Effects of Stress Exposure to Pain Perception in Pre-Clinical Studies: Focus on the Nociceptin/Orphanin FQ–NOP Receptor System
Abstract
:1. Introduction
2. Animal Models of Stress-Induced Analgesia
2.1. Footshock Stress
2.2. Forced Swim Stress
2.3. Restraint Stress
3. Animal Models of Stress-Induced Hyperalgesia
3.1. Forced Swim Stress
3.2. Restraint Stress
3.3. Repeated Cold Stress
4. Animal Models of Stress-Induced Migraine
5. The N/OFQ–NOP Receptor System
6. Role of the N/OFQ–NOP Receptor System at the Interplay between Stress and Pain
6.1. The N/OFQ–NOP Receptor System and SIA
6.2. The N/OFQ–NOP Receptor System and SIH
7. Conclusions and Future Perspectives
8. Limitation of the Review
Author Contributions
Funding
Conflicts of Interest
References
- Butler, R.K.; Finn, D.P. Stress-induced analgesia. Prog. Neurobiol. 2009, 88, 184–202. [Google Scholar] [CrossRef] [PubMed]
- Jennings, E.M.; Okine, B.N.; Roche, M.; Finn, D.P. Stress-induced hyperalgesia. Prog. Neurobiol. 2014, 121, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.; Doerr, J.M.; Strahler, J.; Mewes, R.; Thieme, K.; Nater, U.M. Stress exacerbates pain in the everyday lives of women with fibromyalgia syndrome--The role of cortisol and alpha-amylase. Psychoneuroendocrinology 2016, 63, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Silman, A.J. Psychological stress and fibromyalgia: A review of the evidence suggesting a neuroendocrine link. Arthritis Res. Ther. 2004, 6, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Bazzichi, L.; Giorgi, V.; Di Franco, M.; Iannuccelli, C.; Bongiovanni, S.; Batticciotto, A.; Pellegrino, G.; Sarzi Puttini, P. Environmental factors and fibromyalgia syndrome: A narrative review. Clin. Exp. Rheumatol. 2024, 42, 1240–1247. [Google Scholar] [CrossRef]
- Van Houdenhove, B.; Luyten, P. Stress, depression and fibromyalgia. Acta Neurol. Belg. 2006, 106, 149–156. [Google Scholar]
- Belei, O.; Basaca, D.-G.; Olariu, L.; Pantea, M.; Bozgan, D.; Nanu, A.; Sîrbu, I.; Mărginean, O.; Enătescu, I. The Interaction between Stress and Inflammatory Bowel Disease in Pediatric and Adult Patients. J. Clin. Med. 2024, 13, 1361. [Google Scholar] [CrossRef]
- Taylor, S.-S.; Noor, N.; Urits, I.; Paladini, A.; Sadhu, M.S.; Gibb, C.; Carlson, T.; Myrcik, D.; Varrassi, G.; Viswanath, O. Complex regional pain syndrome: A comprehensive review. Pain Ther. 2021, 10, 875–892. [Google Scholar] [CrossRef]
- Grande, L.A.; Loeser, J.D.; Ozuna, J.; Ashleigh, A.; Samii, A. Complex regional pain syndrome as a stress response. Pain 2004, 110, 495–498. [Google Scholar] [CrossRef]
- Davis, J.A.; Robinson, R.L.; Le, T.K.; Xie, J. Incidence and impact of pain conditions and comorbid illnesses. J. Pain Res. 2011, 4, 331–345. [Google Scholar] [CrossRef]
- Nilsen, K.B.; Sand, T.; Westgaard, R.H.; Stovner, L.J.; White, L.R.; Bang Leistad, R.; Helde, G.; Rø, M. Autonomic activation and pain in response to low-grade mental stress in fibromyalgia and shoulder/neck pain patients. Eur. J. Pain 2007, 11, 743–755. [Google Scholar] [CrossRef] [PubMed]
- Stubberud, A.; Buse, D.C.; Kristoffersen, E.S.; Linde, M.; Tronvik, E. Is there a causal relationship between stress and migraine? Current evidence and implications for management. J. Headache Pain 2021, 22, 155. [Google Scholar] [CrossRef] [PubMed]
- Sauro, K.M.; Becker, W.J. The stress and migraine interaction. Headache 2009, 49, 1378–1386. [Google Scholar] [CrossRef] [PubMed]
- Golmohammadi, H.; Shirmohammadi, D.; Mazaheri, S.; Haghparast, A. D2-like dopamine receptors blockade within the dentate gyrus shows a greater effect on stress-induced analgesia in the tail-flick test compared to D1-like dopamine receptors. Behav. Pharmacol. 2024, 35, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Cecconello, A.L.; Torres, I.L.S.; Oliveira, C.; Zanini, P.; Niches, G.; Ribeiro, M.F.M. DHEA administration modulates stress-induced analgesia in rats. Physiol. Behav. 2016, 157, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Ghasemzadeh, Z.; Rezayof, A. Ventral hippocampal nicotinic acetylcholine receptors mediate stress-induced analgesia in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2015, 56, 235–242. [Google Scholar] [CrossRef]
- Atwal, N.; Winters, B.L.; Vaughan, C.W. Endogenous cannabinoid modulation of restraint stress-induced analgesia in thermal nociception. J. Neurochem. 2020, 152, 92–102. [Google Scholar] [CrossRef]
- Wolf, G.; Yirmiya, R.; Kreisel, T.; Goshen, I.; Weidenfeld, J.; Poole, S.; Shavit, Y. Interleukin-1 signaling modulates stress-induced analgesia. Brain Behav. Immun. 2007, 21, 652–659. [Google Scholar] [CrossRef]
- Lee, M.T.; Chiu, Y.-T.; Chiu, Y.-C.; Hor, C.C.; Lee, H.-J.; Guerrini, R.; Calo, G.; Chiou, L.-C. Neuropeptide S-initiated sequential cascade mediated by OX1, NK1, mGlu5 and CB1 receptors: A pivotal role in stress-induced analgesia. J. Biomed. Sci. 2020, 27, 7. [Google Scholar] [CrossRef]
- Kamei, J.; Kawashima, N.; Ohhashi, Y.; Kasuya, Y. Effects of diabetes on stress-induced analgesia in mice. Brain Res. 1992, 580, 180–184. [Google Scholar] [CrossRef]
- Takahashi, M.; Tokuyama, S.; Kaneto, H. Distinctive implication of emotional factors in various types of stress-induced analgesia. Jpn. J. Pharmacol. 1988, 46, 418–420. [Google Scholar] [CrossRef]
- Ahmad, A.H.; Ismail, Z.; Than, M.; Ahmad, A. Profound swim stress-induced analgesia with ketamine. Malays. J. Med. Sci. 2008, 15, 13–22. [Google Scholar]
- Shamsizadeh, A.; Soliemani, N.; Mohammad-Zadeh, M.; Azhdari-Zarmehri, H. Permanent lesion in rostral ventromedial medulla potentiates swim stress-induced analgesia in formalin test. Iran. J. Basic Med. Sci. 2014, 17, 209–215. [Google Scholar]
- Moteshakereh, S.M.; Nikoohemmat, M.; Farmani, D.; Khosrowabadi, E.; Salehi, S.; Haghparast, A. The stress-induced antinociceptive responses to the persistent inflammatory pain involve the orexin receptors in the nucleus accumbens. Neuropeptides 2023, 98, 102323. [Google Scholar] [CrossRef]
- Kurrikoff, K.; Inno, J.; Matsui, T.; Vasar, E. Stress-induced analgesia in mice: Evidence for interaction between endocannabinoids and cholecystokinin. Eur. J. Neurosci. 2008, 27, 2147–2155. [Google Scholar] [CrossRef]
- Lewis, J.W.; Cannon, J.T.; Liebeskind, J.C. Opioid and nonopioid mechanisms of stress analgesia. Science 1980, 208, 623–625. [Google Scholar] [CrossRef]
- Lewis, J.W.; Sherman, J.E.; Liebeskind, J.C. Opioid and non-opioid stress analgesia: Assessment of tolerance and cross-tolerance with morphine. J. Neurosci. 1981, 1, 358–363. [Google Scholar] [CrossRef]
- Maier, S.F.; Sherman, J.E.; Lewis, J.W.; Terman, G.W.; Liebeskind, J.C. The opioid/nonopioid nature of stress-induced analgesia and learned helplessness. J. Exp. Psychol. Anim. Behav. Process. 1983, 9, 80–90. [Google Scholar] [CrossRef]
- Watkins, L.R.; Cobelli, D.A.; Faris, P.; Aceto, M.D.; Mayer, D.J. Opiate vs. non-opiate footshock-induced analgesia (FSIA): The body region shocked is a critical factor. Brain Res. 1982, 242, 299–308. [Google Scholar] [CrossRef]
- Watkins, L.R.; Mayer, D.J. Involvement of spinal opioid systems in footshock-induced analgesia: Antagonism by naloxone is possible only before induction of analgesia. Brain Res. 1982, 242, 309–326. [Google Scholar] [CrossRef]
- Connell, K.; Bolton, N.; Olsen, D.; Piomelli, D.; Hohmann, A.G. Role of the basolateral nucleus of the amygdala in endocannabinoid-mediated stress-induced analgesia. Neurosci. Lett. 2006, 397, 180–184. [Google Scholar] [CrossRef]
- Suplita, R.L.; Farthing, J.N.; Gutierrez, T.; Hohmann, A.G. Inhibition of fatty-acid amide hydrolase enhances cannabinoid stress-induced analgesia: Sites of action in the dorsolateral periaqueductal gray and rostral ventromedial medulla. Neuropharmacology 2005, 49, 1201–1209. [Google Scholar] [CrossRef]
- Vaccarino, A.L.; Clavier, M.C. Blockade of tolerance to stress-induced analgesia by MK-801 in mice. Pharmacol. Biochem. Behav. 1997, 56, 435–439. [Google Scholar] [CrossRef]
