Effects of Repetitive Transcranial Magnetic Stimulation on Gait and Postural Control Ability of Patients with Executive Dysfunction after Stroke
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Study Design
2.3. Assessments
2.4. Statistical Analysis
3. Results
3.1. Baseline Data
3.2. SCWT before and after Treatment
3.3. L-FMA Score before and after Treatment
3.4. MWT and BBS Scores before and after Treatment
3.5. TUGT Score before and after Treatment
3.6. Gait and Foot Plantar Pressure Parameters before and after Treatment
4. Discussion
5. Conclusions
6. Limitations and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, Q.; Zhou, T.; Li, W.; Dong, L.; Wang, S.; Zou, L. Single-trial EEG-informed fMRI analysis of emotional decision problems in hot executive function. Brain Behav. 2017, 7, e00728. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-X.; Wang, Z.-X.; Liu, C.-B.; Dai, P.; Lan, Y.; Xu, G.-Q. Effect of Cognitive Function on Balance and Posture Control after Stroke. Neural Plast. 2021, 2021, 28. [Google Scholar] [CrossRef] [PubMed]
- Sergeev, D.V.; Domashenko, M.A.; Piradov, M.A. Poststroke cognitive impairment and dementia. Meditsinskiy Sov. Med. Counc. 2016, 34–37. [Google Scholar] [CrossRef]
- Diekhoff-Krebs, S.; Pool, E.M.; Sarfeld, A.S.; Rehme, A.K.; Eickhoff, S.B.; Fink, G.R.; Grefkes, C. Interindividual differences in motor network connectivity and behavioral response to iTBS in stroke patients. Neuroimage Clin. 2017, 15, 559–571. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Barrios, K.; Lima, D.; Pimenta, D.; Slawka, E.; Navarro-Flores, A.; Parente, J.; Rebello-Sanchez, I.; Cardenas-Rojas, A.; Gonzalez-Mego, P.; Castelo-Branco, L.; et al. Motor cortex inhibition as a fibromyalgia biomarker: A meta-analysis of transcranial magnetic stimulation studies. Brain Netw. Modul. 2022, 1, 88–101. [Google Scholar]
- Kim, S.H.; Han, H.J.; Ahn, H.M.; Kim, S.A. Effects of five daily high-frequency rTMS on Stroop task performance in aging individuals. Neurosci. Res. 2012, 74, 256–260. [Google Scholar] [CrossRef]
- Lefaucheur, J.P.; Aleman, A.; Baeken, C.; Benninger, D.H.; Brunelin, J.; Di Lazzaro, V.; Filipović, S.R.; Grefkes, C.; Hasan, A.; Hummel, F.C.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin. Neurophysiol. 2020, 131, 474–528. [Google Scholar] [CrossRef]
- Wonsetler, E.C.; Bowden, M.G. A systematic review of mechanisms of gait speed change post-stroke. Part 2: Exercise capacity, muscle activation, kinetics, and kinematics. Top Stroke Rehabil. 2017, 24, 394–403. [Google Scholar] [CrossRef]
- Xu, B.; Yan, T.; Yang, Y.; Ou, R.; Huang, S. Effect of normal-walking-pattern-based functional electrical stimulation on gait of the lower extremity in subjects with ischemic stroke: A self controlled study. Neuro Rehabil. 2016, 38, 163–169. [Google Scholar] [CrossRef]
