A Review of Artificial Intelligence in the Rupture Risk Assessment of Intracranial Aneurysms: Applications and Challenges
Abstract
:1. Introduction
2. Brief Overview of AI Techniques Commonly Used in UIA Rupture Risk Assessment
3. AI in The Rupture Risk Assessment of IAs
4. Challenges
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Thompson, B.; Brown, R.; Amin-Hanjani, S.; Broderick, J.; Cockroft, K.; Connolly, E.; Duckwiler, G.; Harris, C.; Howard, V.; Johnston, S.; et al. Guidelines for the Management of Patients with Unruptured Intracranial Aneurysms: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2015, 46, 2368–2400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etminan, N.; Rinkel, G.J. Unruptured intracranial aneurysms: Development, rupture and preventive management. Nat. Rev. Neurol. 2016, 12, 699–713. [Google Scholar] [CrossRef] [PubMed]
- Hackenberg, K.A.M.; Rajabzadeh-Oghaz, H.; Dreier, R.; Buchholz, B.A.; Navid, A.; Rocke, D.M.; Abdulazim, A.; Hänggi, D.; Siddiqui, A.; Macdonald, R.L.; et al. Collagen Turnover in Relation to Risk Factors and Hemodynamics in Human Intracranial Aneurysms. Stroke 2020, 51, 1624–1628. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, R.L.; Schweizer, T.A. Spontaneous subarachnoid haemorrhage. Lancet 2017, 389, 655–666. [Google Scholar] [CrossRef]
- Hop, J.W.; Rinkel, G.J.; Algra, A.; van Gijn, J. Case-fatality rates and functional outcome after subarachnoid hemorrhage: A systematic review. Stroke 1997, 28, 660–664. [Google Scholar] [CrossRef]
- Ingall, T.; Asplund, K.; Mähönen, M.; Bonita, R. A multinational comparison of subarachnoid hemorrhage epidemiology in the WHO MONICA stroke study. Stroke 2000, 31, 1054–1061. [Google Scholar] [CrossRef]
- Darsaut, T.E.; Findlay, J.M.; Magro, E.; Kotowski, M.; Roy, D.; Weill, A.; Bojanowski, M.W.; Chaalala, C.; Iancu, D.; Lesiuk, H.; et al. Surgical clipping or endovascular coiling for unruptured intracranial aneurysms: A pragmatic randomised trial. J. Neurol. Neurosurg. Psychiatry 2017, 88, 663–668. [Google Scholar] [CrossRef]
- Falk Delgado, A.; Andersson, T.; Falk Delgado, A. Clinical outcome after surgical clipping or endovascular coiling for cerebral aneurysms: A pragmatic meta-analysis of randomized and non-randomized trials with short- and long-term follow-up. J. Neurointerv. Surg. 2017, 9, 264–277. [Google Scholar] [CrossRef]
- Malhotra, A.; Wu, X.; Geng, B.; Hersey, D.; Gandhi, D.; Sanelli, P. Management of Small Unruptured Intracranial Aneurysms: A Survey of Neuroradiologists. AJNR Am. J. Neuroradiol. 2018, 39, 875–880. [Google Scholar] [CrossRef]
- He, J.; Baxter, S.L.; Xu, J.; Xu, J.; Zhou, X.; Zhang, K. The practical implementation of artificial intelligence technologies in medicine. Nat. Med. 2019, 25, 30–36. [Google Scholar] [CrossRef]
- Larson, D.B.; Chen, M.C.; Lungren, M.P.; Halabi, S.S.; Stence, N.V.; Langlotz, C.P. Performance of a Deep-Learning Neural Network Model in Assessing Skeletal Maturity on Pediatric Hand Radiographs. Radiology 2018, 287, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Majkowska, A.; Mittal, S.; Steiner, D.F.; Reicher, J.J.; McKinney, S.M.; Duggan, G.E.; Eswaran, K.; Cameron Chen, P.H.; Liu, Y.; Kalidindi, S.R.; et al. Chest Radiograph Interpretation with Deep Learning Models: Assessment with Radiologist-adjudicated Reference Standards and Population-adjusted Evaluation. Radiology 2020, 294, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouridsen, K.; Thurner, P.; Zaharchuk, G. Artificial Intelligence Applications in Stroke. Stroke 2020, 51, 2573–2579. [Google Scholar] [CrossRef]
- Wang, S.; Summers, R.M. Machine learning and radiology. Med. Image Anal. 2012, 16, 933–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deo, R.C. Machine Learning in Medicine. Circulation 2015, 132, 1920–1930. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L.J.M.l. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Abu Alfeilat, H.A.; Hassanat, A.B.A.; Lasassmeh, O.; Tarawneh, A.S.; Alhasanat, M.B.; Eyal Salman, H.S.; Prasath, V.B.S. Effects of Distance Measure Choice on K-Nearest Neighbor Classifier Performance: A Review. Big Data 2019, 7, 221–248. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef] [Green Version]