- Zareie, F.; Ghalebandi, S.; Askari, K.; Mousavi, Z.; Haghparast, A. Orexin receptors in the CA1 region of hippocampus modulate the stress-induced antinociceptive responses in an animal model of persistent inflammatory pain. Peptides 2022, 147, 170679. [Google Scholar] [CrossRef]
- Faramarzi, G.; Zendehdel, M.; Haghparast, A. D1- and D2-like dopamine receptors within the nucleus accumbens contribute to stress-induced analgesia in formalin-related pain behaviours in rats. Eur. J. Pain 2016, 20, 1423–1432. [Google Scholar] [CrossRef]
- Merdasi, P.G.; Dezfouli, R.A.; Mazaheri, S.; Haghparast, A. Blocking the dopaminergic receptors in the hippocampal dentate gyrus reduced the stress-induced analgesia in persistent inflammatory pain in the rat. Physiol. Behav. 2022, 253, 113848. [Google Scholar] [CrossRef]
- Abdi Dezfouli, R.; Ghanbari Merdasi, P.; Rashvand, M.; Mousavi, Z.; Haghparast, A. The modulatory role of dopamine receptors within the hippocampal cornu ammonis area 1 in stress-induced analgesia in an animal model of persistent inflammatory pain. Behav. Pharmacol. 2022, 33, 492–504. [Google Scholar] [CrossRef]
- Bodnar, R.J.; Kelly, D.D.; Spiaggia, A.; Ehrenberg, C.; Glusman, M. Dose-dependent reductions by naloxone of analgesia induced by cold-water stress. Pharmacol. Biochem. Behav. 1978, 8, 667–672. [Google Scholar] [CrossRef]
- Terman, G.W.; Morgan, M.J.; Liebeskind, J.C. Opioid and non-opioid stress analgesia from cold water swim: Importance of stress severity. Brain Res. 1986, 372, 167–171. [Google Scholar] [CrossRef]
- O’Connor, P.; Chipkin, R.E. Comparisons between warm and cold water swim stress in mice. Life Sci. 1984, 35, 631–639. [Google Scholar] [CrossRef]
- Christie, M.J.; Trisdikoon, P.; Chesher, G.B. Tolerance and cross tolerance with morphine resulting from physiological release of endogenous opiates. Life Sci. 1982, 31, 839–845. [Google Scholar] [CrossRef]
- Hough, L.B.; Nalwalk, J.W.; Yang, W.; Ding, X. Significance of neuronal cytochrome P450 activity in opioid-mediated stress-induced analgesia. Brain Res. 2014, 1578, 30–37. [Google Scholar] [CrossRef]
- Valverde, O.; Ledent, C.; Beslot, F.; Parmentier, M.; Roques, B.P. Reduction of stress-induced analgesia but not of exogenous opioid effects in mice lacking CB1 receptors. Eur. J. Neurosci. 2000, 12, 533–539. [Google Scholar] [CrossRef]
- Rizzi, A.; Marzola, G.; Bigoni, R.; Guerrini, R.; Salvadori, S.; Mogil, J.S.; Regoli, D.; Calò, G. Endogenous nociceptin signaling and stress-induced analgesia. Neuroreport 2001, 12, 3009–3013. [Google Scholar] [CrossRef]
- Parikh, D.; Hamid, A.; Friedman, T.C.; Nguyen, K.; Tseng, A.; Marquez, P.; Lutfy, K. Stress-induced analgesia and endogenous opioid peptides: The importance of stress duration. Eur. J. Pharmacol. 2011, 650, 563–567. [Google Scholar] [CrossRef]
- Mogil, J.S.; Sternberg, W.F.; Kest, B.; Marek, P.; Liebeskind, J.C. Sex differences in the antagonism of swim stress-induced analgesia: Effects of gonadectomy and estrogen replacement. Pain 1993, 53, 17–25. [Google Scholar] [CrossRef]
- Ghalebandi, S.; Zareie, F.; Askari, K.; Yuzugulen, J.; Haghparast, A. Intra-CA1 injection of orexin receptors antagonism attenuates the stress-induced analgesia in a rat acute pain model. Behav. Brain Res. 2022, 423, 113785. [Google Scholar] [CrossRef]
- Nikoohemmat, M.; Farmani, D.; Moteshakereh, S.M.; Salehi, S.; Rezaee, L.; Haghparast, A. Intra-accumbal orexinergic system contributes to the stress-induced antinociceptive behaviors in the animal model of acute pain in rats. Behav. Pharmacol. 2024, 35, 92–102. [Google Scholar] [CrossRef]
- Bolouri-Roudsari, A.; Baghani, M.; Askari, K.; Mazaheri, S.; Haghparast, A. The integrative role of orexin-1 and orexin-2 receptors within the hippocampal dentate gyrus in the modulation of the stress-induced antinociception in the formalin pain test in the rat. Behav. Pharmacol. 2024, 35, 14–25. [Google Scholar] [CrossRef]
- Panahi, P.S.; Esmaili, S.; Ghalandari-Shamami, M.; Mousavi, Z.; Haghparast, A. Similar functional roles of the Orexin-1 and Orexin-2 receptors within the dentate gyrus area of the hippocampus in the stress-induced antinociceptive responses in the acute pain model in the rat. Physiol. Behav. 2023, 270, 114311. [Google Scholar] [CrossRef]
- Gamaro, G.D.; Xavier, M.H.; Denardin, J.D.; Pilger, J.A.; Ely, D.R.; Ferreira, M.B.; Dalmaz, C. The effects of acute and repeated restraint stress on the nociceptive response in rats. Physiol. Behav. 1998, 63, 693–697. [Google Scholar] [CrossRef]
- Vázquez López, J.L.; Schild, L.; Günther, T.; Schulz, S.; Neurath, H.; Becker, A. The effects of kratom on restraint-stress-induced analgesia and its mechanisms of action. J. Ethnopharmacol. 2017, 205, 178–185. [Google Scholar] [CrossRef]
- Calcagnetti, D.J.; Stafinsky, J.L.; Crisp, T. A single restraint stress exposure potentiates analgesia induced by intrathecally administered DAGO. Brain Res. 1992, 592, 305–309. [Google Scholar] [CrossRef]
- Dezfouli, R.A.; Mazaheri, S.; Mousavi, Z.; Haghparast, A. Restraint stress induced the antinociceptive responses via the dopamine receptors within the hippocampal CA1 area in animal model of persistent inflammatory pain. Behav. Brain Res. 2023, 443, 114307. [Google Scholar] [CrossRef]
- Faramarzi, G.; Charmchi, E.; Salehi, S.; Zendehdel, M.; Haghparast, A. Intra-accumbal dopaminergic system modulates the restraint stress-induced antinociceptive behaviours in persistent inflammatory pain. Eur. J. Pain 2021, 25, 862–871. [Google Scholar] [CrossRef]
- Gerashchenko, D.; Horvath, T.L.; Xie, X.S. Direct inhibition of hypocretin/orexin neurons in the lateral hypothalamus by nociceptin/orphanin FQ blocks stress-induced analgesia in rats. Neuropharmacology 2011, 60, 543–549. [Google Scholar] [CrossRef]
- Ibironke, G.F.; Mordi, N.E. Effect of restraint stress on nociceptive responses in rats: Role of the histaminergic system. Niger. J. Physiol. Sci. 2011, 26, 139–141. [Google Scholar]
- Farmani, D.; Moteshakereh, S.M.; Nikoohemmat, M.; Askari, R.; Salehi, S.; Haghparast, A. Restraint stress-induced antinociceptive effects in acute pain: Involvement of orexinergic system in the nucleus accumbens. Behav. Brain Res. 2024, 472, 115133. [Google Scholar] [CrossRef]
- Fuchs, P.N.; Melzack, R. Restraint reduces formalin-test pain but the effect is not influenced by lesions of the hypothalamic paraventricular nucleus. Exp. Neurol. 1996, 139, 299–305. [Google Scholar] [CrossRef]
- Heidari-Oranjaghi, N.; Azhdari-Zarmehri, H.; Erami, E.; Haghparast, A. Antagonism of orexin-1 receptors attenuates swim- and restraint stress-induced antinociceptive behaviors in formalin test. Pharmacol. Biochem. Behav. 2012, 103, 299–307. [Google Scholar] [CrossRef]
- Ke, J.; Hu, X.; Wang, C.; Zhang, Y. Identification of the hub susceptibility genes and related common transcription factors in the skeletal muscle of Type 2 Diabetes Mellitus. BMC Endocr. Disord. 2022, 22, 276. [Google Scholar] [CrossRef]
- Lee, H.-J.; Chang, L.-Y.; Ho, Y.-C.; Teng, S.-F.; Hwang, L.-L.; Mackie, K.; Chiou, L.-C. Stress induces analgesia via orexin 1 receptor-initiated endocannabinoid/CB1 signaling in the mouse periaqueductal gray. Neuropharmacology 2016, 105, 577–586. [Google Scholar] [CrossRef]
- Sadeghi, M.; Zareie, F.; Gholami, M.; Nazari-Serenjeh, F.; Ghalandari-Shamami, M.; Haghparast, A. Contribution of the intra-hippocampal orexin system in the regulation of restraint stress response to pain-related behaviors in the formalin test. Behav. Pharmacol. 2024, 35, 103–113. [Google Scholar] [CrossRef]
- Askari, K.; Oryan, S.; Eidi, A.; Zaringhalam, J.; Haghparast, A. Blockade of the orexin receptors in the ventral tegmental area could attenuate the stress-induced analgesia: A behavioral and molecular study. Prog. Neuropsychopharmacol. Biol. Psychiatry 2023, 120, 110639. [Google Scholar] [CrossRef]
- Suarez-Roca, H.; Quintero, L.; Arcaya, J.L.; Maixner, W.; Rao, S.G. Stress-induced muscle and cutaneous hyperalgesia: Differential effect of milnacipran. Physiol. Behav. 2006, 88, 82–87. [Google Scholar] [CrossRef]
