Iridescent Techniques in Ceramics: Physico-Chemical Analysis and Colorimetric Characterization of the Headquarters of the Botín Foundation in Santander
Abstract
:Featured Application
Abstract
1. Introduction
2. Iridescent and Pearl Ceramic Techniques
3. Botín Foundation Headquarters in Santander. Ceramic and Light Reflection
- -
- Anodized aluminum clamps: mechanical fixing and leveling system.
- -
- Metallic substructure of anodized aluminum profiles which are rectangular-shaped in the straight sections and circular-shaped in the curved sections.
- -
- Continuous lining of aluminum ribbed sheets, produced by extrusion, with a seaside marine environment coating, mechanized using a thermal-friction system based on computer-aided design and computer aided manufacturing (CAD-CAM) system parameters, designed and programmed by Disset for this enclosure.
- -
- Circular ceramic tiles, 156 mm in diameter, produced by Cumella Ceramics, mechanized using an aluminum anchor threaded into the aluminum sheets by means of a drill system with a suction cup and a calibrated tightening torque.
- -
- Special aluminum tiles with a seaside coating for expansion joints, deck registers, evacuation as well as rainwater collection channels and roof anchors.
- -
- Profiled aluminum sheet finishing with seaside coating, around the enclosure’s perimeter.
4. Description of the Ceramic Tile Manufacturing Process
5. Physical-Chemical Analysis of the Ceramic Tiles
6. Colorimetric Study
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Salazar, J.; Sakamoto, T. (Eds.) Rhythms, Cycles, Performances-Ceramics in Architecture; ASCER; ACTAR Publishers: Barcelona, Spain, 2010; ISBN 978-8461394050. [Google Scholar]
- Delbene, G. Public Private Ephemeral: Ceramics in Architecture; ASCER; ACTAR Publishers: Barcelona, Spain, 2008; ISBN 978-8461215096. [Google Scholar]
- Norberg-Schulz, Ch. Arquitectura Occidental; Gustavo Gili: Barcelona, Spain, 1973; ISBN 8425218055. [Google Scholar]
- Benevolo, L. Storia Dell’architettura Moderna; Editori Laterza: Bari, Italy, 1981; ISBN 9788842086222. [Google Scholar]
- Ceramic Floor and Wall Tiles. Innovation, Avant-Garde and Sustainability in Public and Private Spaces. Report. Available online: http://www.promateriales.com/pdf/pm2209.pdf (accessed on 14 December 2018).
- Cumella, A. Cerámics for Architecture, Granollers. Available online: http://www.cumella.cat/projectes/contemporanis/ (accessed on 16 December 2018).
- Derby, B. Inkjet printing ceramics: From drops to solid. J. Eur. Ceram. Soc. 2011, 31, 2543–2550. [Google Scholar] [CrossRef]
- Grespania. Technical Solutions. H&C Tiles. TiO2 Coating That Reduces Environmental Pollution. Available online: https://www.grespania.com/baldosas-autolimpiables-anticontaminaci%C3%B3n-h&c-tiles/ref640010es (accessed on 9 January 2019).
