazdani, Y. Stability Analysis of Vector-Controlled Modular Multilevel Converters in Linear Time Periodic Framework. IEEE Trans. Power Electr. 2016, 31, 5255–5269. [Google Scholar] [CrossRef]
- Ilves, K.; Antonopoulos, A.; Norrga, S.; Nee, H.P. Steady-State Analysis of Interaction between Harmonic Components of Arm and Line Quantities of Modular Multilevel Converters. IEEE Trans. Power Electr. 2012, 27, 57–68. [Google Scholar]
- Antonopoulos, A.; Angquist, L.; Nee, H.P. On dynamics and voltage control of the modular multilevel converter. In Proceedings of the 13th European Conference on Power Electronics and Applications, Barcelona, Spain, September 2009; pp. 1–10. [Google Scholar]
- Song, Q.; Liu, W.; Li, X.; Rao, H.; Xu, S.; Li, L. A Steady-State Analysis Method for a Modular Multilevel Converter. IEEE Trans. Power Electr. 2013, 28, 3702–3713. [Google Scholar] [CrossRef]
- Vasiladiotis, M.; Cherix, N.; Rufer, A. Accurate Capacitor Voltage Ripple Estimation and Current Control Considerations for Grid-Connected Modular Multilevel Converters. IEEE Trans. Power Electr. 2014, 29, 4568–4579. [Google Scholar] [CrossRef]
- Qin, J.; Saeedifard, M. Predictive control of a modular multilevel converter for a back-to-back HVDC system. IEEE Trans. Power Del. 2012, 27, 1538–1547. [Google Scholar]
- Li, S.; Wang, X.; Yao, Z.; Li, T.; Peng, Z. Circulating current suppressing strategy for MMC-HVDC based on nonideal proportional resonant controllers under unbalanced grid conditions. IEEE Trans. Power Electr. 2015, 30, 387–397. [Google Scholar] [CrossRef]
- Darus, R.; Pou, J.; Konstantinou, G.; Ceballos, S.; Agelidis, V. Circulating current control and evaluation of carrier dispositions in modular multilevel converters. In Proceedings of the IEEE ECCE Asia Downunder, Melbourne, VIC, Australia, 3–6 June 2013; pp. 332–338. [Google Scholar]
- Zhang, M.; Huang, L.; Yao, W.; Lu, Z. Circulating harmonic current elimination of a CPS-PWM-based modular multilevel converter with a plug-in repetitive controller. IEEE Trans. Power Electr. 2014, 29, 2083–2097. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, J.; Zhang, T.; Yang, Q. Arm currentcontrol strategyfor MMC-HVDCunderUnbalancedConditions. IEEE Trans. Power Deliver. 2017, 32, 125–134. [Google Scholar] [CrossRef]
- Engel, S.; De Doncker, R. Control of the modular multi-level converter for minimized cell capacitance. In Proceedings of the 14th European Conference on Power Electronics and Applications, Brimingham, UK, 30 August–1 September 2011; pp. 1–10. [Google Scholar]
- Picas, R.; Pou, J.; Ceballos, S.; Zaragoza, J.; Konstantinou, G.; Agelidis, V. Optimal injection of harmonics in circulating currents of modular multilevel converters for capacitor voltage ripple minimization. In Proceedings of the IEEE ECCE Asia Downunder, Melbourne, VIC, Australia, 3–6 June 2013; pp. 318–324. [Google Scholar]
- Wang, J.; Han, X.; Ma, H.; Bai, Z. Analysis and Injection Control of Circulating Current for Modular Multilevel Converters. IEEE Trans. Ind. Electr. 2019, 66, 2280–2290. [Google Scholar] [CrossRef]
- Bergna-Diaz, G.; Suul, J.A.; D’Arco, S. Energy-based state-space representation of modular multilevel converters with a constant equilibrium point in steady-state operation. IEEE Trans. Power Electr. 2018, 33, 4832–4851. [Google Scholar] [CrossRef]