- Quintero, L.; Moreno, M.; Avila, C.; Arcaya, J.; Maixner, W.; Suarez-Roca, H. Long-lasting delayed hyperalgesia after subchronic swim stress. Pharmacol. Biochem. Behav. 2000, 67, 449–458. [Google Scholar] [CrossRef]
- Xu, G.-Z.; Xue, Y.; Wei, S.-Q.; Li, J.-H.; Traub, R.J.; Wang, M.-D.; Cao, D.-Y. Valproate reverses stress-induced somatic hyperalgesia and visceral hypersensitivity by up-regulating spinal 5-HT2C receptor expression in female rats. Neuropharmacology 2020, 165, 107926. [Google Scholar] [CrossRef]
- Guevara, C.; Fernandez, A.C.; Cardenas, R.; Suarez-Roca, H. Reduction of spinal PGE2 concentrations prevents swim stress-induced thermal hyperalgesia. Neurosci. Lett. 2015, 591, 110–114. [Google Scholar] [CrossRef]
- Suarez-Roca, H.; Quintero, L.; Avila, R.; Medina, S.; De Freitas, M.; Cárdenas, R. Central immune overactivation in the presence of reduced plasma corticosterone contributes to swim stress-induced hyperalgesia. Brain Res. Bull. 2014, 100, 61–69. [Google Scholar] [CrossRef]
- Quintero, L.; Cuesta, M.C.; Silva, J.A.; Arcaya, J.L.; Pinerua-Suhaibar, L.; Maixner, W.; Suarez-Roca, H. Repeated swim stress increases pain-induced expression of c-Fos in the rat lumbar cord. Brain Res. 2003, 965, 259–268. [Google Scholar] [CrossRef]
- Quintero, L.; Cardenas, R.; Suarez-Roca, H. Stress-induced hyperalgesia is associated with a reduced and delayed GABA inhibitory control that enhances post-synaptic NMDA receptor activation in the spinal cord. Pain 2011, 152, 1909–1922. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Roca, H.; Leal, L.; Silva, J.A.; Pinerua-Shuhaibar, L.; Quintero, L. Reduced GABA neurotransmission underlies hyperalgesia induced by repeated forced swimming stress. Behav. Brain Res. 2008, 189, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Ro, J.Y.; Zhang, Y.; Asgar, J.; Shou, H.; Chung, M.-K.; Melemedjian, O.K.; Da Silva, J.T.; Chen, S. Forced swim stress exacerbates inflammation-induced hyperalgesia and oxidative stress in the rat trigeminal ganglia. Front. Pain Res. 2024, 5, 1372942. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Liu, S.; Yang, J.; Li, R.; Mao, M.; Feng, S.; Wang, X. miR-3120/Hsc70 participates in forced swim stress-induced mechanical hyperalgesia in rats in an inflammatory state. Mol. Med. Report. 2024, 29, 3. [Google Scholar] [CrossRef]
- Li, Y.-X.; Li, J.-H.; Guo, Y.; Tao, Z.-Y.; Qin, S.-H.; Traub, R.J.; An, H.; Cao, D.-Y. Oxytocin inhibits hindpaw hyperalgesia induced by orofacial inflammation combined with stress. Mol. Pain 2022, 18, 17448069221089592. [Google Scholar] [CrossRef]
- Imbe, H.; Kimura, A.; Donishi, T.; Kaneoke, Y. Repeated forced swim stress enhances CFA-evoked thermal hyperalgesia and affects the expressions of pCREB and c-Fos in the insular cortex. Neuroscience 2014, 259, 1–11. [Google Scholar] [CrossRef]
- Duan, L.-L.; Qiu, X.-Y.; Wei, S.-Q.; Su, H.-Y.; Bai, F.-R.; Traub, R.J.; Zhou, Q.; Cao, D.-Y. Spinal CCK contributes to somatic hyperalgesia induced by orofacial inflammation combined with stress in adult female rats. Eur. J. Pharmacol. 2021, 913, 174619. [Google Scholar] [CrossRef]
- Jennings, E.M.; Okine, B.N.; Olango, W.M.; Roche, M.; Finn, D.P. Repeated forced swim stress differentially affects formalin-evoked nociceptive behaviour and the endocannabinoid system in stress normo-responsive and stress hyper-responsive rat strains. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 64, 181–189. [Google Scholar] [CrossRef]
- Liu, L.-Y.; Zhang, R.-L.; Chen, L.; Zhao, H.-Y.; Cai, J.; Wang, J.-K.; Guo, D.-Q.; Cui, Y.-J.; Xing, G.-G. Chronic stress increases pain sensitivity via activation of the rACC-BLA pathway in rats. Exp. Neurol. 2019, 313, 109–123. [Google Scholar] [CrossRef]
- Li, M.-J.; Liu, L.-Y.; Chen, L.; Cai, J.; Wan, Y.; Xing, G.-G. Chronic stress exacerbates neuropathic pain via the integration of stress-affect-related information with nociceptive information in the central nucleus of the amygdala. Pain 2017, 158, 717–739. [Google Scholar] [CrossRef]
- Calcagnetti, D.J.; Holtzman, S.G. Potentiation of morphine analgesia in rats given a single exposure to restraint stress immobilization. Pharmacol. Biochem. Behav. 1992, 41, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Long, C.C.; Sadler, K.E.; Kolber, B.J. Hormonal and molecular effects of restraint stress on formalin-induced pain-like behavior in male and female mice. Physiol. Behav. 2016, 165, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Gameiro, G.H.; Gameiro, P.H.; Andrade, A.d.S.; Pereira, L.F.; Arthuri, M.T.; Marcondes, F.K.; Veiga, M.C.F.d.A. Nociception- and anxiety-like behavior in rats submitted to different periods of restraint stress. Physiol. Behav. 2006, 87, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Wang, Y.; Luo, X.; Zhan, G. Chronic restraint stress induces abnormal behaviors in pain sensitivity and cognitive function in mice: The role of Keap1/Nrf2 pathway. Stress 2024, 27, 2316050. [Google Scholar] [CrossRef]
- Yoshizawa, K.; Ukai, S.; Kuroda, J.; Yamauchi, T.; Yamada, D.; Saitoh, A.; Iriyama, S.; Nishino, S.; Miyazaki, S. Alfaxalone improved in acute stress-induced tactile hypersensitivity and anxiety-like behavior in mice. Neuropsychopharmacol. Rep. 2022, 42, 213–217. [Google Scholar] [CrossRef]
- Bardin, L.; Malfetes, N.; Newman-Tancredi, A.; Depoortère, R. Chronic restraint stress induces mechanical and cold allodynia, and enhances inflammatory pain in rat: Relevance to human stress-associated painful pathologies. Behav. Brain Res. 2009, 205, 360–366. [Google Scholar] [CrossRef]
- Spezia Adachi, L.N.; Caumo, W.; Laste, G.; Fernandes Medeiros, L.; Ripoll Rozisky, J.; de Souza, A.; Fregni, F.; Torres, I.L.S. Reversal of chronic stress-induced pain by transcranial direct current stimulation (tDCS) in an animal model. Brain Res. 2012, 1489, 17–26. [Google Scholar] [CrossRef]
- Pluma-Pluma, A.; García, G.; Murbartián, J. Chronic restraint stress and social transfer of stress produce tactile allodynia mediated by the HMGB1/TNFα/TNFR1 pathway in female and male rats. Physiol. Behav. 2024, 274, 114418. [Google Scholar] [CrossRef]
- Imbe, H.; Ihara, H. Mu opioid receptor expressing neurons in the rostral ventromedial medulla are the source of mechanical hypersensitivity induced by repeated restraint stress. Brain Res. 2023, 1815, 148465. [Google Scholar] [CrossRef]
- Da Silva Torres, I.L.; Cucco, S.N.S.; Bassani, M.; Duarte, M.S.; Silveira, P.P.; Vasconcellos, A.P.; Tabajara, A.S.; Dantas, G.; Fontella, F.U.; Dalmaz, C.; et al. Long-lasting delayed hyperalgesia after chronic restraint stress in rats-effect of morphine administration. Neurosci. Res. 2003, 45, 277–283. [Google Scholar] [CrossRef]
- Imbe, H.; Kimura, A. Significance of medial preoptic area among the subcortical and cortical areas that are related to pain regulation in the rats with stress-induced hyperalgesia. Brain Res. 2020, 1735, 146758. [Google Scholar] [CrossRef] [PubMed]
- Borbély, É.; Kecskés, A.; Kun, J.; Kepe, E.; Fülöp, B.; Kovács-Rozmer, K.; Scheich, B.; Renner, É.; Palkovits, M.; Helyes, Z. Hemokinin-1 is a mediator of chronic restraint stress-induced pain. Sci. Rep. 2023, 13, 20030. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Palma, E.J.; Velazquez-Lagunas, I.; Salinas-Abarca, A.B.; Vidal-Cantú, G.C.; Escoto-Rosales, M.J.; Castañeda-Corral, G.; Fernández-Guasti, A.; Granados-Soto, V. Spinal alarmin HMGB1 and the activation of TLR4 lead to chronic stress-induced nociceptive hypersensitivity in rodents. Eur. J. Pharmacol. 2023, 952, 175804. [Google Scholar] [CrossRef] [PubMed]
- Fülöp, B.; Hunyady, Á.; Bencze, N.; Kormos, V.; Szentes, N.; Dénes, Á.; Lénárt, N.; Borbély, É.; Helyes, Z. IL-1 Mediates Chronic Stress-Induced Hyperalgesia Accompanied by Microglia and Astroglia Morphological Changes in Pain-Related Brain Regions in Mice. Int. J. Mol. Sci. 2023, 24, 5479. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Wang, D.; Lu, P.; Guan, S.; Zheng, Q.; Du, X.; Xu, H. Bone marrow mesenchymal stem cells alleviate stress-induced hyperalgesia via restoring gut microbiota and inhibiting neuroinflammation in the spinal cord by targeting the AMPK/NF-κB signaling pathway. Life Sci. 2023, 314, 121318. [Google Scholar] [CrossRef]
