Gamma-Band Modulation in Parietal Area as the Electroencephalographic Signature for Performance in Auditory–Verbal Working Memory: An Exploratory Pilot Study in Hearing and Unilateral Cochlear Implant Children
Abstract
:1. Introduction
The Aim
2. Materials and Methods
2.1. Participants and Ethics Statement
2.2. Overview of Experimental Design and Procedure
2.3. Behavioral Measures
2.4. EEG Recording and Signal Processing
2.5. Statistical Analysis
3. Results
3.1. Behavioral Results
3.2. Neurophysiological Results
4. Discussion
4.1. Behavioral Results
4.2. Neurophysiological Results
4.2.1. Workload Index
4.2.2. Theta
4.2.3. Gamma
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABR | Auditory Brainstem Response |
ACC | Accuracy |
ANOVA | Analysis of Variance |
AOI(s) | Area of Interest(s) |
AUD | Audio |
CIs | Cochlear Implants |
CRs | Correct Responses |
DHH | Deaf and Hard-of-Hearing |
EEG | Electroencephalogram/Electroencephalography |
EFs | Executive Functions |
fMRI | Functional Magnetic Resonance Imaging |
HC(s) | Hearing Control(s) |
Hz | hertz |
IAF | Individual Alpha Frequency |
IES | Inverse Efficiency Score |
ISI | Interstimulus Interval |
m | media |
ms | millisecond |
PA | Parietal Area |
PE | Proportion of Errors |
PFC | Prefrontal Cortex |
PET | Positron Emission Tomography |
PSD | Power Spectral Density |
RPM | Raven’s standard Progressive Matrices |
RTs | Reaction Times |
SD | Standard Deviation |
SM | Sensory Modality |
SOC | Superior Olivary Complex |
UCIs | Unilateral Cochlear Implant Users |
VIS | Visual |
WISC V | Wechsler Intelligence Scale for Children Fifth Edition |
VWM | Verbal Working Memory |
WI | Workload Index |
WL | Mental Workload |
WM | Working Memory |
References
- Benasich, A.A.; Thomas, J.J.; Choudhury, N.; Leppänen, P.H. The importance of rapid auditory processing abilities to early language development: Evidence from converging methodologies. Dev. Psychobiol. 2002, 40, 278–292. [Google Scholar] [CrossRef]
- Houston, D.; Chen, C.; Monroy, C.; Castellanos, I. How early auditory experience affects children’s ability to learn spoken words. In The Oxford Handbook of Deaf Studies in Learning and Cognition; Oxford University Press: Oxford, UK, 2020; pp. 122–137. [Google Scholar]
- Mueller, J.L.; Friederici, A.D.; Männel, C. Auditory perception at the root of language learning. Proc. Natl. Acad. Sci. USA 2012, 109, 15953–15958. [Google Scholar] [CrossRef]
- Moeller, M.P. Early intervention and language development in children who are deaf and hard of hearing. Pediatrics 2000, 106, e43. [Google Scholar] [CrossRef]
- Shojaei, E.; Jafari, Z.; Gholami, M. Effect of Early Intervention on Language Development in Hearing-Impaired Children. Iran. J. Otorhinolaryngol. 2016, 28, 13–21. [Google Scholar]
- Chapman, R.S. Children’s language learning: An interactionist perspective. J. Child Psychol. Psychiatry Allied Discip. 2000, 41, 33–54. [Google Scholar] [CrossRef] [PubMed]
- Geers, A.E.; Nicholas, J.G. Enduring advantages of early cochlear implantation for spoken language development. J. Speech Lang. Hear. Res. 2013, 56, 643–655. [Google Scholar] [CrossRef]
- Kronenberger, W.G.; Henning, S.C.; Ditmars, A.M.; Pisoni, D.B. Language processing fluency and verbal working memory in prelingually deaf long-term cochlear implant users: A pilot study. Cochlear Implant. Int. 2018, 19, 312–323. [Google Scholar] [CrossRef]
- Sharma, S.D.; Cushing, S.L.; Papsin, B.C.; Gordon, K.A. Hearing and speech benefits of cochlear implantation in children: A review of the literature. Int. J. Pediatric Otorhinolaryngol. 2020, 133, 109984. [Google Scholar] [CrossRef]
- Tamati, T.N.; Pisoni, D.B.; Moberly, A.C. Speech and Language Outcomes in Adults and Children with Cochlear Implants. Annu. Rev. Linguist. 2022, 8, 299–319. [Google Scholar] [CrossRef]
- Kirk, K.; Pisoni, D.B.; Miyamoto, R.T. Lexical discrimination by children with cochlear implants: Effects of age at implantation and communication mode. In Cochlear Implants; Waltzman, S.B., Cohen, N., Eds.; Thieme: New York, NY, USA, 2000; pp. 252–254. [Google Scholar]