- Hagiwara, M.; Akagi, H. PWMcontrol and experiment of modular multilevel converters. In Proceedings of the IEEE Power Electronics Specialists Conference, Rhodes, Greece, 15–19 June 2008; pp. 154–161. [Google Scholar]
- Dekka, A.; Wu, B.; Zargari, N.R.; Fuentes, N.R. Dynamic Voltage Balancing Algorithm for Modular Multilevel Converter: A Unique Solution. IEEE Trans. Power Electr. 2016, 31, 952–963. [Google Scholar] [CrossRef]
- Debnath, S.; Qin, J.; Bahrani, J.; Saeedifard, M.; Barbosa, P. Operation, Control, and Applications of the Modular Multilevel Converter: A Review. IEEE Trans. Power Electr. 2015, 30, 37–53. [Google Scholar] [CrossRef]
- Ängquist, L.; Antonopoulos, A.; Siemaszko, D.; Ilves, K.; Vasiladiotis, M.; Nee, H.P. Open-loop control of modular multilevel converters using estimation of stored energy. IEEE Trans. Ind. Appl. 2011, 47, 2516–2524. [Google Scholar] [CrossRef]
- Sood, V.; Patel, H. Comparison between direct and vector control strategy for VSC-HVDC system in EMTP-RV. In Proceedings of the 2010 Joint International Conference on Power Electronics, Drives and Energy Systems and 2010 Power India, New Delhi, India, 20–23 December 2010; pp. 1–6. [Google Scholar]
- Egea-Alvarez, A.; Junyent-Ferré, A.; Gomis-Bellmunt, O. Active and reactive power control of grid connected distributed generation systems. In Modeling and Control of Sustainable Power Systems; Springer: Berlin, Germany, 2012; pp. 47–81. [Google Scholar]
- Bahrani, B.; Kenzelmann, S.; Rufer, A. Multivariable-PI-based dq current control of voltage source converters with superior axis decoupling capability. IEEE Trans. Ind. Electr. 2011, 58, 3016–3026. [Google Scholar] [CrossRef]
- Geddada, N.; Ukil, A.; Yeap, Y.M. Circulating Current Controller in dq Reference Frame for MMC Based HVDC System. In Proceedings of the 42nd Annual Conference, Industrial Electronics Society, IECON, Florence, Italy, 24–27 October 2016; pp. 3288–3293. [Google Scholar]
- Zadeh, M.K.; Amin, M.; Suul, J.A.; Molinas, M.; Fosso, O.B. Small Signal Stability Study of the Cigré DC Grid Test System with Analysis of Participation Factors and Parameter Sensitivity of Oscillatory Modes. In Proceedings of the IEEE, Wroclaw, Poland, 18–22 August 2014; pp. 18–22. [Google Scholar]
- Moranchel, M.; Bueno, E.; Sanz, I.; Rodríguez, F.J. New Approaches to Circulating Current Controllers for Modular Multilevel Converters. Energies 2017, 10, 86. [Google Scholar] [CrossRef]
- Ahmed, N.; Angquist, L.; Norrga, S.; Antonopoulos, A.; Harnefors, L.; Nee, H.P. A Computationally efficient continuous model for the modular multilevel converter. IEEE J. Em. Sel. Top. Power Electr. 2014, 2, 1139–1148. [Google Scholar] [CrossRef]
- Escalante, M.F.; Vannier, J.C. Direct approach for balancing the capacitor voltages of a 5-level flying capacitor converter. In Proceedings of the European Power Electronics Conference (EPE), Lausanne, Switzerland, 7–9 September 1999. [Google Scholar]
- Harnefors, L.; Antonopoulos, A.; Norrga, S.; Angquist, L.; Nee, H.P. Dynamic analysis of modular multilevel converters. IEEE Trans. Ind. Electr. 2013, 60, 2526–2537. [Google Scholar] [CrossRef]
- Harnefors, L.; Antonopoulos, A.; Ilves, K.; Nee, H.P. Global asymptotic stability of current-controlled modular multilevel converters. IEEE Trans. Power Electr. 2015, 30, 249–258. [Google Scholar] [CrossRef]