- Qi, M.; Li, C.; Li, J.; Zhu, X.-N.; Lu, C.; Luo, H.; Feng, Y.; Cai, F.; Sun, X.; Li, S.-T.; et al. Fluoxetine reverses hyperactivity of anterior cingulate cortex and attenuates chronic stress-induced hyperalgesia. Neuropharmacology 2022, 220, 109259. [Google Scholar] [CrossRef]
- Scheich, B.; Vincze, P.; Szőke, É.; Borbély, É.; Hunyady, Á.; Szolcsányi, J.; Dénes, Á.; Környei, Z.; Gaszner, B.; Helyes, Z. Chronic stress-induced mechanical hyperalgesia is controlled by capsaicin-sensitive neurones in the mouse. Eur. J. Pain 2017, 21, 1417–1431. [Google Scholar] [CrossRef]
- Imbe, H.; Murakami, S.; Okamoto, K.; Iwai-Liao, Y.; Senba, E. The effects of acute and chronic restraint stress on activation of ERK in the rostral ventromedial medulla and locus coeruleus. Pain 2004, 112, 361–371. [Google Scholar] [CrossRef]
- Ma, X.; Bao, W.; Wang, X.; Wang, Z.; Liu, Q.; Yao, Z.; Zhang, D.; Jiang, H.; Cui, S. Role of spinal GABAA receptor reduction induced by stress in rat thermal hyperalgesia. Exp. Brain Res. 2014, 232, 3413–3420. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, M.; Dong, J.; Yang, K. Chronic restraint stress-induced hyperalgesia is modulated by the periaqueductal gray neurons projecting to the rostral ventromedial medulla in mice. Biochem. Biophys. Res. Commun. 2024, 710, 149875. [Google Scholar] [CrossRef]
- Zhao, Y.-J.; Liu, Y.; Li, Q.; Zhao, Y.-H.; Wang, J.; Zhang, M.; Chen, Y.-J. Involvement of trigeminal astrocyte activation in masseter hyperalgesia under stress. Physiol. Behav. 2015, 142, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-J.; Liu, Y.; Zhao, Y.-H.; Li, Q.; Zhang, M.; Chen, Y.-J. Activation of satellite glial cells in the trigeminal ganglion contributes to masseter mechanical allodynia induced by restraint stress in rats. Neurosci. Lett. 2015, 602, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Zhao, Y.; Cheng, B.; Zhao, H.; Miao, L.; Li, Q.; Chen, Y.; Zhang, M. NMDAR and JNK activation in the spinal trigeminal nucleus caudalis contributes to masseter hyperalgesia induced by stress. Front. Cell. Neurosci. 2019, 13, 495. [Google Scholar] [CrossRef] [PubMed]
- Gameiro, G.H.; Andrade, A.d.S.; de Castro, M.; Pereira, L.F.; Tambeli, C.H.; Veiga, M.C.F.d.A. The effects of restraint stress on nociceptive responses induced by formalin injected in rat’s TMJ. Pharmacol. Biochem. Behav. 2005, 82, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Li, L.; Xing, S. PGE2/EP4 receptor and TRPV1 channel are involved in repeated restraint stress-induced prolongation of sensitization pain evoked by subsequent PGE2 challenge. Brain Res. 2019, 1721, 146335. [Google Scholar] [CrossRef]
- Li, X.-Q.; Li, M.; Zhou, Z.-H.; Liu, B.-J.; Chen, H.-S. Chronic restraint stress exacerbates nociception and inflammatory response induced by bee venom in rats: The role of the P2X7 receptors. Neurol. Res. 2016, 38, 158–165. [Google Scholar] [CrossRef]
- Korczeniewska, O.A.; Khan, J.; Tao, Y.; Eliav, E.; Benoliel, R. Effects of Sex and Stress on Trigeminal Neuropathic Pain-Like Behavior in Rats. J. Oral Facial Pain Headache 2017, 31, 381–397. [Google Scholar] [CrossRef]
- La Porta, C.; Tappe-Theodor, A. Differential impact of psychological and psychophysical stress on low back pain in mice. Pain 2020, 161, 1442–1458. [Google Scholar] [CrossRef]
- Long, Q.; Liu, X.; Qi, Q.; Guo, S.-W. Chronic stress accelerates the development of endometriosis in mouse through adrenergic receptor β2. Hum. Reprod. 2016, 31, 2506–2519. [Google Scholar] [CrossRef]
- Yuan, T.; Fu, D.; Xu, R.; Ding, J.; Wu, J.; Han, Y.; Li, W. Corticosterone mediates FKBP51 signaling and inflammation response in the trigeminal ganglion in chronic stress-induced corneal hyperalgesia mice. J. Steroid Biochem. Mol. Biol. 2023, 231, 106312. [Google Scholar] [CrossRef]
- Dantas, G.; Torres, I.L.D.S.; Crema, L.M.; Lara, D.R.; Dalmaz, C. Repeated restraint stress reduces opioid receptor binding in different rat CNS structures. Neurochem. Res. 2005, 30, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nishiyori, M.; Nagai, J.; Nakazawa, T.; Ueda, H. Absence of morphine analgesia and its underlying descending serotonergic activation in an experimental mouse model of fibromyalgia. Neurosci. Lett. 2010, 472, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Roca, H.; Silva, J.A.; Arcaya, J.L.; Quintero, L.; Maixner, W.; Pinerua-Shuhaibar, L. Role of mu-opioid and NMDA receptors in the development and maintenance of repeated swim stress-induced thermal hyperalgesia. Behav. Brain Res. 2006, 167, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Hormozi, A.; Zarifkar, A.; Rostami, B.; Naghibalhossaini, F. An Experimental Study on Spinal Cord µ-Opioid and α2-Adrenergic Receptors mRNA Expression Following Stress-Induced Hyperalgesia in Male Rats. Iran. J. Med. Sci. 2019, 44, 397–405. [Google Scholar] [CrossRef]
- Omiya, Y.; Goto, K.; Ishige, A.; Komatsu, Y. Changes in analgesia-producing mechanism of repeated cold stress loading in mice. Pharmacol. Biochem. Behav. 2000, 65, 261–266. [Google Scholar] [CrossRef]
- Ferdousi, M.; Finn, D.P. Stress-induced modulation of pain: Role of the endogenous opioid system. Prog. Brain Res. 2018, 239, 121–177. [Google Scholar] [CrossRef]
- Neyama, H.; Dozono, N.; Uchida, H.; Ueda, H. Mirtazapine, an α2 Antagonist-Type Antidepressant, Reverses Pain and Lack of Morphine Analgesia in Fibromyalgia-Like Mouse Models. J. Pharmacol. Exp. Ther. 2020, 375, 1–9. [Google Scholar] [CrossRef]
- Neyama, H.; Dozono, N.; Ueda, H. NR2A-NMDA Receptor Blockade Reverses the Lack of Morphine Analgesia Without Affecting Chronic Pain Status in a Fibromyalgia-Like Mouse Model. J. Pharmacol. Exp. Ther. 2020, 373, 103–112. [Google Scholar] [CrossRef]
- Mukae, T.; Uchida, H.; Ueda, H. Donepezil reverses intermittent stress-induced generalized chronic pain syndrome in mice. J. Pharmacol. Exp. Ther. 2015, 353, 471–479. [Google Scholar] [CrossRef]
- Nasu, T.; Hori, A.; Hotta, N.; Kihara, C.; Kubo, A.; Katanosaka, K.; Suzuki, M.; Mizumura, K. Vacuolar-ATPase-mediated muscle acidification caused muscular mechanical nociceptive hypersensitivity after chronic stress in rats, which involved extracellular matrix proteoglycan and ASIC3. Sci. Rep. 2023, 13, 13585. [Google Scholar] [CrossRef]
- Wakatsuki, K.; T-Uchimura, Y.; Matsubara, T.; Nasu, T.; Mizumura, K.; Taguchi, T. Peripheral nociceptive mechanisms in an experimental rat model of fibromyalgia induced by repeated cold stress. Neurosci. Res. 2021, 162, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Nasu, T.; Murase, S.; Takeda-Uchimura, Y.; Mizumura, K. Intramuscularly injected neurotropin reduced muscular mechanical hyperalgesia induced by repeated cold stress in rats. Behav. Pharmacol. 2018, 29, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Itomi, Y.; Tsukimi, Y.; Kawamura, T. Impaired diffuse noxious inhibitory controls in specific alternation of rhythm in temperature-stressed rats. Eur. J. Pharmacol. 2016, 784, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Akagi, T.; Matsumura, Y.; Yasui, M.; Minami, E.; Inoue, H.; Masuda, T.; Tozaki-Saitoh, H.; Tamura, T.; Mizumura, K.; Tsuda, M.; et al. Interferon regulatory factor 8 expressed in microglia contributes to tactile allodynia induced by repeated cold stress in rodents. J. Pharmacol. Sci. 2014, 126, 172–176. [Google Scholar] [CrossRef]
- Nasu, T.; Taguchi, T.; Mizumura, K. Persistent deep mechanical hyperalgesia induced by repeated cold stress in rats. Eur. J. Pain 2010, 14, 236–244. [Google Scholar] [CrossRef]
- Satoh, M.; Kuraishi, Y.; Kawamura, M. Effects of intrathecal antibodies to substance P, calcitonin gene-related peptide and galanin on repeated cold stress-induced hyperalgesia: Comparison with carrageenan-induced hyperalgesia. Pain 1992, 49, 273–278. [Google Scholar] [CrossRef]