- Guédon, A.; Thépenier, C.; Shotar, E.; Gabrieli, J.; Mathon, B.; Premat, K.; Lenck, S.; Degos, V.; Sourour, N.; Clarençon, F. Predictive score for complete occlusion of intracranial aneurysms treated by flow-diverter stents using machine learning. J. Neurointerv. Surg. 2021, 13, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Geng, J.; Yin, Y.; Hu, M.; Yang, G.; Xiang, S.; Zhai, X.; Ji, Z.; Fan, X.; Hu, P.; et al. Fully automated intracranial aneurysm detection and segmentation from digital subtraction angiography series using an end-to-end spatiotemporal deep neural network. J. Neurointerv. Surg. 2020, 12, 1023–1027. [Google Scholar] [CrossRef] [PubMed]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H. Artificial intelligence in radiology. Nat. Rev. Cancer. 2018, 18, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Villablanca, J.P.; Duckwiler, G.R.; Jahan, R.; Tateshima, S.; Martin, N.A.; Frazee, J.; Gonzalez, N.R.; Sayre, J.; Vinuela, F.V. Natural history of asymptomatic unruptured cerebral aneurysms evaluated at CT angiography: Growth and rupture incidence and correlation with epidemiologic risk factors. Radiology 2013, 269, 258–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gondar, R.; Gautschi, O.P.; Cuony, J.; Perren, F.; Jägersberg, M.; Corniola, M.V.; Schatlo, B.; Molliqaj, G.; Morel, S.; Kulcsár, Z.; et al. Unruptured intracranial aneurysm follow-up and treatment after morphological change is safe: Observational study and systematic review. J. Neurol. Neurosurg. Psychiatry 2016, 87, 1277–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Backes, D.; Rinkel, G.J.E.; Greving, J.P.; Velthuis, B.K.; Murayama, Y.; Takao, H.; Ishibashi, T.; Igase, M.; terBrugge, K.G.; Agid, R.; et al. ELAPSS score for prediction of risk of growth of unruptured intracranial aneurysms. Neurology 2017, 88, 1600–1606. [Google Scholar] [CrossRef]
- Alg, V.S.; Sofat, R.; Houlden, H.; Werring, D.J. Genetic risk factors for intracranial aneurysms: A meta-analysis in more than 116,000 individuals. Neurology 2013, 80, 2154–2165. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.H.; Ahn, C.; Ryu, H.; Kang, H.S.; Jeong, S.K.; Jung, K.H. Clinical Factors Associated with the Risk of Intracranial Aneurysm Rupture in Autosomal Dominant Polycystic Kidney Disease. Cerebrovasc. Dis. 2021, 50, 339–346. [Google Scholar] [CrossRef]
- Wei, S.; Yuan, X.; Fan, F.; Guo, X.B.; Guan, S. The relationship between the level of vitamin D and ruptured intracranial aneurysms. Sci. Rep. 2021, 11, 11881. [Google Scholar] [CrossRef]
- Baharoglu, M.I.; Schirmer, C.M.; Hoit, D.A.; Gao, B.L.; Malek, A.M. Aneurysm inflow-angle as a discriminant for rupture in sidewall cerebral aneurysms: Morphometric and computational fluid dynamic analysis. Stroke 2010, 41, 1423–1430. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Lan, L.; Lin, B.; Chen, W.; Wang, M.; Li, R.; Yang, Y.; Zhao, B.; Hu, Z.; et al. Prediction of rupture risk in anterior communicating artery aneurysms with a feed-forward artificial neural network. Eur. Radiol. 2018, 28, 3268–3275. [Google Scholar] [CrossRef]
- Heo, J.; Park, S.J.; Kang, S.H.; Oh, C.W.; Bang, J.S.; Kim, T. Prediction of Intracranial Aneurysm Risk using Machine Learning. Sci. Rep. 2020, 10, 6921. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.H.; Kim, H.C.; Rhim, J.K.; Park, J.J.; Sigmund, D.; Park, M.C.; Jeong, J.H.; Jeon, J.P. Multi-View Convolutional Neural Networks in Rupture Risk Assessment of Small, Unruptured Intracranial Aneurysms. J. Pers. Med. 2021, 11, 239. [Google Scholar] [CrossRef]
- Kim, H.C.; Rhim, J.K.; Ahn, J.H.; Park, J.J.; Moon, J.U.; Hong, E.P.; Kim, M.R.; Kim, S.G.; Lee, S.H.; Jeong, J.H.; et al. Machine Learning Application for Rupture Risk Assessment in Small-Sized Intracranial Aneurysm. J. Clin. Med. 2019, 8, 683. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Li, W.; Tian, Z.; Zhang, Y.; Wang, K.; Zhang, Y.; Liu, J.; Yang, X. Stability Assessment of Intracranial Aneurysms Using Machine Learning Based on Clinical and Morphological Features. Transl. Stroke Res. 2020, 11, 1287–1295. [Google Scholar] [CrossRef] [PubMed]
