What Is behind In-Stream Advertising on YouTube? A Remote Neuromarketing Study employing Eye-Tracking and Facial Coding techniques
Abstract
:1. Introduction
1.1. Visual Attention and In-Stream Video Ads
- RQ1: Does the presence of elements not related to advertising and overlaid on the advertising content (non-ad items’ presence) affect visual attention and time to notice associated with key ad elements (e.g., brand and product) during the view of the YouTube 15-s, mid-roll, non-skippable in-stream ad format?
1.2. Emotions, Disgust, and In-Stream Video Ads
- RQ2: Does the presence of elements not related to advertising and overlaid on the advertising content (non-ad items’ presence) affect the occurrence of facial expressions of moral disgust detected during the view of the YouTube 15-s, mid-roll, non-skippable in-stream ad format?
- RQ3: Does the presence of elements not related to advertising and overlaid on the advertising content (non-ad items’ presence) affect the self-reported measures of ad irritation, ad avoidance, ad attitude, and moral disgust concerning the view of the YouTube 15-s, mid-roll, non-skippable in-stream ad format?
2. Materials and Methods
2.1. Participants
2.2. Experimental Conditions and Stimuli
2.3. Experimental Protocol
2.4. Data Collection and Performed Analysis
3. Results
3.1. Total Visual Attention and Viewable to Seen—RQ1
3.2. Facial Coding (FC) Disgust—RQ2
3.3. Self-Reports—RQ3
4. Discussion
4.1. Summary
4.2. Recommendations for Future Experimental Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Sample Video Links
- Desktop (the ad starts at 00:02): https://www.youtube.com/watch?v=Y2ncWsOfcoE (accessed on 7 September 2022)
- Smartphone (the ad starts at 00:02): https://www.youtube.com/watch?v=SZu1EkFDWDM (accessed on 7 September 2022)
- Desktop: https://www.youtube.com/watch?v=il4JY2HmUkk (accessed on 7 September 2022)
- Smartphone: https://www.youtube.com/watch?v=h4SBJ8TGCY0 (accessed on 7 September 2022)
Appendix A.2. Ad Specs and Areas of Interest (AOIs)—Desktop and Smartphone Views
Appendix A.3. Self-Reports
- Disgust|While watching the ad, I felt disgust|Strongly Disagree (1), Disagree (2), Neither agree nor disagree (3), Agree (4), Strongly Agree (5)|Dependent Variable
- Ad Irritation|The ad irritated me|Strongly Disagree (1), Disagree (2), Neither agree nor disagree (3), Agree (4), Strongly Agree (5)|Dependent Variable
- Ad Avoidance|While watching the ad I avoided looking at the ad content (e.g., focusing my attention on areas of the screen where they weren’t present)|Strongly Disagree (1), Disagree (2), Neither agree nor disagree (3), Agree (4), Strongly Agree (5)|Dependent Variable
- Ad Attitude|I liked the ad|Strongly Disagree (1), Disagree (2), Neither agree nor disagree (3), Agree (4), Strongly Agree (5)|Dependent Variable
- YouTube video viewing frequency|On average, how much time do you spend watching YouTube videos each week?|I don’t watch YouTube videos (1), Maximum 10 min (2), From 10 to 30 min (3), From 30 min to 1 h (4), 1 to 2 h (5), More than 2 h (6)|Covariate
- Food ads attitude|I like food ads|Strongly Disagree (1), Disagree (2), Neither agree nor disagree (3), Agree (4), Strongly Agree (5)|Covariate
- Product attitude|In general, I have a positive attitude toward the Ringo product|Strongly Disagree (1), Disagree (2), Neither agree nor disagree (3), Agree (4), Strongly Agree (5)|Covariate
- Product purchase frequency|How often do you buy the Ringo?|Never (1), Less than once a year (2), At least once a year (3), At least once every 6 months (4), At least once a month (5), At least once a week (6)|Covariate
References
- Statista. Digital Video Viewers Number Worldwide 2023. Available online: https://www.statista.com/statistics/1061017/digital-video-viewers-number-worldwide/ (accessed on 30 August 2023).
- Joa, C.Y.; Kim, K.; Ha, L. What Makes People Watch Online In-Stream Video Advertisements? J. Interact. Advert. 2018, 18, 1–14. [Google Scholar] [CrossRef]
- Burgess, J.; Green, J. YouTube: Online Video and Participatory Culture; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Moz. Top 500 Most Popular Websites. Available online: https://moz.com/top500 (accessed on 30 August 2023).