- Toledo, R.S.; Stein, D.J.; Sanches, P.R.S.; da Silva, L.S.; Medeiros, H.R.; Fregni, F.; Caumo, W.; Torres, I.L. rTMS induces analgesia and modulates neuroinflammation and neuroplasticity in neuropathic pain model rats. Brain Res. 2021, 1762, 147427. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, X.; Li, F.; Yin, T.; Zhang, J.; Zhang, T. rTMS Ameliorates Prenatal Stress–Induced Cognitive Deficits in Male-Offspring Rats Associated With BDNF/TrkB Signaling Pathway. Neurorehabilit. Neural Repair 2019, 33, 271–283. [Google Scholar] [CrossRef] [PubMed]
- Velioglu, H.A.; Hanoglu, L.; Bayraktaroglu, Z.; Toprak, G.; Guler, E.M.; Bektay, M.Y.; Mutlu-Burnaz, O.; Yulug, B. Left Lateral Parietal rTMS Improves Cognition and Modulates Resting Brain Connectivity in Patients with Alzheimer’s Disease: Possible Role of BDNF and Oxidative Stress. Neurobiol. Learn. Mem. 2021, 180, 107410. [Google Scholar] [CrossRef] [PubMed]
- Stanne, T.M.; Åberg, N.D.; Nilsson, S.; Jood, K.; Blomstrand, C.; Andreasson, U.; Blennow, K.; Zetterberg, H.; Isgaard, J.; Svensson, J.; et al. Low Circulating Acute Brain-Derived Neurotrophic Factor Levels Are Associated with Poor Long-Term Functional Outcome After Ischemic Stroke. Stroke 2016, 47, 1943–1945. [Google Scholar] [CrossRef]
- Jaillard, A.; Naegele, B.; Trabucco-Miguel, S.; LeBas, J.F.; Hommel, M. Hidden dysfunctioning in subacute stroke. Stroke 2009, 40, 2473. [Google Scholar] [CrossRef] [PubMed]
- Leśniak, M.; Bak, T.; Czepiel, W.; Seniów, J.; Członkowska, A. Frequency and prognosticvalue of cognitive disorders in stroke patients. Dement. Geriatr. Cogn. Disord. 2008, 26, 356–363. [Google Scholar] [CrossRef]
- Påhlman, U.; Sävborg, M.; Tarkowski, E. Cognitive dysfunction and physical activity after stroke: The Gothenburg Cognitive Stroke Study in the Elderly. J. Stroke Cerebrovasc. Dis. 2012, 21, 652–658. [Google Scholar] [CrossRef]
- Hayes, S.; Donnellan, C.; Stokes, E. Associations between executive function and physical function poststroke: A pilot study. Physiotherapy 2013, 99, 165–171. [Google Scholar] [CrossRef]
- Mega, M.S.; Cummings, J.L. Frontal-subcortical circuits and neuropsychiatric disorders. J. Neuropsychiatry Clin. Neurosci. 1994, 6, 358–370. [Google Scholar]
- Osada, T.; Ohta, S.; Ogawa, A.; Tanaka, M.; Suda, A.; Kamagata, K.; Hori, M.; Aoki, S.; Shimo, Y.; Hattori, N. An Essential Role of the Intraparietal Sulcus in Response Inhibition Predicted by Parcellation-Based Network. J. Neurosci. Off. J. Soc. Neurosci. 2019, 39, 2509–2521. [Google Scholar] [CrossRef]
- Ko, J.; Monchi, O.; Ptito, A.; Bloomfield, P.; Houle, S.; Strafella, A. Theta burst stimulation of dorsolateral prefrontal cortex reveals hemispheric asymmetry in striatal dopamine release during set-shifting task in human. Technol. Eng. 2009, 28, 2147–2155. [Google Scholar]