- Pérez-Monserrat, E.M.; Fort, R.; Lopez-Arce, P.; Alvarez de Buergo, M.; Varas-Muriel, M.J. Contribution of analytical techniques to determine the technologies used in the ceramic materials from the Former Workers Hospital of Maudes, Madrid (Spain). J. Eur. Ceram. Soc. 2013, 33, 479–491. [Google Scholar] [CrossRef] [Green Version]
- Casasola, R.; Rincón, J.M.; Romero, M. Glass–ceramic glazes for ceramic tiles: A review. J. Mater. Sci. 2012, 47, 553–582. [Google Scholar] [CrossRef]
- Pradell, T.; Pavlov, R.S.; Gutiérrez, P.C.; Climent-Font, A.; Molera, J. Composition, nanostructure, and optical properties of silver and silvercopper lusters. J. Appl. Phys. 2012, 112, 054307. [Google Scholar] [CrossRef]
- Bobin, O.; Schvoerer, M.; Miane, J.L.; Fabre, J.F. Colored metallic shine associated to luster decoration of glazed ceramics: A theoretical analysis of the optical properties. J. Non-Cryst. Solids 2003, 332, 28–34. [Google Scholar] [CrossRef]
- Ding, H.-Y.; Li, H.; Wang, G.-Q.; Liu, T.; Zhou, G.-H. Bio-Corrosion Behavior of Ceramic Coatings Containing Hydroxyapatite on Mg-Zn-Ca Magnesium Alloy. Appl. Sci. 2018, 8, 569. [Google Scholar] [CrossRef]
- Zhang, Y.-N.; Lin, B.; Liu, J.-J.; Song, X.-F.; Key, J. An Experimental Study on Mechanical Modeling of Ceramics Based on Microstructure. Appl. Sci. 2015, 5, 1337–1349. [Google Scholar] [CrossRef] [Green Version]
- Llusar, M.; Rodrigues, C.; Labrincha, J.; Flores, M.; Monrós, G. Reinforcement of single-firing ceramic glazes with the addition of polycrystalline tetragonal zirconia (3Y–TZP) or zircon. J. Eur. Ceram. Soc. 2002, 22, 639–652. [Google Scholar] [CrossRef]
- Gao, Q.; Wu, X.; Fan, Y. Solar spectral optical properties of rutile TiO2 coated mica-titania pigments. Dyes Pigments 2014, 109, 90–95. [Google Scholar] [CrossRef]
- Yuan, L.; Han, A.; Ye, M.; Chen, X.; Ding, C.; Yao, L. Synthesis and characterization of novel non-toxic BiFe1−xAlxO3/mica-titania pigments with high NIR reflectance. Ceram. Int. 2017, 43, 16488–16494. [Google Scholar] [CrossRef]
- Kaya, S.Y.; Karasu, B. Process parameters determination of phosphorescent pigment added, frit-based wall tiles vetrosa decorations. Ceram. Int. 2012, 38, 2757–2766. [Google Scholar] [CrossRef]
- Chen, T.; Zha, J.; Zhang, X.; Hu, X.; Jiang, W.; Xie, Z.; Jiang, W. Synthesis and characterization of PrxZr1-xSiO4 (x = 0–0.08) yellow pigments via non-hydrolytic sol-gel method. J. Eur. Ceram. Soc. 2018, 38, 4568–4575. [Google Scholar] [CrossRef]
- Snyders, E.; Potgieter, J.H.; Nel, J.T. The effect of milling and percentage dissociation of plasma dissociated zircon on the colour of Pr-yellow and V-blue zircon pigments. J. Eur. Ceram. Soc. 2006, 26, 1599–1603. [Google Scholar] [CrossRef]
- Gao, Y.F.; Zhao, F.; Liu, Y.; Luo, H.J. Synthesis and characterization of ZrO2 capsules and crystalline ZrO2 thin layers on Fe2O3 powders. CrystEngComm 2011, 13, 3511–3514. [Google Scholar] [CrossRef]
- Cavalcante, P.; Dondi, M.; Guarini, G.; Raimondo, M.; Baldi, G. Colour performance of ceramic nano-pigments. Dyes Pigments 2009, 80, 226–232. [Google Scholar] [CrossRef] [Green Version]