- Frade, J.L.H.; de Oliveira, J.H.C.; Giraldi, J.d.M.E. Advertising in streaming video: An integrative literature review and research agenda. Telecommun. Policy 2021, 45, 102186. [Google Scholar] [CrossRef]
- Duffett, R.; Petro, D.-M.; Negricea, I.-C.; Edu, T. Effect of YouTube marketing communication on converting brand liking into preference among millennials regarding brands in general and sustainable offers in particular. Evidence from South Africa and Romania. Sustainability 2019, 11, 604. [Google Scholar] [CrossRef]
- Wu, K. YouTube marketing: Legality of sponsorship and endorsements in advertising. JL Bus. Ethics 2016, 22, 59. [Google Scholar]
- Hansen, S.S.; Lee, J.K.; Lee, S.-Y. Consumer-generated ads on YouTube: Impacts of source credibility and need for cognition on attitudes, interactive behaviors, and eWOM. J. Electron. Commer. Res. 2014, 15, 254. [Google Scholar]
- Lee, J.K.; Lee, S.-Y.; Hansen, S.S. Source Credibility in Consumer-Generated Advertising in Youtube: The Moderating Role of Personality. Curr. Psychol. 2017, 36, 849–860. [Google Scholar] [CrossRef]
- Thomas, T.; Bestman, A.; Pitt, H.; Deans, E.; Rabdle, M.J. The Marketing of Wagering on Social Media: An Analysis of Promotional Content on YouTube, Twitter and Facebook; Victorian Reponsible Gambling Foundation: Melbourne, Austria, 2015. [Google Scholar]
- Gupta, H.; Lam, T.; Pettigrew, S.; Tait, R.J. Alcohol marketing on YouTube: Exploratory analysis of content adaptation to enhance user engagement in different national contexts. BMC Public Health 2018, 18, 141. [Google Scholar] [CrossRef]
- Dehghani, M.; Niaki, M.K.; Ramezani, I.; Sali, R. Evaluating the influence of YouTube advertising for attraction of young customers. Comput. Hum. Behav. 2016, 59, 165–172. [Google Scholar] [CrossRef]
- Göbel, F.; Meyer, A.; Ramaseshan, B.; Bartsch, S. Consumer responses to covert advertising in social media. Mark. Intell. Plan. 2017, 35, 578–593. [Google Scholar] [CrossRef]
- Chu, S.-C.; Kamal, S.; Kim, Y. Understanding consumers’ responses toward social media advertising and purchase intention toward luxury products. J. Glob. Fash. Mark. 2013, 4, 158–174. [Google Scholar] [CrossRef]
- Balakrishnan, J.; Manickavasagam, J. User disposition and attitude towards advertisements placed in Facebook, LinkedIn, Twitter and YouTube: A decision tree and MANOVA approach. In Advertising and Branding: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2017; pp. 1512–1532. [Google Scholar]
- Araújo, C.S.; Magno, G.; Meira, W.; Almeida, V.; Hartung, P.; Doneda, D. Characterizing videos, audience and advertising in Youtube channels for kids. In Social Informatics: 9th International Conference, SocInfo 2017, Oxford, UK, 13–15 September 2017, Proceedings, Part I 9; Springer: Berlin/Heidelberg, Germany, 2017; pp. 341–359. [Google Scholar]
- Wyzowl. Video Marketing Statistics 2021 (Brand New Data). Available online: https://www.wyzowl.com/sovm-results-2021/ (accessed on 30 August 2023).
- Mancini, M.; Cherubino, P.; Cartocci, G.; Martinez, A.; Di Flumeri, G.; Petruzzellis, L.; Cimini, M.; Aricò, P.; Trettel, A.; Babiloni, F. Esports and Visual Attention: Evaluating In-Game Advertising through Eye-Tracking during the Game Viewing Experience. Brain Sci. 2022, 12, 1345. [Google Scholar] [CrossRef] [PubMed]
- Budzinski, O.; Gaenssle, S.; Lindstädt-Dreusicke, N. The battle of YouTube, TV and Netflix: An empirical analysis of competition in audiovisual media markets. SN Bus. Econ. 2021, 1, 116. [Google Scholar] [CrossRef]
- YouTube. About Video ad Formats—Google Ads Help. Available online: https://support.google.com/google-ads/answer/2375464?hl=en (accessed on 30 August 2023).
- Li, H.; Lo, H.-Y. Do You Recognize Its Brand? The Effectiveness of Online In-Stream Video Advertisements. J. Advert. 2015, 44, 208–218. [Google Scholar] [CrossRef]
- Krishnan, S.S.; Sitaraman, R.K. Understanding the effectiveness of video ads: A measurement study. In Proceedings of the 2013 Conference on Internet Measurement Conference, Barcelona, Spain, 23–25 October 2013; pp. 149–162. [Google Scholar]
- Chungviwatanant, T.; Prasongsukarn, K.; Chungviwatanant, S. A study of factors that affect consumer’s attitude toward a ‘skippable in-stream ad’ on YouTube. AU-GSB e-J. 2016, 9, 83. [Google Scholar]
- Belanche, D.; Flavián, C.; Pérez-Rueda, A. Understanding Interactive Online Advertising: Congruence and Product Involvement in Highly and Lowly Arousing, Skippable Video Ads. J. Interact. Mark. 2017, 37, 75–88. [Google Scholar] [CrossRef]
- YouTube Help. YouTube Advertising Formats. Available online: https://support.google.com/youtube/answer/2467968?hl=en (accessed on 30 August 2023).
- Connolly, A.; YouTube Makes its TrueView Ads More Interactive to Encourage Users to Engage. Tnv News. 2015. Available online: http://thenextweb.com/google/2015/04/08/youtube-makes-itstrueview-ads-more-interactive-to-encourage-users-to-engage (accessed on 15 June 2023).