- Niparko, J.K.; Tobey, E.A.; Thal, D.J.; Eisenberg, L.S.; Wang, N.-Y.; Quittner, A.L.; Fink, N.E.; CDaCI Investigative Team. Spoken language development in children following cochlear implantation. JAMA 2010, 303, 1498–1506. [Google Scholar] [CrossRef]
- Pisoni, D.B.; Conway, C.M.; Kronenberger, W.G.; Horn, D.L.; Karpicke, J.; Henning, S.C. Efficacy and effectiveness of cochlear implants in deaf children. In Research on Spoken Language Processing; Progress Report No. 28; Indiana University Deaf cognition: Foundations and Outcomes; Oxford Academic: Oxford, UK, 2008; pp. 52–101. [Google Scholar] [CrossRef] [Green Version]
- Kronenberger, W.G.; Pisoni, D.B.; Henning, S.C.; Colson, B.G. Executive functioning skills in long-term users of cochlear implants: A case control study. J. Pediatric Psychol. 2013, 38, 902–914. [Google Scholar] [CrossRef]
- Kronenberger, W.G.; Pisoni, D.B. Why are children with cochlear implants at risk for executive functioning delays: Language only or something more. In The Oxford Handbook of Deaf Studies in Learning and Cognition; Marschark, M., Knoors, H., Eds.; Oxford University Press: Oxford, UK, 2020; p. 248. [Google Scholar]
- MacPherson, S.E.; Gillebert, C.R.; Robinson, G.A.; Vallesi, A. Intra-and inter-individual variability of executive functions: Determinant and modulating factors in healthy and pathological conditions. Front. Psychol. 2019, 10, 432. [Google Scholar] [CrossRef]
- Miller, E.K.; Cohen, J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 2001, 24, 167–202. [Google Scholar] [CrossRef]
- Viviani, G.; Vallesi, A. EEG-neurofeedback and executive function enhancement in healthy adults: A systematic review. Psychophysiology 2021, 58, e13874. [Google Scholar] [CrossRef]
- Schwering, S.C.; MacDonald, M.C. Verbal working memory as emergent from language comprehension and production. Front. Hum. Neurosci. 2020, 14, 68. [Google Scholar] [CrossRef]
- Kronenberger, W.G.; Colson, B.G.; Henning, S.; Pisoni, D.B. Executive functioning and speechlanguage skills following long-term use of cochlear implants. J. Deaf. Stud. Deaf. Educ. 2014, 19, 456–470. [Google Scholar] [CrossRef]
- Kronenberger, W.G.; Pisoni, D.B.; Henning, S.C.; Colson, B.G.; Hazzard, L.M. Working memory training for children with cochlear implants: A pilot study. J. Speech Lang. Hear. Res. 2011, 54, 1182–1196. [Google Scholar] [CrossRef]
- Nittrouer, S.; Caldwell-Tarr, A.; Lowenstein, J.H. Working memory in children with cochlear implants: Problems are in storage, not processing. Int. J. Pediatric Otorhinolaryngol. 2013, 77, 1886–1898. [Google Scholar] [CrossRef]
- Pisoni, D.; Kronenberger, W.; Roman, A.; Geers, A. Measures of digit span and verbal rehearsal speed in deaf children following more than 10 years of cochlear implantation. Ear Hear. 2011, 32, 60s. [Google Scholar] [CrossRef]
- Romano, D.R.; Kronenberger, W.G.; Henning, S.C.; Montgomery, C.J.; Ditmars, A.M.; Johnson, C.A.; Pisoni, D.B. Verbal Working Memory Error Patterns and Speech-Language Outcomes in Youth With Cochlear Implants. J. Speech Lang. Hear. Res. 2021, 64, 4949–4963. [Google Scholar] [CrossRef]
- AuBuchon, A.M.; Pisoni, D.B.; Kronenberger, W.G. Short-term and working memory impairments in early implanted, long-term cochlear implant users are independent of audibility and speech production. Ear Hear. 2015, 36, 733–737. [Google Scholar] [CrossRef] [PubMed]
- Pisoni, D.B.; Cleary, M. Measures of working memory span and verbal rehearsal speed in deaf children after cochlear implantation. Ear Hear. 2003, 24 (Suppl. 1), 106S. [Google Scholar] [CrossRef] [PubMed]
- Di Stadio, A.; Dipietro, L.; De Lucia, A.; Ippolito, V.; Ishai, R.; Garofalo, S. A Novel Bone Conduction Hearing System May Improve Memory Function in Children with Single Side Hearing loss: A Case-Control Study. J. Int. Adv. Otol. 2020, 16, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Inguscio, B.M.S.; Cartocci, G.; Sciaraffa, N.; Nasta, C.; Giorgi, A.; Nicastri, M.; Mancini, P. Neurophysiological Verbal Working Memory Patterns in Children: Searching for a Benchmark of Modality Differences in Audio/Video Stimuli Processing. Comput. Intell. Neurosci. 2021, 2021, 4158580. [Google Scholar] [CrossRef]