- Tu, Q.; Xu, Z.; Xu, L. Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters. IEEE Trans. Power Deliver. 2011, 26, 2009–2017. [Google Scholar]
- Bergna, G.; Berne, E.; Egrot, P.; Lefranc, P.; Amir, A.; Vannier, J.; Molinas, M. An energy-based controller for hvdc modular multilevel converter in decoupled double synchronous reference frame for voltage oscillations reduction. IEEE Trans. Ind. Electr. 2013, 60, 2360–2371. [Google Scholar] [CrossRef]
- Bergna, G.; Berne, E.; Lefranc, P.; Molinas, M. Modular multilevel converter-energy difference controller in rotating reference frame. In Proceedings of the 15th International Power Electronics and Motion Contorol Conference (EPE/PEMC), Novi Sad, Serbia, 4–6 September 2012; pp. 299–307. [Google Scholar]
- Moon, J.W.; Park, J.W.; Kang, D.W.; Kim, J.M. A control method of HVDC-modular multilevel converter based on arm current under the unbalanced voltage condition. IEEE Trans. Power Deliver. 2015, 30, 529–536. [Google Scholar] [CrossRef]
- Mohammadi, F. Power Management Strategy in Multi-Terminal VSC-HVDC System. In Proceedings of the 4th International Conference on Applied Research in Electrical, Mechanical Computer and IT Engineering, 4 October 2018. [Google Scholar]
- Tu, Q.; Xu, Z.; Huang, H.; Zhang, J. Parameter design principle of the arm inductor in modular multilevel converter based HVDC. In Proceedings of the International Conference on Power System Technology, Hangzhou, China, 24–28 October 2010; pp. 1–6. [Google Scholar]
- Rosendo Macias, J.; Gomez Exposito, A.; Bachiller Soler, A. A comparison of techniques for state-space transient analysis of transmission lines. IEEE Trans. Power Deliver. 2005, 20, 894–903. [Google Scholar] [CrossRef]
Quantity | Symbol | Direct Modulation | Proposed Direct Modulation | ||
---|---|---|---|---|---|
Amplitude | RMS Current | Amplitude | RMS Current | ||
Upper Arm Current | 1.5 kA | 0.75 kA | 1.5 kA | 0.65 kA | |
Lower Arm Current | 1.5 kA | 0.75 kA | 1.5 kA | 0.65 kA | |
Output Current in Phase | 1.5 kA | - | 1.5 kA | - | |
Differential Current | 1 kA | - | 0.2 kA | - |
Apparent Power () | 1000 MVA |
Active power () | 960 MW |
Grid side AC voltage | 420 kV |
Converter side AC voltage | 380 kV |
DC side voltage | ±320 kV |
DC side current | 1.5 kA |
Transformer connection | Y/∆ |
Arm capacitor | 28 µF |
Arm inductance (continuous) | 76 mH |
Transformer inductance | 15 mH |
Arm resistance | 0.8 Ω |
DC Line (two conductors) | 400 km |
Ac side Power Factor | 0.96 |
Angular frequency | 341 d/s |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hafeez, K.; Khan, S.A.; Van den Bossche, A.; Hasan, Q.U. Circulating Current Reduction in MMC-HVDC System Using Average Model. Appl. Sci. 2019, 9, 1383. https://doi.org/10.3390/app9071383
Hafeez K, Khan SA, Van den Bossche A, Hasan QU. Circulating Current Reduction in MMC-HVDC System Using Average Model. Applied Sciences. 2019; 9(7):1383. https://doi.org/10.3390/app9071383
Chicago/Turabian StyleHafeez, Kamran, Shahid A. Khan, Alex Van den Bossche, and Qadeer Ul Hasan. 2019. "Circulating Current Reduction in MMC-HVDC System Using Average Model" Applied Sciences 9, no. 7: 1383. https://doi.org/10.3390/app9071383
APA StyleHafeez, K., Khan, S. A., Van den Bossche, A., & Hasan, Q. U. (2019). Circulating Current Reduction in MMC-HVDC System Using Average Model. Applied Sciences, 9(7), 1383. https://doi.org/10.3390/app9071383