- Detmer, F.J.; Luckehe, D.; Mut, F.; Slawski, M.; Hirsch, S.; Bijlenga, P.; von Voigt, G.; Cebral, J.R. Comparison of statistical learning approaches for cerebral aneurysm rupture assessment. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Leemans, E.L.; Cornelissen, B.M.W.; Slump, C.H.; Majoie, C.; Cebral, J.R.; Marquering, H.A. Comparing Morphology and Hemodynamics of Stable-versus-Growing and Grown Intracranial Aneurysms. AJNR Am. J. Neuroradiol. 2019, 40, 2102–2110. [Google Scholar] [PubMed]
- Liu, Q.; Jiang, P.; Jiang, Y.; Ge, H.; Li, S.; Jin, H.; Li, Y. Prediction of Aneurysm Stability Using a Machine Learning Model Based on PyRadiomics-Derived Morphological Features. Stroke 2019, 50, 2314–2321. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Q.; Jiang, P.; Yang, J.; Li, M.; Chen, S.; Mo, S.; Zhang, Y.; Ma, X.; Cao, Y.; et al. Multidimensional predicting model of intracranial aneurysm stability with backpropagation neural network: A preliminary study. Neurol. Sci. 2021, 42, 5007–5019. [Google Scholar] [CrossRef]
- Xiong, W.; Chen, T.; Li, J.; Xiang, L.; Zhang, C.; Xiang, L.; Li, Y.; Chu, D.; Wu, Y.; Jie, Q.; et al. Interpretable machine learning model to predict rupture of small intracranial aneurysms and facilitate clinical decision. Neurol. Sci. 2022, 43, 6371–6379. [Google Scholar] [CrossRef]
- Kim, D.W.; Jang, H.Y.; Kim, K.W.; Shin, Y.; Park, S.H. Design Characteristics of Studies Reporting the Performance of Artificial Intelligence Algorithms for Diagnostic Analysis of Medical Images: Results from Recently Published Papers. Korean J. Radiol. 2019, 20, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.K.; Kea, B.; Wang, R. Recognising Bias in Studies of Diagnostic Tests Part 1: Patient Selection. Emerg. Med. J. EMJ 2019, 36, 431–434. [Google Scholar] [CrossRef]
- Lyell, D.; Coiera, E. Automation bias and verification complexity: A systematic review. J. Am. Med. Inform. Assoc. JAMIA 2017, 24, 423–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Recht, M.P.; Dewey, M.; Dreyer, K.; Langlotz, C.; Niessen, W.; Prainsack, B.; Smith, J.J. Integrating artificial intelligence into the clinical practice of radiology: Challenges and recommendations. Eur. Radiol. 2020, 30, 3576–3584. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Miao, C.; Schoepf, U.J.; Savage, R.H.; Dargis, D.M.; Pan, C.; Chai, X.; Li, X.L.; Xia, S.; Zhang, X.; et al. A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images. Nat. Commun. 2020, 11, 6090. [Google Scholar] [CrossRef]
- Shi, Z.; Hu, B.; Schoepf, U.J.; Savage, R.H.; Dargis, D.M.; Pan, C.W.; Li, X.L.; Ni, Q.Q.; Lu, G.M.; Zhang, L.J. Artificial Intelligence in the Management of Intracranial Aneurysms: Current Status and Future Perspectives. AJNR Am. J. Neuroradiol. 2020, 41, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Lei, Y.; Su, J.; Yang, H.; Ni, W.; Yu, J.; Gu, Y.; Mao, Y. A Review of Artificial Intelligence in Cerebrovascular Disease Imaging: Applications and Challenges. Curr. Neuropharmacol. 2022, 20, 1359–1382. [Google Scholar] [CrossRef] [PubMed]
- Hesamian, M.H.; Jia, W.; He, X.; Kennedy, P. Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges. J. Digit. Imaging 2019, 32, 582–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zeng, L.; Lu, X.; Chen, K.; Yu, M.; Wang, B.; Zhao, M. A Review of Artificial Intelligence in the Rupture Risk Assessment of Intracranial Aneurysms: Applications and Challenges. Brain Sci. 2023, 13, 1056. https://doi.org/10.3390/brainsci13071056
Li X, Zeng L, Lu X, Chen K, Yu M, Wang B, Zhao M. A Review of Artificial Intelligence in the Rupture Risk Assessment of Intracranial Aneurysms: Applications and Challenges. Brain Sciences. 2023; 13(7):1056. https://doi.org/10.3390/brainsci13071056
Chicago/Turabian StyleLi, Xiaopeng, Lang Zeng, Xuanzhen Lu, Kun Chen, Maling Yu, Baofeng Wang, and Min Zhao. 2023. "A Review of Artificial Intelligence in the Rupture Risk Assessment of Intracranial Aneurysms: Applications and Challenges" Brain Sciences 13, no. 7: 1056. https://doi.org/10.3390/brainsci13071056
APA StyleLi, X., Zeng, L., Lu, X., Chen, K., Yu, M., Wang, B., & Zhao, M. (2023). A Review of Artificial Intelligence in the Rupture Risk Assessment of Intracranial Aneurysms: Applications and Challenges. Brain Sciences, 13(7), 1056. https://doi.org/10.3390/brainsci13071056