- Kotak, V.C.; Breithaupt, A.D.; Sanes, D.H. Developmental hearing loss eliminates long-term potentiation in the auditory cortex. Proc. Natl. Acad. Sci. USA 2007, 104, 3550–3555. [Google Scholar] [CrossRef] [PubMed]
- Butler, B.E.; Lomber, S.G. Functional and structural changes throughout the auditory system following congenital and early-onset deafness: Implications for hearing restoration. Front. Syst. Neurosci. 2013, 7, 92. [Google Scholar] [CrossRef]
- Kral, A.; Eggermont, J.J. What’s to lose and what’s to learn: Development under auditory deprivation, cochlear implants and limits of cortical plasticity. Brain Res. Rev. 2007, 56, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Smieja, D.A.; Dunkley, B.T.; Papsin, B.C.; Easwar, V.; Yamazaki, H.; Deighton, M.; Gordon, K.A. Interhemispheric auditory connectivity requires normal access to sound in both ears during development. NeuroImage 2020, 208, 116455. [Google Scholar] [CrossRef] [PubMed]
- Wouters, J.; McDermott, H.J.; Francart, T. Sound coding in cochlear implants: From electric pulses to hearing. IEEE Signal Processing Mag. 2015, 32, 67–80. [Google Scholar] [CrossRef]
- Kral, A.; Sharma, A. Developmental neuroplasticity after cochlear implantation. Trends Neurosci. 2012, 35, 111–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finney, E.M.; Fine, I.; Dobkins, K.R. Visual stimuli activate auditory cortex in the deaf. Nat. Neurosci. 2001, 4, 1171–1173. [Google Scholar] [CrossRef] [PubMed]
- Stropahl, M.; Chen, L.C.; Debener, S. Cortical reorganization in postlingually deaf cochlear implant users: Intra-modal and cross-modal considerations. Hear. Res. 2017, 343, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Song, J.J.; Lee, H.J.; Kang, H.; Lee, D.S.; Chang, S.O.; Oh, S.H. Effects of congruent and incongruent visual cues on speech perception and brain activity in cochlear implant users. Brain Struct. Funct. 2015, 220, 1109–1125. [Google Scholar] [CrossRef] [PubMed]
- Rouger, J.; Lagleyre, S.; Démonet, J.F.; Fraysse, B.; Deguine, O.; Barone, P. Evolution of crossmodal reorganization of the voice area in cochlear-implanted deaf patients. Hum. Brain Mapp. 2012, 33, 1929–1940. [Google Scholar] [CrossRef]
- Ding, H.; Qin, W.; Liang, M.; Ming, D.; Wan, B.; Li, Q.; Yu, C. Cross-modal activation of auditory regions during visuo-spatial working memory in early deafness. Brain 2015, 138, 2750–2765. [Google Scholar] [CrossRef]
- Emch, M.; von Bastian, C.C.; Koch, K. Neural correlates of verbal working memory: An fMRI meta-analysis. Front. Hum. Neurosci. 2019, 13, 180. [Google Scholar] [CrossRef]
- Smith, E.E.; Jonides, J.; Koeppe, R.A. Dissociating verbal and spatial working memory using PET. Cereb. Cortex 1996, 6, 11–20. [Google Scholar] [CrossRef]
- Biasiucci, A.; Franceschiello, B.; Murray, M.M. Electroencephalography. Curr. Biol. 2019, 29, R80–R85. [Google Scholar] [CrossRef]
- Di Flumeri, G.; Aricò, P.; Borghini, G.; Sciaraffa, N.; Di Florio, A.; Babiloni, F. The dry revolution: Evaluation of three different EEG dry electrode types in terms of signal spectral features, mental states classification and usability. Sensors 2019, 19, 1365. [Google Scholar] [CrossRef]
- Maglione, A.G.; Cartocci, G.; Modica, E.; Rossi, D.; Colosimo, A.; Di Flumeri, G.; Babiloni, F. Evaluation of different cochlear implants in unilateral hearing patients during word listening tasks: A brain connectivity study. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Korea, 11–15 July 2017; pp. 2470–2473. [Google Scholar] [CrossRef]
- Cartocci, G.; Giorgi, A.; Inguscio, B.; Scorpecci, A.; Giannantonio, S.; De Lucia, A.; Babiloni, F. Higher right hemisphere gamma band lateralization and suggestion of a sensitive period for vocal auditory emotional stimuli recognition in unilateral cochlear implant children: An EEG study. Front. Neurosci. 2021, 15, 149. [Google Scholar] [CrossRef]