- Jovaní, M.; Domingo, M.; Machado, T.R.; Longo, E.; Beltrán-Mir, H.; Cordoncillo, E. Pigments based on Cr and Sb doped TiO2 prepared by microemulsionmediated solvothermal synthesis for inkjet printing on ceramics. Dyes Pigments 2015, 116, 106–113. [Google Scholar] [CrossRef]
- Jiang, W.; Xu, X.; Chen, T.; Liu, J.; Zhang, X. Preparation and chromatic properties of C@ZrSiO4 inclusion pigment via non-hydrolytic sol-gel method. Dyes Pigments 2015, 114, 55–59. [Google Scholar] [CrossRef]
- Badenes, J.A.; Llusar, M.; Tena, M.A.; Calbo, J.; Monrós, G. Praseodymium-doped cubic Ca–ZrO2 ceramic stain. J. Eur. Ceram. Soc. 2020, 22, 1981–1990. [Google Scholar] [CrossRef]
- Ozel, E.; Turan, S. Production of coloured zircon pigments from zircon. J. Eur. Ceram. Soc. 2007, 27, 1751–1757. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, X.; Jiang, W.; Liu, J.; Jiang, W.; Xie, Z. Synthesis and application of C@ZrSiO4 inclusion ceramic pigment from cotton cellulose as a colorant. J. Eur. Ceram. Soc. 2016, 36, 1811–1820. [Google Scholar] [CrossRef]
- Colomban, P. The use of metal nanoparticles to produce yellow, red and iridescent colour, from bronze age to present times in lustre pottery and glass: Solid state chemistry, spectroscopy and nanostructure. J. Nano Res. 2009, 8, 109–132. [Google Scholar] [CrossRef]
- Fermo, P.; Padeletti, G. The Use of Nano-Particles to Produce Iridescent Metallic Effects on Ancient Ceramic Objects. J. Nanosci. Nanotechnol. 2012, 12, 1–6. [Google Scholar] [CrossRef]
- Barbera, G.; Barone, G.; Crupi, V.; Longo, F.; Majolino, D.; Mazzoleni, P.; Sabatino, G.; Tanasi, D.; Venuti, V. Study of Late Roman and Byzantine glass by the combined use of analytical techniques. J. Non-Cryst. Solids 2012, 358, 1554–1561. [Google Scholar] [CrossRef]
- Garofano, I.; Robador, M.D.; Perez-Rodriguez, J.L.; Castaing, J.; Pacheco, C.; Duran, A. Ceramics from the Alcazar Palace in Seville (Spain) dated between the 11th and 15th centuries: Compositions, technological features and degradation processes. J. Eur. Ceram. Soc. 2015, 35, 4307–4319. [Google Scholar] [CrossRef]
- Holakooei, P.; Senna, C.A.; Vasconcelos, T.L.; Archanjo, B.S.; Achete, C.A.; Abed-Esfahani, A.; Molera, J. Flashed copper and silver luster nano-structures: Characterization and technology. Ceram. Int. 2016, 42, 7757–7766. [Google Scholar] [CrossRef]
- Roque, J.; Molera, J.; Sciau, P.; Pantos, E.; Vendrell-Saz, M. Copper and silver nanocrystals in lustre lead glazes: Development and optical properties. J. Eur. Ceram. Soc. 2006, 26, 3813–3824. [Google Scholar] [CrossRef]
- Pradell, T.; Fernandes, R.; Molina, G.; Smith, A.D.; Molera, J.; Climent-Font, A.; Tite, M.S. Technology of production of Syrian lustre (11th to 13th century). J. Eur. Ceram. Soc. 2018, 38, 2716–2727. [Google Scholar] [CrossRef]
- Hainschwang, T.; Notari, F. The cause of iridescence in rainbow andradite from Nara: Japan. Gems Gemol. 2006, 42, 248–258. [Google Scholar] [CrossRef]
- Fu, J.; Peng, Y.; Tian, X. Pigments Having Angle Dependence of the Interference Colors and Its Production Process. U.S. Patent US8066811B2, 29 November 2011. [Google Scholar]
- Tena, M.A.; Meseguer, S.; Gargori, C.; Forés, A.; Badenes, J.A.; Monrós, G. Study of Cr-SnO2 ceramic pigment and of Ti/Sn ratio on formation and coloration of these materials. J. Eur. Ceram. Soc. 2007, 27, 215–221. [Google Scholar] [CrossRef]