- Ueda, H.; Neyama, H. Fibromyalgia animal models using intermittent cold and psychological stress. Biomedicines 2023, 12, 56. [Google Scholar] [CrossRef]
- Ohara, H.; Kawamura, M.; Namimatsu, A.; Miura, T.; Yoneda, R.; Hata, T. Mechanism of hyperalgesia in SART stressed (repeated cold stress) mice: Antinociceptive effect of neurotropin. Jpn. J. Pharmacol. 1991, 57, 243–250. [Google Scholar] [CrossRef]
- Bravo, L.; Llorca-Torralba, M.; Berrocoso, E.; Micó, J.A. Monoamines as drug targets in chronic pain: Focusing on neuropathic pain. Front. Neurosci. 2019, 13, 1268. [Google Scholar] [CrossRef]
- Kelman, L. The triggers or precipitants of the acute migraine attack. Cephalalgia 2007, 27, 394–402. [Google Scholar] [CrossRef]
- Vuralli, D.; Wattiez, A.-S.; Russo, A.F.; Bolay, H. Behavioral and cognitive animal models in headache research. J. Headache Pain 2019, 20, 11. [Google Scholar] [CrossRef] [PubMed]
- Greco, R.; Demartini, C.; De Icco, R.; Martinelli, D.; Putortì, A.; Tassorelli, C. Migraine neuroscience: From experimental models to target therapy. Neurol. Sci. 2020, 41, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Smeraldi, A.; Tassorelli, C.; Greco, R.; Nappi, G. Effects of acute and chronic restraint stress on nitroglycerin-induced hyperalgesia in rats. Neurosci. Lett. 2005, 383, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, D.; Brennan, K.C. The effects of chronic stress on migraine relevant phenotypes in male mice. Front. Cell. Neurosci. 2018, 12, 294. [Google Scholar] [CrossRef]
- Balkaya, M.; Seidel, J.L.; Sadeghian, H.; Qin, T.; Chung, D.Y.; Eikermann-Haerter, K.; van den Maagdenberg, A.M.J.M.; Ferrari, M.D.; Ayata, C. Relief following chronic stress augments spreading depolarization susceptibility in familial hemiplegic migraine mice. Neuroscience 2019, 415, 1–9. [Google Scholar] [CrossRef]
- Raoof, M.; Amanpour, S.; Roghani, A.; Abbasnejad, M.; Kooshki, R.; Askari-Zahabi, K.; Mohamadi-Jorjafki, E.; Majdzadeh, B.; Aarab, G.; Lobbezoo, F. The effects of neonatal maternal deprivation and chronic unpredictable stresses on migraine-like behaviors in adult rats. Neurosci. Lett. 2022, 772, 136444. [Google Scholar] [CrossRef]
- Avona, A.; Mason, B.N.; Lackovic, J.; Wajahat, N.; Motina, M.; Quigley, L.; Burgos-Vega, C.; Moldovan Loomis, C.; Garcia-Martinez, L.F.; Akopian, A.N.; et al. Repetitive stress in mice causes migraine-like behaviors and calcitonin gene-related peptide-dependent hyperalgesic priming to a migraine trigger. Pain 2020, 161, 2539–2550. [Google Scholar] [CrossRef]
- Kopruszinski, C.M.; Navratilova, E.; Swiokla, J.; Dodick, D.W.; Chessell, I.P.; Porreca, F. A novel, injury-free rodent model of vulnerability for assessment of acute and preventive therapies reveals temporal contributions of CGRP-receptor activation in migraine-like pain. Cephalalgia 2021, 41, 305–317. [Google Scholar] [CrossRef]
- Son, H.; Zhang, Y.; Shannonhouse, J.; Gomez, R.; Kim, Y.S. PACAP38/mast-cell-specific receptor axis mediates repetitive stress-induced headache in mice. J. Headache Pain 2024, 25, 87. [Google Scholar] [CrossRef]
- Viero, F.T.; Rodrigues, P.; Frare, J.M.; Da Silva, N.A.R.; Ferreira, M.d.A.; Da Silva, A.M.; Pereira, G.C.; Ferreira, J.; Pillat, M.M.; Bocchi, G.V.; et al. Unpredictable Sound Stress Model Causes Migraine-Like Behaviors in Mice With Sexual Dimorphism. Front. Pharmacol. 2022, 13, 911105. [Google Scholar] [CrossRef]
- Mason, B.N.; Kallianpur, R.; Price, T.J.; Akopian, A.N.; Dussor, G.O. Prolactin signaling modulates stress-induced behavioral responses in a preclinical mouse model of migraine. Headache 2022, 62, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Lackovic, J.; Price, T.J.; Dussor, G. MNK1/2 contributes to periorbital hypersensitivity and hyperalgesic priming in preclinical migraine models. Brain 2023, 146, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Cox, B.M.; Christie, M.J.; Devi, L.; Toll, L.; Traynor, J.R. Challenges for opioid receptor nomenclature: IUPHAR Review 9. Br. J. Pharmacol. 2015, 172, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Civelli, O.; Reinscheid, R.K.; Zhang, Y.; Wang, Z.; Fredriksson, R.; Schiöth, H.B. G protein-coupled receptor deorphanizations. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 127–146. [Google Scholar] [CrossRef]
- Reinscheid, R.K.; Civelli, O. The history of N/OFQ and the NOP receptor. Handb. Exp. Pharmacol. 2019, 254, 3–16. [Google Scholar] [CrossRef]
- Mollereau, C.; Parmentier, M.; Mailleux, P.; Butour, J.L.; Moisand, C.; Chalon, P.; Caput, D.; Vassart, G.; Meunier, J.C. ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Lett. 1994, 341, 33–38. [Google Scholar] [CrossRef]
- Meunier, J.C.; Mollereau, C.; Toll, L.; Suaudeau, C.; Moisand, C.; Alvinerie, P.; Butour, J.L.; Guillemot, J.C.; Ferrara, P.; Monsarrat, B. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 1995, 377, 532–535. [Google Scholar] [CrossRef]
- Reinscheid, R.K.; Nothacker, H.P.; Bourson, A.; Ardati, A.; Henningsen, R.A.; Bunzow, J.R.; Grandy, D.K.; Langen, H.; Monsma, F.J.; Civelli, O. Orphanin FQ: A neuropeptide that activates an opioidlike G protein-coupled receptor. Science 1995, 270, 792–794. [Google Scholar] [CrossRef]
- Lambert, D.G. The nociceptin/orphanin FQ receptor: A target with broad therapeutic potential. Nat. Rev. Drug Discov. 2008, 7, 694–710. [Google Scholar] [CrossRef]
- Knoflach, F.; Reinscheid, R.K.; Civelli, O.; Kemp, J.A. Modulation of voltage-gated calcium channels by orphanin FQ in freshly dissociated hippocampal neurons. J. Neurosci. 1996, 16, 6657–6664. [Google Scholar] [CrossRef]
- Vaughan, C.W.; Christie, M.J. Increase by the ORL1 receptor (opioid receptor-like1) ligand, nociceptin, of inwardly rectifying K conductance in dorsal raphe nucleus neurones. Br. J. Pharmacol. 1996, 117, 1609–1611. [Google Scholar] [CrossRef] [PubMed]
- Hawes, B.E.; Graziano, M.P.; Lambert, D.G. Cellular actions of nociceptin: Transduction mechanisms. Peptides 2000, 21, 961–967. [Google Scholar] [CrossRef] [PubMed]
- New, D.C.; Wong, Y.H. The ORL1 receptor: Molecular pharmacology and signalling mechanisms. Neurosignals 2002, 11, 197–212. [Google Scholar] [CrossRef] [PubMed]
- Toll, L.; Bruchas, M.R.; Calo’, G.; Cox, B.M.; Zaveri, N.T. Nociceptin/Orphanin FQ Receptor Structure, Signaling, Ligands, Functions, and Interactions with Opioid Systems. Pharmacol. Rev. 2016, 68, 419–457. [Google Scholar] [CrossRef]
- Kiguchi, N.; Ding, H.; Ko, M.-C. Central N/OFQ-NOP Receptor System in Pain Modulation. Adv. Pharmacol. 2016, 75, 217–243. [Google Scholar] [CrossRef]
- Schröder, W.; Lambert, D.G.; Ko, M.C.; Koch, T. Functional plasticity of the N/OFQ-NOP receptor system determines analgesic properties of NOP receptor agonists. Br. J. Pharmacol. 2014, 171, 3777–3800. [Google Scholar] [CrossRef]
- Toll, L.; Ozawa, A.; Cippitelli, A. NOP-Related Mechanisms in Pain and Analgesia. Handb. Exp. Pharmacol. 2019, 254, 165–186. [Google Scholar] [CrossRef]
- Calò, G.; Rizzi, A.; Marzola, G.; Guerrini, R.; Salvadori, S.; Beani, L.; Regoli, D.; Bianchi, C. Pharmacological characterization of the nociceptin receptor mediating hyperalgesia in the mouse tail withdrawal assay. Br. J. Pharmacol. 1998, 125, 373–378. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhu, C.B.; Cao, X.D.; Wu, G.C. Supraspinal hyperalgesia and spinal analgesia by [Phe1psi(CH2-NH)Gly2]nociceptin-(1-13)-NH2 in rat. Eur. J. Pharmacol. 1999, 376, R1–R3. [Google Scholar] [CrossRef]
- King, M.A.; Rossi, G.C.; Chang, A.H.; Williams, L.; Pasternak, G.W. Spinal analgesic activity of orphanin FQ/nociceptin and its fragments. Neurosci. Lett. 1997, 223, 113–116. [Google Scholar] [CrossRef]
- Xu, X.J.; Hao, J.X.; Wiesenfeld-Hallin, Z. Nociceptin or antinociceptin: Potent spinal antinociceptive effect of orphanin FQ/nociceptin in the rat. Neuroreport 1996, 7, 2092–2094. [Google Scholar] [PubMed]