- Cartocci, G.; Maglione, A.G.; Vecchiato, G.; Di Flumeri, G.; Colosimo, A.; Scorpecci, A.; Babiloni, F. Mental workload estimations in unilateral deafened children. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; 2015; pp. 1654–1657. [Google Scholar] [CrossRef]
- Marsella, P.; Scorpecci, A.; Cartocci, G.; Giannantonio, S.; Maglione, A.G.; Venuti, I.; Babiloni, F. EEG activity as an objective measure of cognitive load during effortful listening: A study on pediatric subjects with bilateral, asymmetric sensorineural hearing loss. Int. J. Pediatric Otorhinolaryngol. 2017, 99, 1–7. [Google Scholar] [CrossRef]
- Prince, P.; Paul, B.T.; Chen, J.; Le, T.; Lin, V.; Dimitrijevic, A. Neural correlates of visual stimulus encoding and verbal working memory differ between cochlear implant users and normal-hearing controls. Eur. J. Neurosci. 2021, 54, 5016–5037. [Google Scholar] [CrossRef] [PubMed]
- Cartocci, G.; Scorpecci, A.; Borghini, G.; Maglione, A.G.; Inguscio, B.M.S.; Giannantonio, S.; Babiloni, F. EEG rhythms lateralization patterns in children with unilateral hearing loss are different from the patterns of normal hearing controls during speech-in-noise listening. Hear. Res. 2019, 379, 31–42. [Google Scholar] [CrossRef]
- Pichora-Fuller, M.K.; Kramer, S.E.; Eckert, M.A.; Edwards, B.; Hornsby, B.W.; Humes, L.E.; Wingfield, A. Hearing impairment and cognitive energy: The framework for understanding effortful listening (FUEL). Ear Hear. 2016, 37, 5S–27S. [Google Scholar] [CrossRef] [PubMed]
- Rudner, M.; Rönnberg, J.; Lunner, T. Working memory supports listening in noise for persons with hearing impairment. J. Am. Acad. Audiol. 2011, 22, 156–167. [Google Scholar] [CrossRef]
- Peelle, J.E. Listening effort: How the cognitive consequences of acoustic challenge are reflected in brain and behavior. Ear Hear. 2019, 39, 204. [Google Scholar] [CrossRef] [PubMed]
- Heinrichs-Graham, E.; Walker, E.A.; Eastman, J.A.; Frenzel, M.R.; McCreery, R.W. Amount of hearing aid use impacts neural oscillatory dynamics underlying verbal working memory processing for children with hearing loss. Ear Hear. 2022, 43, 408–419. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioural, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Hertzog, M.A. Considerations in determining sample size for pilot studies. Res. Nurs. Health 2008, 31, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Pelegrina, S.; Lechuga, M.T.; García-Madruga, J.A.; Elosúa, M.R.; Macizo, P.; Carreiras, M.; Bajo, M.T. Normative data on the n-back task for children and young adolescents. Front. Psychol. 2015, 6, 1544. [Google Scholar] [CrossRef]
- Yaple, Z.; Arsalidou, M. N-back working memory task: Meta-analysis of normative fMRI studies with children. Child Dev. 2018, 89, 2010–2022. [Google Scholar] [CrossRef]
- Raven, J.C. ; John Hugh Court. Raven’s Progressive Matrices and Vocabulary Scales; Oxford Psychologists Press: Oxford, UK, 1998; Volume 759. [Google Scholar]
- Lux, S.; Keller, S.; Mackay, C.; Ebers, G.; Marshall, J.C.; Cherkas, L.; Gurd, J.M. Crossed cerebral lateralization for verbal and visuo-spatial function in a pair of handedness discordant monozygotic twins: MRI and fMRI brain imaging. J. Anat. 2008, 212, 235–248. [Google Scholar] [CrossRef]
- Kirchner, W.K. Age differences in short-term retention of rapidly changing information. J. Exp. Psychol. 1958, 55, 352. [Google Scholar] [CrossRef]
- Jaeggi, S.M.; Buschkuehl, M.; Etienne, A.; Ozdoba, C.; Perrig, W.J.; Nirkko, A.C. On how high performers keep cool brains in situations of cognitive overload. Cogn. Affect. Behav. Neurosci. 2007, 7, 75–89. [Google Scholar] [CrossRef]
- Jaeggi, S.M.; Buschkuehl, M.; Jonides, J.; Perrig, W.J. Improving fluid intelligence with training on working memory. In Proceedings of the National Academy of Sciences, New York, NY, USA, 13 May 2008; Volume 105, pp. 6829–6833. [Google Scholar] [CrossRef]