- Pashkevich, M.; Dorai-Raj, S.; Kellar, M.; Zigmond, D. Empowering online advertisements by empowering viewers with the right to choose: The relative effectiveness of skippable video advertisements on YouTube. J. Advert. Res. 2012, 52, 451–457. [Google Scholar] [CrossRef]
- Lewinski, P.; Fransen, M.L.; Tan, E.S.H. Predicting advertising effectiveness by facial expressions in response to amusing persuasive stimuli. J. Neurosci. Psychol. Econ. 2014, 7, 1. [Google Scholar] [CrossRef]
- Nguyen, T.-A.; Coursaris, C.K.; Léger, P.-M.; Sénécal, S.; Fredette, M. Effectiveness of banner ads: An eye tracking and facial expression analysis. In HCI in Business, Government and Organizations, Proceedings of the 7th International Conference, HCIBGO 2020, Held as Part of the 22nd HCI International Conference, HCII 2020, Copenhagen, Denmark, 19–24 July 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 445–455. [Google Scholar]
- Pham, P.; Wang, J. Understanding emotional responses to mobile video advertisements via physiological signal sensing and facial expression analysis. In Proceedings of the 22nd International Conference on Intelligent User Interfaces, Limassol, Cyprus, 13–16 March 2017; pp. 67–78. [Google Scholar]
- Hamelin, N.; El Moujahid, O.; Thaichon, P. Emotion and advertising effectiveness: A novel facial expression analysis approach. J. Retail. Consum. Serv. 2017, 36, 103–111. [Google Scholar] [CrossRef]
- Cherubino, P.; Martinez-Levy, A.C.; Caratù, M.; Cartocci, G.; Di Flumeri, G.; Modica, E.; Rossi, D.; Mancini, M.; Trettel, A. Consumer Behaviour through the Eyes of Neurophysiological Measures: State-of-the-Art and Future Trends. Comput. Intell. Neurosci. 2019, 2019, 1976847. [Google Scholar] [CrossRef]
- Bercea, M.D. Anatomy of methodologies for measuring consumer behavior in neuromarketing research. In Proceedings of the Lupcon Center for Business Research (LCBR) European Marketing Conference, Ebermannstadt, Germany, 9–10 August 2012. [Google Scholar]
- Fortunato, V.C.R.; Giraldi, J.d.M.E.; de Oliveira, J.H.C. A review of studies on neuromarketing: Practical results, techniques, contributions and limitations. J. Manag. Res. 2014, 6, 201. [Google Scholar] [CrossRef]
- Nilashi, M.; Samad, S.; Ahmadi, N.; Ahani, A.; Abumalloh, R.A.; Asadi, R.; Abdullah, R.; Ibrahim, O.; Yadegaridekkordi, E. Neuromarketing: A review of research and implications for marketing. J. Soft Comput. Decis. Support Syst. 2020, 7, 23–31. [Google Scholar]
- Schröter, I.; Grillo, N.R.; Limpak, M.K.; Mestiri, B.; Osthold, B.; Sebti, F.; Mergenthaler, M. Webcam eye tracking for monitoring visual attention in hypothetical online shopping tasks. Appl. Sci. 2021, 11, 9281. [Google Scholar] [CrossRef]
- Wisiecka, K.; Krejtz, K.; Krejtz, I.; Sromek, D.; Cellary, A.; Lewandowska, B.; Duchowski, A. Comparison of webcam and remote eye tracking. In Proceedings of the 2022 Symposium on Eye Tracking Research and Applications, Seattle, WA, USA, 8–11 June 2022; pp. 1–7. [Google Scholar]
- Yang, X.; Krajbich, I. Webcam-based online eye-tracking for behavioral research. Judgm. Decis. Mak. 2021, 16, 1485–1505. [Google Scholar] [CrossRef]
- Barry, T.E. The development of the hierarchy of effects: An historical perspective. Curr. Issues Res. Advert. 1987, 10, 251–295. [Google Scholar]
- van Raaij, W.F. How Consumers React to Advertising. Int. J. Advert. 1989, 8, 261–273. [Google Scholar] [CrossRef]
- MacInnis, D.J.; Jaworski, B.J. Information Processing from Advertisements: Toward an Integrative Framework. J. Mark. 1989, 53, 1–23. [Google Scholar] [CrossRef]
- Liu-Thompkins, Y. A Decade of Online Advertising Research: What We Learned and What We Need to Know. J. Advert. 2019, 48, 1–13. [Google Scholar] [CrossRef]
- Kelly, L.; Kerr, G.; Drennan, J. Triggers of engagement and avoidance: Applying approach-avoid theory. J. Mark. Commun. 2020, 26, 488–508. [Google Scholar] [CrossRef]
- Okazaki, S.; Molina, F.J.; Hirose, M. Mobile advertising avoidance: Exploring the role of ubiquity. Electron. Mark. 2012, 22, 169–183. [Google Scholar] [CrossRef]
- 40 Mind Blowing Youtube Facts, Figures and Statistics. Available online: https://fortunelords.com/youtube-statistics (accessed on 16 October 2022).