- Erb, K.; Liebel, J.T.; Tegeder, I.; Zeilhofer, H.U.; Brune, K.; Geisslinger, G. Spinally delivered nociceptin/orphanin FQ reduces flinching behaviour in the rat formalin test. Neuroreport 1997, 8, 1967–1970. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Nozaki-Taguchi, N.; Kimura, S. Analgesic effect of intrathecally administered nociceptin, an opioid receptor-like1 receptor agonist, in the rat formalin test. Neuroscience 1997, 81, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, A.; Spagnolo, B.; Wainford, R.D.; Fischetti, C.; Guerrini, R.; Marzola, G.; Baldisserotto, A.; Salvadori, S.; Regoli, D.; Kapusta, D.R.; et al. In vitro and in vivo studies on UFP-112, a novel potent and long lasting agonist selective for the nociceptin/orphanin FQ receptor. Peptides 2007, 28, 1240–1251. [Google Scholar] [CrossRef]
- Chen, Y.; Sommer, C. Activation of the nociceptin opioid system in rat sensory neurons produces antinociceptive effects in inflammatory pain: Involvement of inflammatory mediators. J. Neurosci. Res. 2007, 85, 1478–1488. [Google Scholar] [CrossRef]
- Yamamoto, T.; Nozaki-Taguchi, N.; Kimura, S. Effects of intrathecally administered nociceptin, an opioid receptor-like1 (ORL1) receptor agonist, on the thermal hyperalgesia induced by carageenan injection into the rat paw. Brain Res. 1997, 754, 329–332. [Google Scholar] [CrossRef]
- Corradini, L.; Briscini, L.; Ongini, E.; Bertorelli, R. The putative OP(4) antagonist, [Nphe(1)]nociceptin(1-13)NH(2), prevents the effects of nociceptin in neuropathic rats. Brain Res. 2001, 905, 127–133. [Google Scholar] [CrossRef]
- Courteix, C.; Coudoré-Civiale, M.-A.; Privat, A.-M.; Pélissier, T.; Eschalier, A.; Fialip, J. Evidence for an exclusive antinociceptive effect of nociceptin/orphanin FQ, an endogenous ligand for the ORL1 receptor, in two animal models of neuropathic pain. Pain 2004, 110, 236–245. [Google Scholar] [CrossRef]
- Yamamoto, T.; Nozaki-Taguchi, N. Effects of intrathecally administered nociceptin, an opioid receptor-like1 receptor agonist, and N-methyl-D-aspartate receptor antagonists on the thermal hyperalgesia induced by partial sciatic nerve injury in the rat. Anesthesiology 1997, 87, 1145–1152. [Google Scholar] [CrossRef]
- Luo, C.; Kumamoto, E.; Furue, H.; Chen, J.; Yoshimura, M. Nociceptin inhibits excitatory but not inhibitory transmission to substantia gelatinosa neurones of adult rat spinal cord. Neuroscience 2002, 109, 349–358. [Google Scholar] [CrossRef]
- Dautzenberg, F.M.; Wichmann, J.; Higelin, J.; Py-Lang, G.; Kratzeisen, C.; Malherbe, P.; Kilpatrick, G.J.; Jenck, F. Pharmacological characterization of the novel nonpeptide orphanin FQ/nociceptin receptor agonist Ro 64-6198: Rapid and reversible desensitization of the ORL1 receptor in vitro and lack of tolerance in vivo. J. Pharmacol. Exp. Ther. 2001, 298, 812–819. [Google Scholar] [PubMed]
- Jenck, F.; Wichmann, J.; Dautzenberg, F.M.; Moreau, J.L.; Ouagazzal, A.M.; Martin, J.R.; Lundstrom, K.; Cesura, A.M.; Poli, S.M.; Roever, S.; et al. A synthetic agonist at the orphanin FQ/nociceptin receptor ORL1: Anxiolytic profile in the rat. Proc. Natl. Acad. Sci. USA 2000, 97, 4938–4943. [Google Scholar] [CrossRef] [PubMed]
- Sobczak, M.; Mokrowiecka, A.; Cygankiewicz, A.I.; Zakrzewski, P.K.; Sałaga, M.; Storr, M.; Kordek, R.; Małecka-Panas, E.; Krajewska, W.M.; Fichna, J. Anti-inflammatory and antinociceptive action of an orally available nociceptin receptor agonist SCH 221510 in a mouse model of inflammatory bowel diseases. J. Pharmacol. Exp. Ther. 2014, 348, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Byford, A.J.; Anderson, A.; Jones, P.S.; Palin, R.; Houghton, A.K. The hypnotic, electroencephalographic, and antinociceptive properties of nonpeptide ORL1 receptor agonists after intravenous injection in rodents. Anesth. Analg. 2007, 104, 174–179. [Google Scholar] [CrossRef]
- Rizzi, A.; Cerlesi, M.C.; Ruzza, C.; Malfacini, D.; Ferrari, F.; Bianco, S.; Costa, T.; Guerrini, R.; Trapella, C.; Calo’, G. Pharmacological characterization of cebranopadol a novel analgesic acting as mixed nociceptin/orphanin FQ and opioid receptor agonist. Pharmacol. Res. Perspect. 2016, 4, e00247. [Google Scholar] [CrossRef]
- Schiene, K.; Schröder, W.; Linz, K.; Frosch, S.; Tzschentke, T.M.; Jansen, U.; Christoph, T. Nociceptin/orphanin FQ opioid peptide (NOP) receptor and µ-opioid peptide (MOP) receptors both contribute to the anti-hypersensitive effect of cebranopadol in a rat model of arthritic pain. Eur. J. Pharmacol. 2018, 832, 90–95. [Google Scholar] [CrossRef]
- Azevedo Neto, J.; Ruzza, C.; Sturaro, C.; Malfacini, D.; Pacifico, S.; Zaveri, N.T.; Calò, G. Functional selectivity does not predict antinociceptive/locomotor impairing potencies of NOP receptor agonists. Front. Neurosci. 2021, 15, 657153. [Google Scholar] [CrossRef]
- Targowska-Duda, K.M.; Ozawa, A.; Bertels, Z.; Cippitelli, A.; Marcus, J.L.; Mielke-Maday, H.K.; Zribi, G.; Rainey, A.N.; Kieffer, B.L.; Pradhan, A.A.; et al. NOP receptor agonist attenuates nitroglycerin-induced migraine-like symptoms in mice. Neuropharmacology 2020, 170, 108029. [Google Scholar] [CrossRef]
- Ubaldi, M.; Cannella, N.; Borruto, A.M.; Petrella, M.; Micioni Di Bonaventura, M.V.; Soverchia, L.; Stopponi, S.; Weiss, F.; Cifani, C.; Ciccocioppo, R. Role of Nociceptin/Orphanin FQ-NOP Receptor System in the Regulation of Stress-Related Disorders. Int. J. Mol. Sci. 2021, 22, 12956. [Google Scholar] [CrossRef]
- Gavioli, E.C.; Holanda, V.A.D.; Calo, G.; Ruzza, C. Nociceptin/orphanin FQ receptor system blockade as an innovative strategy for increasing resilience to stress. Peptides 2021, 141, 170548. [Google Scholar] [CrossRef]
- Witkin, J.M.; Statnick, M.A.; Rorick-Kehn, L.M.; Pintar, J.E.; Ansonoff, M.; Chen, Y.; Tucker, R.C.; Ciccocioppo, R. The biology of Nociceptin/Orphanin FQ (N/OFQ) related to obesity, stress, anxiety, mood, and drug dependence. Pharmacol. Ther. 2014, 141, 283–299. [Google Scholar] [CrossRef] [PubMed]
- Gavioli, E.C.; Calo’, G. Nociceptin/orphanin FQ receptor antagonists as innovative antidepressant drugs. Pharmacol. Ther. 2013, 140, 10–25. [Google Scholar] [CrossRef] [PubMed]
- Gavioli, E.C.; Holanda, V.A.D.; Ruzza, C. NOP ligands for the treatment of anxiety and mood disorders. Handb. Exp. Pharmacol. 2019, 254, 233–257. [Google Scholar] [CrossRef] [PubMed]
- D’Oliveira da Silva, F.; Azevedo Neto, J.; Sturaro, C.; Guarino, A.; Robert, C.; Gavioli, E.C.; Calo, G.; Mouledous, L.; Ruzza, C. The NOP antagonist BTRX-246040 increases stress resilience in mice without affecting adult neurogenesis in the hippocampus. Neuropharmacology 2022, 212, 109077. [Google Scholar] [CrossRef]
- Vitale, G.; Filaferro, M.; Micioni Di Bonaventura, M.V.; Ruggieri, V.; Cifani, C.; Guerrini, R.; Simonato, M.; Zucchini, S. Effects of [Nphe1, Arg14, Lys15] N/OFQ-NH2 (UFP-101), a potent NOP receptor antagonist, on molecular, cellular and behavioural alterations associated with chronic mild stress. J. Psychopharmacol. 2017, 31, 691–703. [Google Scholar] [CrossRef]
- Witkin, J.M.; Rorick-Kehn, L.M.; Benvenga, M.J.; Adams, B.L.; Gleason, S.D.; Knitowski, K.M.; Li, X.; Chaney, S.; Falcone, J.F.; Smith, J.W.; et al. Preclinical findings predicting efficacy and side-effect profile of LY2940094, an antagonist of nociceptin receptors. Pharmacol. Res. Perspect. 2016, 4, e00275. [Google Scholar] [CrossRef]
- Holanda, V.A.D.; Medeiros, I.U.; Asth, L.; Guerrini, R.; Calo’, G.; Gavioli, E.C. Antidepressant activity of nociceptin/orphanin FQ receptor antagonists in the mouse learned helplessness. Psychopharmacology 2016, 233, 2525–2532. [Google Scholar] [CrossRef]
- Asth, L.; Ruzza, C.; Malfacini, D.; Medeiros, I.; Guerrini, R.; Zaveri, N.T.; Gavioli, E.C.; Calo’, G. Beta-arrestin 2 rather than G protein efficacy determines the anxiolytic-versus antidepressant-like effects of nociceptin/orphanin FQ receptor ligands. Neuropharmacology 2016, 105, 434–442. [Google Scholar] [CrossRef]