- Jaeggi, S.M.; Schmid, C.; Buschkuehl, M.; Perrig, W.J. Differential age effects in load-dependent memory processing. Neuropsychol. Dev. Cognition. Sect. B Aging Neuropsychol. Cogn. 2009, 16, 80–102. [Google Scholar] [CrossRef]
- Jaeggi, S.M.; Buschkuehl, M.; Perrig, W.J.; Meier, B. The concurrent validity of the N-back task as a working memory measure. Memory 2010, 18, 394–412. [Google Scholar] [CrossRef]
- Grimes, D.; Tan, D.S.; Hudson, S.E.; Shenoy, P.; Rao, R.P. Feasibility and pragmatics of classifying working memory load with an electroencephalograph. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Florence, Italy, 5–10 April 2008; pp. 835–844. [Google Scholar] [CrossRef]
- Vandierendonck, A. A comparison of methods to combine speed and accuracy measures of performance: A rejoinder on the binning procedure. Behav. Res. Methods 2017, 49, 653–673. [Google Scholar] [CrossRef]
- Di Flumeri, G.; Aricò, P.; Borghini, G.; Colosimo, A.; Babiloni, F. A new regression-based method for the eye blinks artifacts correction in the EEG signal, without using any EOG channel. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 3187–3190. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef]
- Elul, R. Gaussian behavior of the electroencephalogram: Changes during performance of mental task. Science 1969, 164, 328–331. [Google Scholar] [CrossRef]
- Inguscio, B.M.S.; Mancini, P.; Greco, A.; Nicastri, M.; Giallini, I.; Leone, C.A.; Cartocci, G. ‘Musical effort’and ‘musical pleasantness’: A pilot study on the neurophysiological correlates of classical music listening in adults normal hearing and unilateral cochlear implant users. Hear. Balance Commun. 2022, 20, 79–88. [Google Scholar] [CrossRef]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Welch, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef]
- Cohen, M.X. Analyzing Neural Time Series Data: Theory and Practice; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Shapiro, S.S. Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Friedman, M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 1973, 32, 675–701. [Google Scholar] [CrossRef]
- Duncan, D.B. Multiple range and multiple F tests. Biometrics 1955, 11, 1–41. [Google Scholar] [CrossRef]
- Cohen, J. Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educ. Psychol. Meas. 1973, 33, 107–112. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Erlbaum: Hillsdale, NJ, USA, 1988; pp. 20–26. [Google Scholar]
- Zar, J. Biostatistical Analysis; Prentice Hall: New York, NY, USA, 2000. [Google Scholar]
- Fisher, R.A. Statistical Methods and Scientific Inference; Hafner Publishing, Co.: Cleveland, OH, USA, 1956. [Google Scholar]
- Pesonen, M.; Hämäläinen, H.; Krause, C.M. Brain oscillatory 4–30 Hz responses during a visual n-back memory task with varying memory load. Brain. Res. 2007, 1138, 171–177. [Google Scholar] [CrossRef]
- Palomäki, J.; Kivikangas, M.; Alafuzoff, A.; Hakala, T.; Krause, C.M. Brain oscillatory 4–35 Hz EEG responses during an n-back task with complex visual stimuli. Neurosci. Lett. 2012, 516, 141–145. [Google Scholar] [CrossRef]
- AuBuchon, A.M.; Pisoni, D.B.; Kronenberger, W.G. Evaluating Pediatric Cochlear Implant Users’ Encoding, Storage, and Retrieval Strategies in Verbal Working Memory. J. Speech Lang. Hear. Res. JSLHR 2019, 62, 1016–1032. [Google Scholar] [CrossRef]
- Aricò, P.; Reynal, M.; Di Flumeri, G.; Borghini, G.; Sciaraffa, N.; Imbert, J.P.; Babiloni, F. How neurophysiological measures can be used to enhance the evaluation of remote tower solutions. Front. Hum. Neurosci. 2019, 13, 303. [Google Scholar] [CrossRef]
- Amon, M.J.; Bertenthal, B.I. Auditory Versus Visual Stimulus Effects on Cognitive Performance During the N-back Task. In CogSci. 2018. Available online: https://dcnlab.sitehost.iu.edu/data/docs/Amon&Bertenthal%20Auditory%20versus%20visual%20stimulus%20effects%20on%20cognitive%20performance.pdf (accessed on 10 August 2022).