- Baek, T.H.; Morimoto, M. Stay away from me. J. Advert. 2012, 41, 59–76. [Google Scholar] [CrossRef]
- Briggs, R.; Hollis, N. Advertising on the web: Is there response before click-through? J. Advert. Res. 1997, 37, 33–46. [Google Scholar]
- Miller, S.E. Civilizing Cyberspace: Policy, Power, and the Information Superhighway; ACM Press/Addison-Wesley Publishing Co., Inc.: Boston, MA, USA, 1995. [Google Scholar]
- Bounie, D.; Vallrie, M.; Quinn, M. Do You See What I See? Ad Viewability and the Economics of Online Advertising. SSRN Electron. J. 2017. [Google Scholar] [CrossRef]
- Benway, J.P. Banner blindness: The irony of attention grabbing on the World Wide Web. Proc. Hum. Factors Ergon. Soc. 1998, 1, 463–467. [Google Scholar] [CrossRef]
- Mancini, M.; Cherubino, P.; di Flumeri, G.; Cartocci, G.; Martinez, A.; Sanchez, A.; Santillo, C.; Modica, E.; Vozzi, A.; Ronca, V.; et al. Neuroscientific Methods for Exploring User Perceptions While Dealing with Mobile Advertising: A Novel and Integrated Approach. Front. Neuroergonomics 2022, 3, 6. [Google Scholar] [CrossRef]
- Outbrain.com. What Is Native Advertising—How It Works. Available online: https://www.outbrain.com/native-advertising/ (accessed on 4 July 2020).
- Wojdynski, B.W. Native advertising: Engagement, deception, and implications for theory. In The New Advertising: Branding, Content and Consumer Relationships in a Data-Driven Social Media Era; Praeger: Westport, CN, USA, 2016; pp. 203–236. [Google Scholar]
- IAB Native Advertising Playbook 2.0. Available online: https://www.iab.com/insights/iab-native-advertising-playbook-2-0/ (accessed on 12 June 2020).
- In Native Advertising, Deception Is a Dangerous Game. 2014. Available online: https://www.mediapost.com/publications/article/226511/in-native-advertising-deception-is-a-dangerous-ga.html (accessed on 27 June 2020).
- HuffPost. Advertising Goes Native, and Deception Runs Free. Available online: https://www.huffpost.com/entry/native-advertising-atlantic-scientology_b_2575945?guccounter=1 (accessed on 27 June 2020).
- Most, S.B.; Simons, D.J.; Scholl, B.J.; Jimenez, R.; Clifford, E.; Chabris, C.F. How not to be Seen: The Contribution of Similarity and Selective Ignoring to Sustained Inattentional Blindness. Psychol. Sci. 2001, 12, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Campbell, C.; Thompson, F.M.; Grimm, P.E.; Robson, K. Understanding Why Consumers Don’t Skip Pre-Roll Video Ads. J. Advert. 2017, 46, 411–423. [Google Scholar] [CrossRef]
- Frade, J.L.H.; de Oliveira, J.H.C.; Giraldi, J.d.M.E. Skippable or non-skippable? Pre-roll or mid-roll? Visual attention and effectiveness of in-stream ads. Int. J. Advert. 2022. [Google Scholar] [CrossRef]
- Hervet, G.; Guérard, K.; Tremblay, S.; Chtourou, M.S. Is banner blindness genuine? Eye tracking internet text advertising. Appl. Cogn. Psychol. 2011, 25, 708–716. [Google Scholar] [CrossRef]
- Pernice, K. Banner Blindness Revisited: Users Dodge Ads on Mobile and Desktop. Available online: https://www.nngroup.com/articles/banner-blindness-old-and-new-findings/ (accessed on 27 June 2020).
- Shin, M.; Rhee, C. Floating Banner Blindness on Mobile Device: An Experimental Approach Using Neuroscientific Methods. In Proceedings of the SIGHCI 2017, Seoul, Republic of Korea, 10 December 2017. [Google Scholar]
- Nielsen, J. Banner Blindness: The Original Eyetracking Research, 10-Year Research Overview. Available online: https://www.nngroup.com/articles/banner-blindness-original-eyetracking/ (accessed on 27 June 2020).
- Sun, Y.; Lim, K.H.; Peng, J.Z.; Jiang, C.; Chen, X. Why and when will banner blindness occur? An analysis based on the dual processing theory. In Proceedings of the 14th Americas Conference on Information Systems, AMCIS 2008, Toronto, ON, Canada, 14–17 August 2008; Volume 4, pp. 2326–2334. [Google Scholar]
- Burke, M.; Hornof, A.; Nilsen, E.; Gorman, N. High-cost banner blindness: Ads increase perceived workload, hinder visual search, and are forgotten. ACM Trans. Comput. Interact. 2005, 12, 423–445. [Google Scholar] [CrossRef]
- Resnick, M.; Albert, W. The Impact of Advertising Location and User Task on the Emergence of Banner Ad Blindness: An Eye-Tracking Study. Int. J. Human–Comput. Interact. 2014, 30, 206–219. [Google Scholar] [CrossRef]
- Schmidt, L.L.; Maier, E. Interactive Ad Avoidance on Mobile Phones. J. Advert. 2022, 51, 440–449. [Google Scholar] [CrossRef]
- Kim, T.; Lee, J.; Suh, J. L-Shape advertising for mobile video streaming services: Less intrusive while still effective. Displays 2023, 78, 102436. [Google Scholar] [CrossRef]
- Griffith, D.A.; Krampf, R.F.; Palmer, J.W. The Role of Interface in Electronic Commerce: Consumer Involvement with Print Versus On-Line Catalogs. Int. J. Electron. Commer. 2001, 5, 135–153. [Google Scholar] [CrossRef]
- Bayles, M.E. Designing online banner advertisements. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems Changing Our World, Changing Ourselves—CHI ’02, Minneapolis, MN, USA, 20–25 April 2002; ACM Press: New York, NY, USA, 2002; p. 363. [Google Scholar] [CrossRef]
- Hong, W.; Thong, J.Y.L.; Tam, K.Y. Does Animation Attract Online Users’ Attention? The Effects of Flash on Information Search Performance and Perceptions. Inf. Syst. Res. 2004, 15, 60–86. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, S.-M. An Eye Tracking Analysis for Video Advertising: Relationship Between Advertisement Elements and Effectiveness. IEEE Access 2018, 6, 10699–10707. [Google Scholar] [CrossRef]
- Google. Informazioni Sulle Campagne Video—Guida di Google Ads. Available online: https://support.google.com/google-ads/answer/6340491?hl=it (accessed on 10 September 2023).