- Medeiros, I.U.; Ruzza, C.; Asth, L.; Guerrini, R.; Romão, P.R.T.; Gavioli, E.C.; Calo, G. Blockade of nociceptin/orphanin FQ receptor signaling reverses LPS-induced depressive-like behavior in mice. Peptides 2015, 72, 95–103. [Google Scholar] [CrossRef]
- Gavioli, E.C.; Marzola, G.; Guerrini, R.; Bertorelli, R.; Zucchini, S.; De Lima, T.C.M.; Rae, G.A.; Salvadori, S.; Regoli, D.; Calo, G. Blockade of nociceptin/orphanin FQ-NOP receptor signalling produces antidepressant-like effects: Pharmacological and genetic evidences from the mouse forced swimming test. Eur. J. Neurosci. 2003, 17, 1987–1990. [Google Scholar] [CrossRef]
- Vitale, G.; Ruggieri, V.; Filaferro, M.; Frigeri, C.; Alboni, S.; Tascedda, F.; Brunello, N.; Guerrini, R.; Cifani, C.; Massi, M. Chronic treatment with the selective NOP receptor antagonist [Nphe 1, Arg 14, Lys 15]N/OFQ-NH 2 (UFP-101) reverses the behavioural and biochemical effects of unpredictable chronic mild stress in rats. Psychopharmacology 2009, 207, 173–189. [Google Scholar] [CrossRef] [PubMed]
- Redrobe, J.P.; Calo’, G.; Regoli, D.; Quirion, R. Nociceptin receptor antagonists display antidepressant-like properties in the mouse forced swimming test. Naunyn Schmiedebergs Arch. Pharmacol. 2002, 365, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Holanda, V.A.D.; Oliveira, M.C.; Da Silva Junior, E.D.; Calo’, G.; Ruzza, C.; Gavioli, E.C. Blockade of nociceptin/orphanin FQ signaling facilitates an active copying strategy due to acute and repeated stressful stimuli in mice. Neurobiol. Stress 2020, 13, 100255. [Google Scholar] [CrossRef] [PubMed]
- Holanda, V.A.D.; Pacifico, S.; Azevedo Neto, J.; Finetti, L.; Lobão-Soares, B.; Calo, G.; Gavioli, E.C.; Ruzza, C. Modulation of the NOP receptor signaling affects resilience to acute stress. J. Psychopharmacol. 2019, 33, 1540–1549. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.I.; Holanda, V.A.D.; Azevedo Neto, J.G.; Silva Junior, E.D.; Soares-Rachetti, V.P.; Calo, G.; Ruzza, C.; Gavioli, E.C. Blockade of NOP receptor modulates anxiety-related behaviors in mice exposed to inescapable stress. Psychopharmacology 2020, 237, 1633–1642. [Google Scholar] [CrossRef]
- D’Oliveira da Silva, F.; Robert, C.; Lardant, E.; Pizzano, C.; Bruchas, M.R.; Guiard, B.P.; Chauveau, F.; Moulédous, L. Targeting Nociceptin/Orphanin FQ receptor to rescue cognitive symptoms in a mouse neuroendocrine model of chronic stress. Mol. Psychiatry 2024, 29, 718–729. [Google Scholar] [CrossRef]
- Holanda, V.A.D.; de Almeida, R.N.; de Oliveira, M.C.; da Silva Junior, E.D.; Galvão-Coelho, N.L.; Calo’, G.; Ruzza, C.; Gavioli, E.C. Activation of NOP receptor increases vulnerability to stress: Role of glucocorticoids and CRF signaling. Psychopharmacology 2024, 241, 1001–1010. [Google Scholar] [CrossRef]
- Câmara, A.B.; Brandão, I.A. Behavioral and neurochemical effects of nociceptin/orphanin FQ receptor activation in the social defeat protocol. Behav. Neurosci. 2023, 137, 52–66. [Google Scholar] [CrossRef]
- Zhou, X.; Stine, C.; Prada, P.O.; Fusca, D.; Assoumou, K.; Dernic, J.; Bhat, M.A.; Achanta, A.S.; Johnson, J.C.; Pasqualini, A.L.; et al. Development of a genetically encoded sensor for probing endogenous nociceptin opioid peptide release. Nat. Commun. 2024, 15, 5353. [Google Scholar] [CrossRef]
- Flanigan, M.; Tollefson, S.; Himes, M.L.; Jordan, R.; Roach, K.; Stoughton, C.; Lopresti, B.; Mason, N.S.; Ciccocioppo, R.; Narendran, R. Acute Elevations in Cortisol Increase the In Vivo Binding of [11C]NOP-1A to Nociceptin Receptors: A Novel Imaging Paradigm to Study the Interaction Between Stress- and Antistress-Regulating Neuropeptides. Biol. Psychiatry 2020, 87, 570–576. [Google Scholar] [CrossRef]
- Narendran, R.; Tollefson, S.; Fasenmyer, K.; Paris, J.; Himes, M.L.; Lopresti, B.; Ciccocioppo, R.; Mason, N.S. Decreased Nociceptin Receptors Are Related to Resilience and Recovery in College Women Who Have Experienced Sexual Violence: Therapeutic Implications for Posttraumatic Stress Disorder. Biol. Psychiatry 2019, 85, 1056–1064. [Google Scholar] [CrossRef] [PubMed]
- Suaudeau, C.; Florin, S.; Meunier, J.C.; Costentin, J. Nociceptin-induced apparent hyperalgesia in mice as a result of the prevention of opioid autoanalgesic mechanisms triggered by the stress of an intracerebroventricular injection. Fundam. Clin. Pharmacol. 1998, 12, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Kuwaki, T.; Yanagisawa, M.; Fukuda, Y.; Shimoyama, M. Persistent pain and stress activate pain-inhibitory orexin pathways. Neuroreport 2005, 16, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Wisor, J.P.; Hara, J.; Crowder, T.L.; LeWinter, R.; Khroyan, T.V.; Yamanaka, A.; Diano, S.; Horvath, T.L.; Sakurai, T.; et al. Hypocretin/orexin and nociceptin/orphanin FQ coordinately regulate analgesia in a mouse model of stress-induced analgesia. J. Clin. Investig. 2008, 118, 2471–2481. [Google Scholar] [CrossRef]
- Maolood, N.; Meister, B. Nociceptin/orphanin FQ peptide in hypothalamic neurones associated with the control of feeding behaviour. J. Neuroendocrinol. 2010, 22, 75–82. [Google Scholar] [CrossRef]
- Xie, X.S. The neuronal circuit between nociceptin/orphanin FQ and hypocretins/orexins coordinately modulates stress-induced analgesia and anxiety-related behavior. Vitam. Horm. 2015, 97, 295–321. [Google Scholar] [CrossRef]
- Köster, A.; Montkowski, A.; Schulz, S.; Stübe, E.M.; Knaudt, K.; Jenck, F.; Moreau, J.L.; Nothacker, H.P.; Civelli, O.; Reinscheid, R.K. Targeted disruption of the orphanin FQ/nociceptin gene increases stress susceptibility and impairs stress adaptation in mice. Proc. Natl. Acad. Sci. USA 1999, 96, 10444–10449. [Google Scholar] [CrossRef]
- Zhang, Y.; Gandhi, P.R.; Standifer, K.M. Increased nociceptive sensitivity and nociceptin/orphanin FQ levels in a rat model of PTSD. Mol. Pain 2012, 8, 76. [Google Scholar] [CrossRef]
- Zhang, Y.; Standifer, K.M. Exacerbated Headache-Related Pain in the Single Prolonged Stress Preclinical Model of Post-traumatic Stress Disorder. Cell. Mol. Neurobiol. 2021, 41, 1009–1018. [Google Scholar] [CrossRef]
- Dib, P.; Zhang, Y.; Ihnat, M.A.; Gallucci, R.M.; Standifer, K.M. TNF-Alpha as an Initiator of Allodynia and Anxiety-Like Behaviors in a Preclinical Model of PTSD and Comorbid Pain. Front. Psychiatry 2021, 12, 721999. [Google Scholar] [CrossRef]
- Zhang, Y.; Simpson-Durand, C.D.; Standifer, K.M. Nociceptin/orphanin FQ peptide receptor antagonist JTC-801 reverses pain and anxiety symptoms in a rat model of post-traumatic stress disorder. Br. J. Pharmacol. 2015, 172, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Schalo, I.; Durand, C.; Standifer, K.M. Sex Differences in Nociceptin/Orphanin FQ Peptide Receptor-Mediated Pain and Anxiety Symptoms in a Preclinical Model of Post-traumatic Stress Disorder. Front. Psychiatry 2018, 9, 731. [Google Scholar] [CrossRef] [PubMed]
- Zaratin, P.F.; Petrone, G.; Sbacchi, M.; Garnier, M.; Fossati, C.; Petrillo, P.; Ronzoni, S.; Giardina, G.A.M.; Scheideler, M.A. Modification of nociception and morphine tolerance by the selective opiate receptor-like orphan receptor antagonist (-)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol (SB-612111). J. Pharmacol. Exp. Ther. 2004, 308, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Spagnolo, B.; Carrà, G.; Fantin, M.; Fischetti, C.; Hebbes, C.; McDonald, J.; Barnes, T.A.; Rizzi, A.; Trapella, C.; Fanton, G.; et al. Pharmacological characterization of the nociceptin/orphanin FQ receptor antagonist SB-612111 [(-)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol]: In vitro studies. J. Pharmacol. Exp. Ther. 2007, 321, 961–967. [Google Scholar] [CrossRef]
- Toledo, M.A.; Pedregal, C.; Lafuente, C.; Diaz, N.; Martinez-Grau, M.A.; Jiménez, A.; Benito, A.; Torrado, A.; Mateos, C.; Joshi, E.M.; et al. Discovery of a novel series of orally active nociceptin/orphanin FQ (NOP) receptor antagonists based on a dihydrospiro(piperidine-4,7′-thieno [2,3-c]pyran) scaffold. J. Med. Chem. 2014, 57, 3418–3429. [Google Scholar] [CrossRef]