- Klingner, J.; Tversky, B.; Hanrahan, P. Effects of visual and verbal presentation on cognitive load in vigilance, memory, and arithmetic tasks. Psychophysiology 2011, 48, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Crottaz-Herbette, S.; Anagnoson, R.T.; Menon, V. Modality effects in verbal working memory: Differential prefrontal and parietal responses to auditory and visual stimuli. Neuroimage 2004, 21, 340–351. [Google Scholar] [CrossRef]
- Allen, R.J.; Baddeley, A.D.; Hitch, G.J. Is the binding of visual features in working memory resource-demanding? J. Exp. Psychol. Gen. 2006, 135, 298. [Google Scholar] [CrossRef] [PubMed]
- Maybery, M.T.; Clissa, P.J.; Parmentier, F.B.; Leung, D.; Harsa, G.; Fox, A.M.; Jones, D.M. Binding of verbal and spatial features in auditory working memory. J. Mem. Lang. 2009, 61, 112–133. [Google Scholar] [CrossRef]
- Treisman, A. Solutions to the binding problem: Progress through controversy and convergence. Neuron 1999, 24, 105–125. [Google Scholar] [CrossRef] [Green Version]
- Moberly, A.C.; Houston, D.M.; Harris, M.S.; Adunka, O.F.; Castellanos, I. Verbal working memory and inhibition-concentration in adults with cochlear implants. Laryngoscope Investig. Otolaryngol. 2017, 2, 254–261. [Google Scholar] [CrossRef]
- Nittrouer, S.; Caldwell-Tarr, A.; Low, K.E.; Lowenstein, J.H. Verbal working memory in children with cochlear implants. J. Speech Lang. Hear. Res. 2017, 60, 3342–3364. [Google Scholar] [CrossRef]
- Broadbent, D.E. Decision and Stress; Academic Press: Cambridge, MA, USA, London, UK, 1971. [Google Scholar]
- Chikhi, S.; Matton, N.; Blanchet, S. EEG power spectral measures of cognitive workload: A meta-analysis. Psychophysiology 2022, 59, e14009. [Google Scholar] [CrossRef]
- Young, M.S.; Brookhuis, K.A.; Wickens, C.D.; Hancock, P.A. State of science: Mental workload in ergonomics. Ergonomics 2015, 58, 1–17. [Google Scholar] [CrossRef]
- Gevins, A.S.; Smith, M.E.; Leong, H.M.; McEvoy, L.K.; Whitfield, S.L.; Du, R.; Rush, G. Monitoring Working Memory Load during Computer-Based Tasks with EEG Pattern Recognition Methods. Hum. Factors J. Hum. Factors Ergon. Soc. 1998, 40, 79–91. [Google Scholar] [CrossRef]
- Babiloni, C.; Babiloni, F.; Carducci, F.; Cappa, S.; Cincotti, F.; Del Percio, C.; Rossini, P.M. Human cortical EEG rhythms during long-term episodic memory task. A high-resolution EEG study of the HERA model. Neuroimage 2004, 21, 1576–1584. [Google Scholar] [CrossRef] [PubMed]
- So, W.K.Y.; Wong, S.W.H.; Mak, J.N.; Chan, R.H.M. An evaluation of mental workload with frontal EEG. PLoS ONE 2017, 12, e0174949. [Google Scholar] [CrossRef] [PubMed]
- Gevins, A.; Smith, M.E.; McEvoy, L.; Yu, D. High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cereb. Cortex 1997, 7, 374–385. [Google Scholar] [CrossRef]
- Smith, E.E.; Jonides, J. Storage and executive processes in the frontal lobes. Science 1999, 283, 1657–1661. [Google Scholar] [CrossRef] [PubMed]
- Jensen, O.; Tesche, C.D. Frontal theta activity in humans increases with memory load in a working memory task. Eur. J. Neurosci. 2002, 15, 1395–1399. [Google Scholar] [CrossRef] [PubMed]
- Gevins, A.; Smith, M.E. Neurophysiological measures of cognitive workload during human-computer interaction. Theor. Issues Ergon. Sci. 2003, 4, 113–131. [Google Scholar] [CrossRef]
- Jensen, O.; Kaiser, J.; Lachaux, J.-P. Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci 2007, 30, 317–324. [Google Scholar] [CrossRef]
- Sterman, M.B.; Mann, C.A.; Kaiser, D.A.; Suyenobu, B.Y. Multiband topographic EEG analysis of a simulated visuomotor aviation task. Int. J. Psychophysiol. 1994, 16, 49–56. [Google Scholar] [CrossRef]
- Wisniewski, M.G.; Iyer, N.; Thompson, E.R.; Simpson, B.D. Sustained frontal midline theta enhancements during effortful listening track working memory demands. Hear. Res. 2018, 358, 37–41. [Google Scholar] [CrossRef]
- Tervaniemi, M.; Hugdahl, K. Lateralization of auditory-cortex functions. Brain Res. Rev. 2003, 43, 231–246. [Google Scholar] [CrossRef]
- Witelson, S.F. Neuroanatomical Bases of Hemispheric Functional Specialization in the Human Brain: Possible Developmental Factors1. In Hemispheric Communication: Mechanisms and Models; Routledge: Oxfordshire, UK, 2020; pp. 61–84. [Google Scholar]