- Zajonc, R.B. Feeling and thinking: Preferences need no inferences. Am. Psychol. 1980, 35, 151–175. [Google Scholar] [CrossRef]
- Puto, C.P.; Wells, W.D. Informational and transformational advertising: The differential effects of time. In ACR North American Advances; Association for Consumer Research: Seattle, WA, USA, 1984. [Google Scholar]
- Wu, C.S.; Wang, Y. The influences of electronic word-of-mouth message appeal and message source credibility on brand attitude. Asia Pac. J. Mark. Logist. 2011, 23, 448–472. [Google Scholar] [CrossRef]
- Alhabash, S.; McAlister, A.R.; Hagerstrom, A.; Quilliam, E.T.; Rifon, N.; Richards, J.I. Between Likes and Shares: Effects of Emotional Appeal and Virality on the Persuasiveness of Anticyberbullying Messages on Facebook. Cyberpsychol. Behav. Soc. Netw. 2013, 16, 175–182. [Google Scholar] [CrossRef]
- Xie, T.; Donthu, N.; Lohtia, R.; Osmonbekov, T. Emotional Appeal and Incentive Offering in Banner Advertisements. J. Interact. Advert. 2004, 4, 30–37. [Google Scholar] [CrossRef]
- Poels, K.; Dewitte, S. The Role of Emotions in Advertising: A Call to Action. J. Advert. 2019, 48, 81–90. [Google Scholar] [CrossRef]
- Kang, J.; Hong, S.; Hubbard, G.T. The role of storytelling in advertising: Consumer emotion, narrative engagement level, and word-of-mouth intention. J. Consum. Behav. 2020, 19, 47–56. [Google Scholar] [CrossRef]
- Tellis, G.J.; MacInnis, D.J.; Tirunillai, S.; Zhang, Y. What drives virality (sharing) of online digital content? The critical role of information, emotion, and brand prominence. J. Mark. 2019, 83, 1–20. [Google Scholar] [CrossRef]
- Lee, J.; Hong, I.B. Predicting positive user responses to social media advertising: The roles of emotional appeal, informativeness, and creativity. Int. J. Inf. Manag. 2016, 36, 360–373. [Google Scholar] [CrossRef]
- Hegner, S.M.; Kusse, D.C.; Pruyn, A.T.H. Watch it! The influence of forced pre-roll video ads on consumer perceptions. In Advances in Advertising Research (Vol. VI) The Digital, the Classic, the Subtle, and the Alternative; Springer: Berlin/Heidelberg, Germany, 2015; pp. 63–73. [Google Scholar]
- Grant, P.; Botha, E.; Kietzmann, J. Branded flash mobs: Moving toward a deeper understanding of consumers’ responses to video advertising. J. Interact. Advert. 2015, 15, 28–42. [Google Scholar] [CrossRef]
- Chapman, H.A.; Anderson, A.K. Understanding disgust. Ann. N. Y. Acad. Sci. 2012, 1251, 62–76. [Google Scholar] [CrossRef]
- Hartmann, C.; Siegrist, M. Development and validation of the Food Disgust Scale. Food Qual. Prefer. 2018, 63, 38–50. [Google Scholar] [CrossRef]
- Oaten, M.; Stevenson, R.J.; Case, T.I. Disgust as a disease-avoidance mechanism. Psychol. Bull. 2009, 135, 303–321. [Google Scholar] [CrossRef]
- Shimp, T.A.; Stuart, E.W. The role of disgust as an emotional mediator of advertising effects. J. Advert. 2004, 33, 43–53. [Google Scholar] [CrossRef]
- Richins, M.L. Measuring Emotions in the Consumption Experience. J. Consum. Res. 1997, 24, 127–146. [Google Scholar] [CrossRef]
- Paramita, W.; Septianto, F.; Nasution, R.A. The interactive effects of moral identity and humor on advertising evaluations: The mediating role of disgust. Int. J. Advert. 2021, 41, 1263–1281. [Google Scholar] [CrossRef]