- Liu-Ambrose, T.; Pang, M.Y.; Eng, J.J. Executive function is independently associated with performances of balance and mobility in community dwelling older adults after mild stroke: Implications for falls prevention. Cerebrovasc. Dis. 2007, 23, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Pahlman, U.; Gutierrez-Perez, C.; Savborg, M.; Knopp, E.; Tarkowski, E. Cognitive function and improvement of balance after stroke in elderly people: The Gothenburg cognitive stroke study in the elderly. Disabil. Rehabil. 2011, 33, 1952–1962. [Google Scholar] [CrossRef]
- Horak, F.B. Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age Ageing 2006, 35 (Suppl. S2), ii7–ii11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, M.; Rihs, T.A.; Mosimann, U.P.; Fisch, H.U.; Schlaepfer, T.E. Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex affects divided attention immediately after cessation of stimulation. J. Psychiatr. Res. 2006, 40, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Padala, P.; Padala, K.P.; Lensing, S.Y.; Jackson, A.N.; Hunter, C.R.; Parkes, C.M.; Dennis, R.A.; Bopp, M.M.; Caceda, R.; Mennemeier, M.S.; et al. Repetitive transcranial magnetic stimulation for apathy in mild cognitive impairment: A double-blind, randomized, sham-controlled, cross-over pilot study. Psychiatry Res. 2018, 261, 312–318. [Google Scholar] [CrossRef] [PubMed]
Group | Age (Year) | Sex (n) | Hemiplegic Limb (n) | Onset Time (Month) | Type (n) |
---|---|---|---|---|---|
Sham group | 57.37 ± 12.78 | F 1 M 8 | L 4 R 5 | 1.34 ± 0.27 | CH 4 CI 5 |
Experimental group | 54.6 ± 11.83 | F 2 M 7 | L 3 R 6 | 1.01 ± 0.32 | CH 4 CI 5 |
Group | SCWT-T (s) | SCWT-C (n) | ||||||
---|---|---|---|---|---|---|---|---|
Before | After | T | p | Before | After | T | p | |
Sham group | 130.36 ± 26.78 | 118.78 ± 38.34 | 2.35 | 0.36 | 134.90 ± 2.38 | 140.34 ± 43.25 | −2.72 | 0.23 |
Experimental group | 125.98 ± 31.70 | 99.26 ± 18.62 | 5.43 | 0.006 # | 126.47 ± 3.69 | 146.73 ± 43.25 | 3.42 | 0.09 |
T | 1.58 | 5.69 | 1.32 | −2.79 | ||||
p | 0.67 | 0.009 * | 0.59 | 0.25 | ||||
Group | SIE-T (s) | SIE-C (n) | ||||||
Before | After | T | p | Before | After | T | p | |
Sham group | 35.36 ± 16.78 | 28.78 ± 11.26 | 1.98 | 0.48 | 11.05 ± 4.27 | 8.79 ± 2.52 | 2.47 | 0.37 |
Experimental group | 41.03 ± 9.37 | 15.37 ± 8.04 | 5.79 | 0.002 † | 10.74 ± 3.39 | 4.28 ± 0.98 | 5.78 | 0.002 † |
T | 2.36 | 5.21 | 1.47 | 6.79 | ||||
p | 0.35 | 0.004 ‡ | 0.49 | 0.001 ‡ |
Group | Before Treatment | After Treatment | T | p |
---|---|---|---|---|
Sham group | 20.27 ± 7.37 | 29.82 ± 9.25 | −1.98 | 0.48 |
Experimental group | 24.01 ± 8.27 | 31.95 ± 10.28 | −1.70 | 0.51 |
T | −1.99 | −1.38 | ||
p | 0.43 | 0.51 |
Group | 10MWT (s) | BBS | ||||||
---|---|---|---|---|---|---|---|---|
Before | After | T | p | Before | After | T | p | |
Sham group | 21.57 ± 10.36 | 16.47 ± 6.36 | 2.01 | 0.31 | 41.73 ± 12.32 | 46.79 ± 12.51 | −2.56 | 0.39 |
Experimental group | 19.28 ± 7.61 | 16.28 ± 4.23 | 1.98 | 0.42 | 39.69 ± 13.47 | 52.37 ± 13.48 | −5.12 | 0.002 # |
T | 1.27 | 0.96 | 2.03 | −4.79 | ||||
p | 0.57 | 0.64 | 0.35 | 0.011 * |
Group | Before Treatment | After Treatment | T | p | |