- Cannio, M.; Bondioli, F. Mechanical activation of raw materials in the synthesis of Fe2O3–ZrSiO4 inclusion pigment. J. Eur. Ceram. Soc. 2012, 32, 643–647. [Google Scholar] [CrossRef]
- Shen, Z.; Liu, L.; Xu, X.; Zhao, J.; Eriksson, M.; Zhong, Y.; Adolfsson, E.; Liu, Y.; Kocjan, A. Fractography of self-glazed zirconia with improved reliability. J. Eur. Ceram. Soc. 2017, 37, 4339–4345. [Google Scholar] [CrossRef]
- Cabrera, M.J.; Montins, V.; Solsona, D.; Sala, J.M. Obtención de efectos físico-ópticos para la decoración de baldosas cerámicas. Bol. Soc. Española Cerám. Vidrio 2012, 51, IX–XVI. [Google Scholar] [CrossRef]
- Liu, C.; Yen, M.; Han, A.; Li, J. Structural analysis and characterization of doped spinel Co2_xMxTiO4 (M = Mg2+, Mn2+, Ni2+, Cu2+ and Zn2+) coated mica composite pigments. Ceram. Int. 2015, 41, 5537–5546. [Google Scholar] [CrossRef]
- Jing, Ch.; Xiaobo, S.; Bing, H. The preparation and characteristics of cobalt blue colored mica titania pearlescent pigments by microemulsions. Dyes Pigments 2007, 75, 766–769. [Google Scholar] [CrossRef]
- Bayat, N.; Baghshahi, S.; Alizadeh, P. Synthesis of white pearlescent pigments using the surface response method of statistical analysis. Ceram. Int. 2008, 34, 2029–2035. [Google Scholar] [CrossRef]
- Ryu, Y.C.; Kim, T.G.; Seo, G.S.; Park, J.H.; Suh, C.S.; Park, S.S.; Hong, S.S.; Lee, G.D. Effect of substrate on the phase transformation of TiO2 in pearlescent pigment. J. Ind. Eng. Chem. 2008, 14, 213–218. [Google Scholar] [CrossRef]
- Tenório Cavalcante, P.M.; Dondi, M.; Guarini, G.; Barros, F.M.; Da Luz, A.B. Ceramic application of mica titania pearlescent pigments. Dyes Pigments 2007, 74, 1–7. [Google Scholar] [CrossRef]
- Bertaux, S.; Reynders, P.; Heintz, J.M. Sintering of nanocrystalline Ta2O5 and ZrO2 films compared to that of TiO2 films. J. Eur. Ceram. Soc. 2006, 26, 923–932. [Google Scholar] [CrossRef]
- Siligardi, C.; Montecchi, M.; Montorsi, M.; Pasquali, L. Ceria-Containing Frit for Luster in Modern Ceramic Glaze. J. Am. Ceram. Soc. 2010, 93, 2545–2550. [Google Scholar] [CrossRef]
- Gualtieri, A.F.; Canovi, L.; Viani, A.; Bertocchi, P.; Corradini, C.; Lassinantti Gualtieri, M.; Gazzadi, G.C.; Zapparoli, M.; Berthierf, S. Mechanism of lustre formation in scheelite-based glazes. J. Eur. Ceram. Soc. 2013, 33, 2055–2064. [Google Scholar] [CrossRef]
- Dondi, M.; Zanelli, C.; Ardit, M.; Cruciani, G.; Mantovani, L.; Tribaudino, M.; Andreozzi, G.B. Ni-free, black ceramic pigments based on Co—Cr—Fe—Mn spinels: A reappraisal of crystal structure, colour and technological behaviour. Ceram. Int. 2013, 39, 9533–9547. [Google Scholar] [CrossRef]
- He, X.; Wang, F.; Liu, H.; Niu, L.; Wang, X. Synthesis and color properties of the TiO2@CoAl2O4 blue pigments with low cobalt content applied in ceramic glaze. J. Am. Ceram. Soc. 2018, 101, 2578–2588. [Google Scholar] [CrossRef]
- Chen, S.; Cheng, M.; Lang, Y.; Wei, H.; Wang, C. Synthesis and chromatic properties of zircon encapsulated ceramic black pigment with carbon sphere as carbon source. J. Eur. Ceram. Soc. 2018, 38, 2218–2227. [Google Scholar] [CrossRef]