- Shook, N.J.; Oosterhoff, B.; Terrizzi, J.A., Jr.; Brady, K.M. ‘Dirty politics’: The role of disgust sensitivity in voting. Transl. Issues Psychol. Sci. 2017, 3, 284. [Google Scholar] [CrossRef]
- AlAmmar, W.A.; Albeesh, F.H.; Khattab, R.Y. Food and Mood: The Corresponsive Effect. Curr. Nutr. Rep. 2020, 9, 296–308. [Google Scholar] [CrossRef]
- Rozin, P.; Fallon, A.E. A perspective on disgust. Psychol. Rev. 1987, 94, 23. [Google Scholar] [CrossRef]
- Weiqiang, D.U. Disgust and consumer behavior. Adv. Psychol. Sci. 2019, 27, 1929. [Google Scholar]
- Fallon, E.; Rozin, P.; Pliner, P. The child’s conception of food: The development of food rejections with special reference to disgust and contamination sensitivity. Child Dev. 1984, 55, 566–575. [Google Scholar] [CrossRef]
- Ammann, J.; Hartmann, C.; Siegrist, M. Does food disgust sensitivity influence eating behaviour? Experimental validation of the Food Disgust Scale. Food Qual. Prefer. 2018, 68, 411–414. [Google Scholar] [CrossRef]
- Collins, C.M.; Vaskou, P.; Kountouris, Y. Insect food products in the western world: Assessing the potential of a new ‘green’market. Ann. Entomol. Soc. Am. 2019, 112, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Gere, A.; Székely, G.; Kovács, S.; Kókai, Z.; Sipos, L. Readiness to adopt insects in Hungary: A case study. Food Qual. Prefer. 2017, 59, 81–86. [Google Scholar] [CrossRef]
- House, J. Consumer acceptance of insect-based foods in the Netherlands: Academic and commercial implications. Appetite 2016, 107, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, A.; Vecchio, R.; Borrello, M.; Caracciolo, F.; Cembalo, L. Willingness to pay for insect-based food: The role of information and carrier. Food Qual. Prefer. 2018, 72, 177–187. [Google Scholar] [CrossRef]
- Vartiainen, O.; Elorinne, A.-L.; Niva, M.; Väisänen, P. ‘Finnish consumers’ intentions to consume insect-based foods. J. Insects Food Feed 2020, 6, 261–272. [Google Scholar] [CrossRef]
- Tao, D.; Leng, Y.; Huo, J.; Peng, S.; Xu, J.; Deng, H. Effects of Core Disgust and Moral Disgust on Moral Judgment: An Event-Related Potential Study. Front. Psychol. 2022, 13, 806784. [Google Scholar] [CrossRef] [PubMed]
- Russell, P.S.; Giner-Sorolla, R. Bodily moral disgust: What it is, how it is different from anger, and why it is an unreasoned emotion. Psychol. Bull. 2013, 139, 328–351. [Google Scholar] [CrossRef] [PubMed]
- Erdogan, B.Z. Controversial advertising. J. Mark. Commun. 2008, 14, 247–248. [Google Scholar] [CrossRef]
- Dens, N.; De Pelsmacker, P.; Janssens, W. Exploring consumer reactions to incongruent mild disgust appeals. J. Mark. Commun. 2008, 14, 249–269. [Google Scholar] [CrossRef]
- Passyn, K.A.; LeBaron, D.; Riggle, R.J. When Politics Disgust: Emotional versus Rational Processing of Attack Ads. J. Nonprofit Public Sect. Mark. 2022. [Google Scholar] [CrossRef]
- van der Eijk, F.; Columbus, S. Expressions of moral disgust reflect both disgust and anger. Cogn. Emot. 2023, 37, 499–514. [Google Scholar] [CrossRef]
- Tobii. White Paper: Emotion Analysis—Help Center—Sticky by Tobii. Available online: https://help.sticky.ai/hc/en-us/articles/4412953507217-White-Paper-Emotion-Analysis (accessed on 2 September 2023).