- Owen, A.M.; McMillan, K.M.; Laird, A.R.; Bullmore, E. N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Hum. Brain Mapp. 2005, 25, 46–59. [Google Scholar] [CrossRef] [PubMed]
- Nagel, B.J.; Herting, M.M.; Maxwell, B.A.; Bruno, R.; Fair, D. Hemisphlateralizationation of verbal and spatial working memory during adolescence. Brain Cogn. 2013, 82, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Zatorre, R.J.; Evans, A.C.; Meyer, E.; Gjedde, A. Lateralization of phonetic and pitch discrimination in speech processing. Science 1992, 256, 846–849. [Google Scholar] [CrossRef] [PubMed]
- Reuter-Lorenz, P.A.; Jonides, J.; Smith, E.E.; Hartley, A.; Miller, A.; Marshuetz, C.; Koeppe, R.A. Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. J. Cogn. Neurosci. 2000, 12, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Kral, A.; Dorman, M.F.; Wilson, B.S. Neuronal development of hearing and language: Cochlear implants and critical periods. Annu. Rev. Neurosci. 2019, 42, 47–65. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A. Dorman, M.F.; Kral, A. The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants. Hear. Res. 2005, 203, 134–143. [Google Scholar] [CrossRef]
- Bischof, H.J. Behavioral and neuronal aspects of developmental sensitive periods. Neuroreport 2007, 18, 461–465. [Google Scholar] [CrossRef]
- Gilley, P.M.; Sharma, A.; Dorman, M.F. Cortical reorganization in children with cochlear implants. Brain Res. 2008, 1239, 56–65. [Google Scholar] [CrossRef]
- Sharma, A.; Nash, A.A.; Dorman, M. Cortical development, plasticity, and re-organization in children with cochlear implants. J. Commun. Disord. 2009, 42, 272–279. [Google Scholar] [CrossRef]
- Martínez-Briones, B.J.; Bosch-Bayard, J.; Biscay-Lirio, R.J.; Silva-Pereyra, J.; Albarrán-Cárdenas, L.; Fernández, T. Effects of neurofeedback on the working memory of children with learning disorders—An EEG power-spectrum analysis. Brain Sci. 2021, 11, 957. [Google Scholar] [CrossRef]
- Heim, S.; Keil, A.; Choudhury, N.; Friedman, J.T.; Benasich, A.A. Early gamma oscillations during rapid auditory processing in children with a language-learning impairment: Changes in neural mass activity after training. Neuropsychologia 2013, 51, 990–1001. [Google Scholar] [CrossRef] [PubMed]
- Vanvooren, S.; Hofmann, M.; Poelmans, H.; Ghesquière, P.; Wouters, J. Theta, beta and gamma rate modulations in the developing auditory system. Hear. Res. 2015, 327, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Jokisch, D.; Jensen, O. Modulation of gamma and alpha activity during a working memory task engaging the dorsal or ventral stream. J. Neurosci. 2007, 27, 3244–3251. [Google Scholar] [CrossRef]
- Tallon-Baudry, C.; Bertrand, O.; Peronnet, F.; Pernier, J. Induced γ-band activity during the delay of a visual short-term memory task in humans. J. Neurosci. 1998, 18, 4244–4254. [Google Scholar] [CrossRef] [PubMed]
- Howard, M.W.; Rizzuto, D.S.; Caplan, J.B.; Madsen, J.R.; Lisman, J.; Aschenbrenner-Scheibe, R.; Kahana, M.J. Gamma oscillations correlate with working memory load in humans. Cereb. Cortex 2003, 13, 1369–1374. [Google Scholar] [CrossRef] [Green Version]
- Featherstone, R.E.; McMullen, M.F.; Ward, K.R.; Bang, J.; Xiao, J.; Siegel, S.J. EEG biomarkers of target engagement, therapeutic effect, and disease process. Ann. New York Acad. Sci. 2015, 1344, 12–26. [Google Scholar] [CrossRef]
- Colburn, H.S. Theory of binaural interaction based on auditory-nerve data. II. Detection of tones in noise. J. Acoust. Soc. Am. 1977, 61, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Baumann, S.; Griffiths, T.; Sun, L.; Petkov, C.; Thiele, A.; Rees, A. Orthogonal representation of sound dimensions in the primate midbrain. Nat. Neurosci. 2011, 14, 423–425. [Google Scholar] [CrossRef]
- Steel, M.M.; Papsin, B.C.; Gordon, K.A. Binaural Fusion and Listening Effort in Children Who Use Bilateral Cochlear Implants: A Psychoacoustic and Pupillometric Study. PLoS ONE 2015, 10, e0117611. [Google Scholar] [CrossRef]