- Romero, M.; Rincón, J.M. Surface and Bulk Crystallization of Glass-Ceramic in the Na2O–CaO–ZnO–PbO–Fe2O3–Al2O3–SiO2 System Derived from a Goethite Waste. J. Am. Ceram. Soc. 1999, 82, 1313–1317. [Google Scholar] [CrossRef]
- Colomban, P. Secrets retrouvés du Lustre Abbasside. Rev. Céram. Verre 2004, 139, 13–19. [Google Scholar]
- Nebot-Díaz, I. Nuevas Tecnologías para el Sector Cerámico de Castellón: Desarrollo de Esmaltes Vitrocristalinos y Vitrocerámicos; Universitat Jaume I: Castellón, Spain, 2001. [Google Scholar]
- Pastor, J.Y.; Poza, P.; LLorca, J.; Peña, J.I.; Merino, R.I.; Orera, V.M. Mechanical properties of directionally solidified Al2O3–ZrO2(Y2O3) eutectics. Mater. Sci. Eng. 2001, 308, 241–249. [Google Scholar] [CrossRef]
- Peña, J.I.; Merino, R.I.; de la Fuente, G.F.; Orera, V.M. Aligned ZrO2(c)-CaZrO3 eutectics grown by the laser floating zone method: Electrical and optical properties. Adv. Mater. 1996, 8, 909–912. [Google Scholar] [CrossRef]
- Merino, R.I. Cerámicas eutécticas solidificadas direccionalmente para fotónica y electrocerámica. Rev. Real Acad. Cienc. 2006, 61, 47–86. [Google Scholar]
- Montins Nebot, V.; Cabrera Ibáñez, M.J.; Solsona Monzonis, D.; Sala Iniesta, J.M. Petitioner: Vidres S.A. Coating for Ceramic Bodies. Patent Application nº. 201230096, 29 July 2013. [Google Scholar]
- Vielhaber, L. Tecnología de los Esmaltes; Editorial Reverté: Barcelona, Spain, 1961. [Google Scholar]
- Echarri Iribarren, V.; González Avilés, A.B.; Ródenas, M.; Olivares, J. Cerámica y vibración de la luz. Nuevas técnicas de nacarado e irisado y caracterización colorimétrica. Inform. Constr. 2016, 68, 5–67. [Google Scholar] [CrossRef]
- AENOR-CEN. UNE-EN ISO 10545-3 <0.5%. Baldosas Cerámicas. Parte 3: Determinación de la Absorción de Agua, de la Porosidad Abierta, de la Densidad Relativa Aparente, y de la Densidad Aparente; ISO 10545-3:1995, Incluye CORRIGENDUM Técnico 1:1997; Asociación Española de Normalización (AENOR): Madrid, Spain, 1997. [Google Scholar]
- AENOR-CEN. UNE-EN ISO 10545-4. Baldosas Cerámicas. Parte 4: Determinación de la Resistencia a la Flexión y de la Fuerza de Rotura; ISO 10545-4:2004; Asociación Española de Normalización (AENOR): Madrid, Spain, 2009. [Google Scholar]
- AENOR-CEN. UNE-EN ISO 10545-7. Baldosas Cerámicas. Parte 7: Determinación de la Resistencia a la Abrasión Superficial de las Baldosas Esmaltadas; ISO 10545-7:1996; Asociación Española de Normalización (AENOR): Madrid, Spain, 1999. [Google Scholar]
- AENOR-CEN. UNE-EN ISO 10545-12. Baldosas Cerámicas. Parte 12: DETERMINACIÓN de la Resistencia a la Helada; ISO 10545-12:1995, Incluye Corrigendum Técnico 1:1997; Asociación Española de Normalización (AENOR): Madrid, Spain, 1997. [Google Scholar]
- AENOR-CEN. UNE-EN ISO 10545-13. Baldosas Cerámicas. Parte 13: Determinación de la Resistencia Química; ISO 10545-13:1995; Asociación Española de Normalización (AENOR): Madrid, Spain, 1998. [Google Scholar]
- AENOR-CEN. ISO 10545-9. Baldosas Cerámicas. Parte 9: Determinación de la Resistencia al Choque Térmico; ISO 10545-9:1994; Asociación Española de Normalización (AENOR): Madrid, Spain, 1997. [Google Scholar]
- ASTM E2194-14, Standard Test Method for Multiangle Color Measurement of Metal Flake Pigmented Materials; ASTM International: West Conshohocken, PA, USA, 2014.