- Palo, H.K.; Mohanty, J.; Mohanty, M.N.; Chandra, M. Recognition of Anger, Irritation and Disgust Emotional States based on Similarity Measures. Indian J. Sci. Technol. 2016, 9, 38. [Google Scholar]
- Lin, H.C.-S.; Lee, N.C.-A.; Lu, Y.-C. The Mitigators of Ad Irritation and Avoidance of YouTube Skippable In-Stream Ads: An Empirical Study in Taiwan. Information 2021, 12, 373. [Google Scholar] [CrossRef]
- Shook, N.J.; Thomas, R.; Ford, C.G. Testing the relation between disgust and general avoidance behavior. Pers. Individ. Differ. 2019, 150, 109457. [Google Scholar] [CrossRef]
- Curtis, V.; Aunger, R.; Rabie, T. Evidence that disgust evolved to protect from risk of disease. Proc. R. Soc. Lond. B Biol. Sci. 2004, 271 (Suppl. S4), S131–S133. [Google Scholar] [CrossRef]
- Curtis, V.; De Barra, M.; Aunger, R. Disgust as an adaptive system for disease avoidance behaviour. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 389–401. [Google Scholar] [CrossRef] [PubMed]
- Seidel, E.-M.; Habel, U.; Kirschner, M.; Gur, R.C.; Derntl, B. The impact of facial emotional expressions on behavioral tendencies in women and men. J. Exp. Psychol. Hum. Percept. Perform. 2010, 36, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Vernon, L.L.; Berenbaum, H. Disgust and fear in response to spiders. Cogn. Emot. 2002, 16, 809–830. [Google Scholar] [CrossRef]
- Banerjee, S.; Pal, A. I hate ads but not the advertised brands: A qualitative study on Internet users’ lived experiences with YouTube ads. Internet Res. 2023, 33, 39–56. [Google Scholar] [CrossRef]
- Chatterjee, P. Are Unclicked Ads Wasted? Enduring Effects of Banner and Pop-Up Ad Exposures on Brand Memory and Attitudes. J. Electron. Commer. Res. 2008, 9, 51–61. [Google Scholar]
- Edwards, M.; Li, H.; Lee, J.-H. Forced exposure and psychological reactance: Antecedents and consequences of the perceived intrusiveness of pop-up ads. J. Advert. 2002, 31, 83–95. [Google Scholar] [CrossRef]
- McCoy, S.; Everard, A.; Polak, P.; Galletta, D.F. An Experimental Study of Antecedents and Consequences of Online Ad Intrusiveness. Int. J. Human Computer Interact. 2008, 24, 672–699. [Google Scholar] [CrossRef]
- Morimoto, M.; Chang, S. Consumers’ attitudes toward unsolicited commercial e-mail and postal direct mail marketing methods: Intrusiveness, perceived loss of control, and irritation. J. Interact. Advert. 2006, 7, 1–11. [Google Scholar] [CrossRef]
- Truong, Y.; Simmons, G. Perceived intrusiveness in digital advertising: Strategic marketing implications. J. Strat. Mark. 2010, 18, 239–256. [Google Scholar] [CrossRef]
- van Doorn, J.; Hoekstra, J.C. Customization of online advertising: The role of intrusiveness. Mark. Lett. 2013, 24, 339–351. [Google Scholar] [CrossRef]
- Jeon, Y.A.; Son, H.; Chung, A.D.; Drumwright, M.E. Temporal certainty and skippable in-stream commercials: Effects of ad length, timer, and skip-ad button on irritation and skipping behavior. J. Interact. Mark. 2019, 47, 144–158. [Google Scholar] [CrossRef]
- Bower, G.H. A Brief History of Memory Research; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Tulving, E.; Schacter, D.L. Priming and Human Memory Systems. Science 1990, 247, 301–306. [Google Scholar] [CrossRef]
- White, K.R.; Crites, S.L.; Taylor, J.H.; Corral, G. Wait, what? Assessing stereotype incongruities using the N400 ERP component. Soc. Cogn. Affect. Neurosci. 2009, 4, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Tulving, E.; Craik, F.I.M. The Oxford Handbook of Memory; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- YouTube. Ringo—Stranger Things Limited Edition. Available online: https://www.youtube.com/watch?v=uO1vBlHbVl0 (accessed on 15 September 2023).
- Rahmatika, R.; Yusuf, M.; Agung, L. The Effectiveness of Youtube as an Online Learning Media. J. Educ. Technol. 2021, 5, 152–158. [Google Scholar] [CrossRef]
- Lange, P.G. Informal learning on YouTube. In The International Encyclopedia of Media Literacy; Wiley: Hoboken, NJ, USA, 2019; pp. 1–11. [Google Scholar]
- Owens, J.W.; Chaparro, B.S.; Palmer, E.M. Text advertising blindness: The new banner blindness? J. Usability Stud. 2011, 6, 172–197. [Google Scholar]
- Nielsen Norman Group. Task Scenarios for Usability Testing. Available online: https://www.nngroup.com/articles/task-scenarios-usability-testing/ (accessed on 14 September 2023).
- Tobii. How to Add the Qualtrics Snippet into an Experiment—Help Center—Sticky by Tobii. Available online: https://help.sticky.ai/hc/en-us/articles/4412953587473-How-to-add-the-Qualtrics-snippet-into-an-experiment (accessed on 16 September 2023).
- Šola, H.M.; Mikac, M.; Rončević, I. Tracking unconscious response to visual stimuli to better understand a pattern of human behavior on a Facebook page. J. Innov. Knowl. 2022, 7, 100166. [Google Scholar] [CrossRef]
- Martinez-Levy, A.C.; Sasso, D.; Vozzi, A.; Menicocci, S.; Trettel, A.; Babiloni, F.; Cartocci, G.; Cherubino, P. How to Promote and Communicate an Effective Green and Sustainable Communication: A Neuromarketing Study. In The Garment Economy: Understanding History, Developing Business Models, and Leveraging Digital Technologies; Springer: Berlin/Heidelberg, Germany, 2023; pp. 191–208. [Google Scholar]
- Inguscio, B.M.S.; Cartocci, G.; Palmieri, S.; Menicocci, S.; Vozzi, A.; Giorgi, A.; Ferrara, S.; Canettieri, P.; Babiloni, F. Poetry in Pandemic: A Multimodal Neuroaesthetic Study on the Emotional Reaction to the Divina Commedia Poem. Appl. Sci. 2023, 13, 3720. [Google Scholar] [CrossRef]
- Chen-Sankey, J.; Elhabashy, M.; Gratale, S.; Geller, J.; Mercincavage, M.; A Strasser, A.; Delnevo, C.D.; Jeong, M.; A Wackowski, O. Examining Visual Attention to Tobacco Marketing Materials among Young Adult Smokers: A Protocol for a Remote Webcam-based Eye-Tracking Experiment (Preprint). JMIR Res. Protoc. 2023, 12, e43512. [Google Scholar] [CrossRef]
- Ekman, P.; Friesen, W.V.; Hager, J.C. The Facial Action Coding System: A Technique for the Measurement of Facial Movement; Consulting Psychologists Press: San Francisco, CA, USA, 2002. [Google Scholar]
- Picard, R.W. Affective Computing; MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Tobii. White Paper: Webcam Eye Tracking Accuracy—Help Center—Sticky by Tobii. Available online: https://help.sticky.ai/hc/en-us/articles/5626603090065-White-Paper-Webcam-eye-tracking-accuracy- (accessed on 10 October 2023).