---|---|---|---|---|---|
GT | Sham group | 3.27 ± 0.25 | 2.92 ± 0.56 | 1.35 | 0.5 |
Experimental group | 4.01 ± 0.82 | 2.95 ± 0.22 | 1.65 | 0.51 | |
T | 1.90 | −0.8 | |||
p | 0.63 | 0.81 | |||
WT | Sham group | 12.84 ± 4.3 | 9.85 ± 2.31 | 1.78 | 0.42 |
Experimental group | 14.01 ± 5.24 | 10.05 ± 4.26 | 1.81 | 0.39 | |
T | −1.61 | −1.23 | |||
p | 0.48 | 0.77 | |||
TT | Sham group | 4.27 ± 1.34 | 3.81 ± 0.85 | 1.75 | 0.48 |
Experimental group | 5.01 ± 1.21 | 1.95 ± 0.68 | 4.85 | 0.01 # | |
T | −1.99 | 5.38 | |||
p | 0.43 | 0.00 * | |||
ST | Sham group | 3.83 ± 0.31 | 2.03 ± 0.45 | 2.18 | 0.07 |
Experimental group | 3.90 ± 0.63 | 1.29 ± 0.08 | 4.97 | 0.01 # | |
T | −1.12 | 4.63 | |||
p | 0.63 | 0.01 * | |||
TUGT | Sham group | 24.36 ± 7.36 | 21.36 ± 9.28 | 2.24 | 0.28 |
Experimental group | 26.21 ± 8.39 | 20.95 ± 8.2 | 4.29 | 0.02 # | |
T | −1.64 | 1.47 | |||
p | 0.33 | 0.45 |
Group | Before Treatment | After Treatment | T | p | |
---|---|---|---|---|---|
Stride (cm) | Sham group | 35.21 ± 10.24 | 40.97 ± 16.4 | 1.37 | 0.53 |
Experimental group | 34.01 ± 12.34 | 42.95 ± 14.52 | 1.67 | 0.48 | |
T | 1.02 | −0.87 | |||
p | 0.83 | 0.76 | |||
Step width (cm) | Sham group | 14.85 ± 6.34 | 11.85 ± 4.31 | 1.48 | 0.52 |
Experimental group | 16.01 ± 5.72 | 12.05 ± 6.26 | 1.61 | 0.39 | |
T | −1.05 | −1.03 | |||
p | 0.68 | 0.77 | |||
Front and rear support lines (cm) | Sham group | 14.27 ± 1.34 | 16.81 ± 0.85 | −1.25 | 0.57 |
Experimental group | 15.01 ± 1.21 | 18.95 ± 0.68 | −1.75 | 0.41 | |
T | −1.38 | −1.49 | |||
p | 0.43 | 0.58 | |||
Bilateral symmetry (cm) | Sham group | 4.83 ± 0.31 | 4.03 ± 0.45 | 1.68 | 0.17 |
Experimental group | 5.42 ± 0.63 | 3.79 ± 0.08 | 2.07 | 0.09 | |
T | −1.18 | 1.63 | |||
p | 0.52 | 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Liu, S.; Dai, P.; Wang, Z.; Liu, C.; Zhang, H. Effects of Repetitive Transcranial Magnetic Stimulation on Gait and Postural Control Ability of Patients with Executive Dysfunction after Stroke. Brain Sci. 2022, 12, 1185. https://doi.org/10.3390/brainsci12091185
Yu H, Liu S, Dai P, Wang Z, Liu C, Zhang H. Effects of Repetitive Transcranial Magnetic Stimulation on Gait and Postural Control Ability of Patients with Executive Dysfunction after Stroke. Brain Sciences. 2022; 12(9):1185. https://doi.org/10.3390/brainsci12091185
Chicago/Turabian StyleYu, Huixian, Sihao Liu, Pei Dai, Zhaoxia Wang, Changbin Liu, and Hao Zhang. 2022. "Effects of Repetitive Transcranial Magnetic Stimulation on Gait and Postural Control Ability of Patients with Executive Dysfunction after Stroke" Brain Sciences 12, no. 9: 1185. https://doi.org/10.3390/brainsci12091185
APA StyleYu, H., Liu, S., Dai, P., Wang, Z., Liu, C., & Zhang, H. (2022). Effects of Repetitive Transcranial Magnetic Stimulation on Gait and Postural Control Ability of Patients with Executive Dysfunction after Stroke. Brain Sciences, 12(9), 1185. https://doi.org/10.3390/brainsci12091185