- Klein, G.A. Industrial Color Physics; Springer: New York, NY, USA, 2010. [Google Scholar]
- Chorro, E.; Perales, E.; Burgos, F.J.; Gómez, O.; Vilaseca, M.; Viqueira, V.; Pujol, J.; Martínez-Verdú, F.M. The minimum number of measurements for colour, sparkle, and graininess characterisation in gonio-apparent panels. Color. Technol. 2015, 131, 303–309. [Google Scholar] [CrossRef] [Green Version]
- Ferrero, A.; Perales, E.; Rabal, A.; Campos, J.; Martínez-Verdú, F.M.; Chorro, E.; Pons, A. Color representation and interpretation of special effect coatings. J. Opt. Soc. Am. 2014, 32, 436–447. [Google Scholar] [CrossRef]
Norm. C [wt.%] | |||||
---|---|---|---|---|---|
SAMPLE 1 Profile | SAMPLE 2 Glaze | SAMPLE 3 Hidden Face (A) | SAMPLE 3 Hidden Face (B) | SAMPLE 4 Interior | |
C | 14.18 | 4.55 | |||
O | 52.55 | 47.32 | 52.16 | 50.09 | 51.04 |
F | 0.41 | ||||
Mg | 0.63 | 0.30 | 0.55 | 0.56 | 0.99 |
Al | 3.83 | 4.48 | 15.21 | 12.90 | 16.85 |
Si | 16.79 | 25.37 | 24.77 | 25.86 | 27.34 |
K | 1.36 | 2.73 | 1.99 | 2.11 | 1.74 |
Ca | 4.79 | 4.37 | 0.76 | 1.41 | 0.25 |
Ti | 0.50 | 0.40 | 0.64 | ||
Fe | 0.97 | 0.88 | 1.15 | ||
Zn | 1.21 | 1.02 | 0.13 | 0.38 | |
Zr | 4.66 | 9.15 | 2.97 | 5.01 | |
TOTAL | 100% | 100% | 100% | 100% | 100% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Echarri-Iribarren, V.; González-Avilés, Á.B.; Viqueira-Pérez, V. Iridescent Techniques in Ceramics: Physico-Chemical Analysis and Colorimetric Characterization of the Headquarters of the Botín Foundation in Santander. Appl. Sci. 2019, 9, 1521. https://doi.org/10.3390/app9081521
Echarri-Iribarren V, González-Avilés ÁB, Viqueira-Pérez V. Iridescent Techniques in Ceramics: Physico-Chemical Analysis and Colorimetric Characterization of the Headquarters of the Botín Foundation in Santander. Applied Sciences. 2019; 9(8):1521. https://doi.org/10.3390/app9081521
Chicago/Turabian StyleEcharri-Iribarren, Víctor, Ángel B. González-Avilés, and Valentín Viqueira-Pérez. 2019. "Iridescent Techniques in Ceramics: Physico-Chemical Analysis and Colorimetric Characterization of the Headquarters of the Botín Foundation in Santander" Applied Sciences 9, no. 8: 1521. https://doi.org/10.3390/app9081521
APA StyleEcharri-Iribarren, V., González-Avilés, Á. B., & Viqueira-Pérez, V. (2019). Iridescent Techniques in Ceramics: Physico-Chemical Analysis and Colorimetric Characterization of the Headquarters of the Botín Foundation in Santander. Applied Sciences, 9(8), 1521. https://doi.org/10.3390/app9081521