- Li, Q.; Huang, J.Z.; Christianson, K. Visual attention toward tourism photographs with text: An eye-tracking study. Tour. Manag. 2016, 54, 243–258. [Google Scholar] [CrossRef]
- Tobii. Tobii Studio User’s Manual, Version 3.4; Tobii: Stockholm, Sweden, 2016; Volume 5, pp. 1–170. [Google Scholar]
- Tobii. Analytics: Interpretation of Results and Metrics—Help Center—Sticky by Tobii. Available online: https://help.sticky.ai/hc/en-us/articles/4412934674577-Analytics-interpretation-of-results-and-metrics (accessed on 16 September 2023).
- Aslam, W.; Farhat, K.; Arif, I. Skippable Advertisement versus Full-Length Advertisement: An Empirical Analysis in a Developing Economy. J. Interact. Advert. 2021, 21, 49–67. [Google Scholar] [CrossRef]
- Lutz, R.J. Affective and Cognitive Antecedents of Attitude toward the ad: A Conceptual Framework. Psychol. Process. Advert. Eff. 1985, 45–64. Available online: https://api.semanticscholar.org/CorpusID:210506311 (accessed on 16 September 2023).
- Mitchell, A.A.; Olson, J.C. Are Product Attribute Beliefs the Only Mediator of Advertising Effects on Brand Attitude? J. Mark. Res. 1981, 18, 318. [Google Scholar] [CrossRef]
- Harwell, M.R. Choosing Between Parametric and Nonparametric Tests. J. Couns. Dev. 1988, 67, 35–38. [Google Scholar] [CrossRef]
- Quade, D. Rank Analysis of Covariance. J. Am. Stat. Assoc. 1967, 62, 1187. [Google Scholar] [CrossRef]
- Fan, C.; Zhang, D. Rank repeated measures analysis of covariance. Commun. Stat. Theory Methods 2017, 46, 1158–1183. [Google Scholar] [CrossRef]
- Lee, S.; Lee, D.K. What is the proper way to apply the multiple comparison test? Korean J. Anesthesiol. 2018, 71, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Etkin, J.; Evangelidis, I.; Aaker, J. Pressed for Time? Goal Conflict Shapes How Time Is Seen, Spent, and Valued. ACR N. Am. Adv. 2015, 52, 394–406. [Google Scholar]
- Tripathi, S.; Kapoor, A. Countdown or Countup: Effect of Direction of Time-Keeping on Resource Deficiency and Related Downstream Preferences. ACR N. Am. Adv. 2017, 45, 916–918. [Google Scholar]
- YouTube. Manage What Types of Ads You See on YouTube Videos—YouTube Help. Available online: https://support.google.com/youtube/answer/7403255?hl=en (accessed on 21 September 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancini, M.; Cherubino, P.; Martinez, A.; Vozzi, A.; Menicocci, S.; Ferrara, S.; Giorgi, A.; Aricò, P.; Trettel, A.; Babiloni, F. What Is behind In-Stream Advertising on YouTube? A Remote Neuromarketing Study employing Eye-Tracking and Facial Coding techniques. Brain Sci. 2023, 13, 1481. https://doi.org/10.3390/brainsci13101481
Mancini M, Cherubino P, Martinez A, Vozzi A, Menicocci S, Ferrara S, Giorgi A, Aricò P, Trettel A, Babiloni F. What Is behind In-Stream Advertising on YouTube? A Remote Neuromarketing Study employing Eye-Tracking and Facial Coding techniques. Brain Sciences. 2023; 13(10):1481. https://doi.org/10.3390/brainsci13101481
Chicago/Turabian StyleMancini, Marco, Patrizia Cherubino, Ana Martinez, Alessia Vozzi, Stefano Menicocci, Silvia Ferrara, Andrea Giorgi, Pietro Aricò, Arianna Trettel, and Fabio Babiloni. 2023. "What Is behind In-Stream Advertising on YouTube? A Remote Neuromarketing Study employing Eye-Tracking and Facial Coding techniques" Brain Sciences 13, no. 10: 1481. https://doi.org/10.3390/brainsci13101481
APA StyleMancini, M., Cherubino, P., Martinez, A., Vozzi, A., Menicocci, S., Ferrara, S., Giorgi, A., Aricò, P., Trettel, A., & Babiloni, F. (2023). What Is behind In-Stream Advertising on YouTube? A Remote Neuromarketing Study employing Eye-Tracking and Facial Coding techniques. Brain Sciences, 13(10), 1481. https://doi.org/10.3390/brainsci13101481