- Illing, R.B.; Kraus, K.S.; Michler, S.A. Plasticity of the superior olivary complex. Microsc. Res. Tech. 2000, 51, 364–381. [Google Scholar] [CrossRef]
- Jirakittayakorn, N.; Wongsawat, Y. Brain responses to a 6-Hz binaural beat: Effects on general theta rhythm and frontal midline theta activity. Front. Neurosci. 2017, 11, 365. [Google Scholar] [CrossRef] [PubMed]
- Maslin, M.R.D.; Munro, K.J.; El-Deredy, W. Source analysis reveals plasticity in the auditory cortex: Evidence for reduced hemispheric asymmetries following unilateral deafness. Clin. Neurophysiol. 2013, 124, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H.; Lee, J.; Lee, H.J. Ear-specific hemispheric asymmetry in unilateral deafness revealed by auditory cortical activity. Front. Neurosci. 2021, 15, 960. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Bist, S.S.; Kumar, S. Age-Related Maturation of Wave V Latency of Auditory Brainstem Response in Children. J. Audiol. Otol. 2016, 20, 97–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Participants | Gender | Onset of Deafness | Degree | Aetiology | Current Age | Age at CI | Auditory Age |
---|---|---|---|---|---|---|---|
P1 | F | Congenital | Profound | Homozygous mutation of the connexin-26 gene | 12.00 | 2.90 | 9.09 |
P2 | F | Congenital | Profound | Homozygous mutation of the connexin-26 gene | 10.73 | 1.86 | 8.87 |
P3 | F | Congenital | Profound | Homozygous mutation of the connexin-26 gene | 11.49 | 1.41 | 10.07 |
P4 | F | Congenital | Profound | Homozygous mutation of the connexin-26 gene | 11.49 | 1.41 | 10.07 |
P5 | F | Congenital | Profound | Homozygous mutation of the connexin-26 gene | 11.14 | 1.16 | 9.97 |
P6 | M | Congenital | Profound | Usher syndrome | 11.58 | 0.79 | 10.78 |
P7 | F | Congenital | Profound | Unknown | 10.09 | 1.79 | 8.30 |
ACC (%) and IES (ms) for n-Back Task Conditions | ||||||||
---|---|---|---|---|---|---|---|---|
ACC Audio 0-back | ACC Audio 1-back | ACC Audio 2-back | IES Audio 0-back | IES Audio 1-back | IES Audio 2-back | |||
Groups | UCI | 97.62% | 82.65% | 75.17% | 559.83 | 814.71 | 1140.49 | |
HC | 97.67% | 86.67% | 86.20% | 660.45 | 830.72 | 1018.99 | ||
TOT | 97.06% | 85.01% | 81.66% | 619.02 | 824.13 | 1069.02 | ||
ACC Video 0-back | ACC Video 1-back | ACC Video 2-back | IES Video 0-back | IES Video 1-back | IES Video 2-back | |||
Groups | UCI | 94.90% | 81.29% | 80.61% | 447.78 | 875.87 | 894.68 | |
HC | 90.00% | 81.67% | 74.52% | 505.95 | 738.62 | 1079.56 | ||
TOT | 92.02% | 81.51% | 77.03% | 482.00 | 795.13 | 1003.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inguscio, B.M.S.; Cartocci, G.; Sciaraffa, N.; Nicastri, M.; Giallini, I.; Greco, A.; Babiloni, F.; Mancini, P. Gamma-Band Modulation in Parietal Area as the Electroencephalographic Signature for Performance in Auditory–Verbal Working Memory: An Exploratory Pilot Study in Hearing and Unilateral Cochlear Implant Children. Brain Sci. 2022, 12, 1291. https://doi.org/10.3390/brainsci12101291
Inguscio BMS, Cartocci G, Sciaraffa N, Nicastri M, Giallini I, Greco A, Babiloni F, Mancini P. Gamma-Band Modulation in Parietal Area as the Electroencephalographic Signature for Performance in Auditory–Verbal Working Memory: An Exploratory Pilot Study in Hearing and Unilateral Cochlear Implant Children. Brain Sciences. 2022; 12(10):1291. https://doi.org/10.3390/brainsci12101291
Chicago/Turabian StyleInguscio, Bianca Maria Serena, Giulia Cartocci, Nicolina Sciaraffa, Maria Nicastri, Ilaria Giallini, Antonio Greco, Fabio Babiloni, and Patrizia Mancini. 2022. "Gamma-Band Modulation in Parietal Area as the Electroencephalographic Signature for Performance in Auditory–Verbal Working Memory: An Exploratory Pilot Study in Hearing and Unilateral Cochlear Implant Children" Brain Sciences 12, no. 10: 1291. https://doi.org/10.3390/brainsci12101291
APA StyleInguscio, B. M. S., Cartocci, G., Sciaraffa, N., Nicastri, M., Giallini, I., Greco, A., Babiloni, F., & Mancini, P. (2022). Gamma-Band Modulation in Parietal Area as the Electroencephalographic Signature for Performance in Auditory–Verbal Working Memory: An Exploratory Pilot Study in Hearing and Unilateral Cochlear Implant Children. Brain Sciences, 12(10), 1291. https://doi.org/10.3390/brainsci12101291