- Ferrari, F.; Rizzo, S.; Ruzza, C.; Calo, G. Detailed In Vitro Pharmacological Characterization of the Clinically Viable Nociceptin/Orphanin FQ Peptide Receptor Antagonist BTRX-246040. J. Pharmacol. Exp. Ther. 2020, 373, 34–43. [Google Scholar] [CrossRef]
- Moloney, R.D.; O’Mahony, S.M.; Dinan, T.G.; Cryan, J.F. Stress-induced visceral pain: Toward animal models of irritable-bowel syndrome and associated comorbidities. Front. Psychiatry 2015, 6, 15. [Google Scholar] [CrossRef]
- Johnson, A.C.; Farmer, A.D.; Ness, T.J.; Greenwood-Van Meerveld, B. Critical evaluation of animal models of visceral pain for therapeutics development: A focus on irritable bowel syndrome. Neurogastroenterol. Motil. 2020, 32, e13776. [Google Scholar] [CrossRef]
- Agostini, S.; Eutamene, H.; Broccardo, M.; Improta, G.; Petrella, C.; Theodorou, V.; Bueno, L. Peripheral anti-nociceptive effect of nociceptin/orphanin FQ in inflammation and stress-induced colonic hyperalgesia in rats. Pain 2009, 141, 292–299. [Google Scholar] [CrossRef]
- Abboud, C.; Duveau, A.; Bouali-Benazzouz, R.; Massé, K.; Mattar, J.; Brochoire, L.; Fossat, P.; Boué-Grabot, E.; Hleihel, W.; Landry, M. Animal models of pain: Diversity and benefits. J. Neurosci. Methods. 2021, 348, 108997. [Google Scholar] [CrossRef]
- Steenbergen, P.J.; Richardson, M.K.; Champagne, D.L. The use of the zebrafish model in stress research. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 1432–1451. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kopruszinski, C.M.; Watanabe, M.; Dodick, D.W.; Navratilova, E.; Porreca, F. Female-selective mechanisms promoting migraine. J. Headache Pain 2024, 25, 63. [Google Scholar] [CrossRef] [PubMed]
- Canavan, C.; West, J.; Card, T. The epidemiology of irritable bowel syndrome. Clin. Epidemiol. 2014, 6, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Mogil, J.S. Sex differences in pain and pain inhibition: Multiple explanations of a controversial phenomenon. Nat. Rev. Neurosci. 2012, 13, 859–866. [Google Scholar] [CrossRef]
- Mogil, J.S. Qualitative sex differences in pain processing: Emerging evidence of a biased literature. Nat. Rev. Neurosci. 2020, 21, 353–365. [Google Scholar] [CrossRef]
- Post, A.; Smart, T.S.; Krikke-Workel, J.; Dawson, G.R.; Harmer, C.J.; Browning, M.; Jackson, K.; Kakar, R.; Mohs, R.; Statnick, M.; et al. A Selective Nociceptin Receptor Antagonist to Treat Depression: Evidence from Preclinical and Clinical Studies. Neuropsychopharmacology 2016, 41, 1803–1812. [Google Scholar] [CrossRef]
- Post, A.; Smart, T.S.; Jackson, K.; Mann, J.; Mohs, R.; Rorick-Kehn, L.; Statnick, M.; Anton, R.; O’Malley, S.S.; Wong, C.J. Proof-of-Concept Study to Assess the Nociceptin Receptor Antagonist LY2940094 as a New Treatment for Alcohol Dependence. Alcohol. Clin. Exp. Res. 2016, 40, 1935–1944. [Google Scholar] [CrossRef]
Specie | Sex | Experimental Conditions | Outcomes | Comments | References |
---|---|---|---|---|---|
Footshock | |||||
Stress induced analgesia | |||||
Rat | Male | 90 s–3 min, 1.6 mA | Thermal analgesia | [27,32] | |
20 min, 1.6 mA, intermittent | Thermal analgesia | [27,28] | |||
Mouse | Male | 3–30 min, 0.6 mA | Thermal analgesia | [20,25] | |
Forced swim | |||||
Stress induced analgesia | |||||
Rat | Male | 3–6 min, 25 °C | Thermal analgesia | [14,47,48,50] | |
Reduced nociceptive behaviors in the formalin test | [22,23,24,34,35,36,37,49] | ||||
3.5 min, 2 °C | Thermal analgesia | [38] | |||
Mouse | Male | 2–3 min, 32 °C | Thermal analgesia | [18,33,40,44] | |
2–3 min, 15 °C | Thermal analgesia | [18,44] | |||
2 min, 2 °C | Thermal analgesia | [40] | |||
Male and female | 3 min, 32 °C | Thermal analgesia | Higher SIA in female mice; naloxone completely blocked SIA in male mice but only partially in female mice | [42] | |
3 min, 15 °C | Thermal analgesia | Different sensitivity between male and female mice to NMDA receptor antagonists | [46] | ||
Female | 3 min, 32 °C | Thermal analgesia | |||
Stress induced hyperalgesia | |||||
Rat | Male | (10–20 min) × 3 days, 24–26 °C | Thermal and mechanical hyperalgesia | [65,66,68,69] | |
Increased nociceptive behaviors in the formalin test | [66,70,71,72] | ||||
Increased CFA-induced mechanical and thermal hyperalgesia | [73,74,76,77] | ||||
(10–20 min) × 10 days, 24–26 °C | Increased nociceptive behaviors in the formalin test | SIH obtained in Sprague-Dawley but not in Wistar Kyoto rats | [78] | ||
Female | (10–20 min) × 3 days, 24–26 °C | Thermal and mechanical hyperalgesia | [67] | ||
Increased CFA-induced mechanical and thermal hyperalgesia | [75] | ||||
Restraint | |||||
Stress induced analgesia | |||||
Rat | Male | 30 min–3 h | Thermal analgesia | [15,53,56,58,64] | |
Reduced nociceptive behaviors in the formalin test | [54,55,59,60,61,63] | ||||
Male and female | 1 h | Thermal analgesia | No major differences between male and female | [51] | |
Mouse | Male | 30 min–3 h | Thermal analgesia | [17,19,62] | |
Stress induced hyperalgesia | |||||
Rat | Male | (30 min) × 3 days | Increased PGE2-induced mechanical hyperalgesia | [105] | |
(1 h) × 35–70 days | Thermal and mechanical hyperalgesia | No effects in the Randal and Selitto test and in the tail withdrawal test at different temperature [88] | [86,87,90,111] | ||
Increased nociceptive behaviors in the formalin test | [83,104] | ||||
(2 h) × 14–28 days | Increased bee venom-induced nociceptive behaviors | [106] | |||
(6 h) × 14–21 days | Mechanical hyperalgesia | [89,91,98,101,102,103] | |||
Male and female | (1 h) × 40 days | Increased nociceptive behaviors in the formalin test | SIH only in male rats | [51] | |
(2 h) × 14–28 days | Thermal and mechanical hyperalgesia | No major differences between male and female in SIH; when stress was applied with infraorbital nerve chronic constriction injury, females displayed higher hyperalgesia [107] | [88,93,106,107] | ||
Mouse | Male | (3 h) × 10 days | Thermal and mechanical hyperalgesia | [96] | |
(4 h) × 10 days | Thermal and chemical corneal hyperalgesia | [110] | |||
(6 h) × 7–28 days | Thermal and mechanical hyperalgesia | [84,95,97,100] | |||
Increased low-back pain signs induced by NGF | Vertical restraint | [108] | |||
Male and female | (2 h) × 28 days | Mechanical hyperalgesia | No major differences between male and female | [93] | |
(6 h) × 28 days | Thermal and mechanical hyperalgesia | No major differences between male and female | [92,94] | ||
Female | (2 h) × 28 days | Increased nociceptive behaviors in an endometriosis model | [109] | ||
Stress induced migraine | |||||
Mouse | Male | (1 h) × 3 days | Periorbital mechanical allodynia that disappeared after 14 days, sensitization to a subthreshold dose of migraine-inducing drug | ||
Male and female | (2 h) × 3 days | Periorbital mechanical allodynia that disappeared after 14 days, sensitization to a subthreshold dose of migraine-inducing drug | No major differences between male and female | [137,138] | |
Repeated cold | |||||
Stress induced hyperalgesia | |||||
Rat | Male | (night: 4 °C; day: 24 °C and 4 °C switched every 30 min) × 5 days | Thermal and mechanical hyperalgesia, hyperalgesia in the Randal and Selitto test | [120,121,122,123,125] | |
Mouse | Male | (night: 4 °C; day: 24 °C and 4 °C switched every 30 min) × 3–7 days | Thermal and mechanical hyperalgesia | [117,118,119,124] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pola, P.; Frezza, A.; Gavioli, E.C.; Calò, G.; Ruzza, C. Effects of Stress Exposure to Pain Perception in Pre-Clinical Studies: Focus on the Nociceptin/Orphanin FQ–NOP Receptor System. Brain Sci. 2024, 14, 936. https://doi.org/10.3390/brainsci14090936
Pola P, Frezza A, Gavioli EC, Calò G, Ruzza C. Effects of Stress Exposure to Pain Perception in Pre-Clinical Studies: Focus on the Nociceptin/Orphanin FQ–NOP Receptor System. Brain Sciences. 2024; 14(9):936. https://doi.org/10.3390/brainsci14090936
Chicago/Turabian StylePola, Pietro, Alessia Frezza, Elaine C. Gavioli, Girolamo Calò, and Chiara Ruzza. 2024. "Effects of Stress Exposure to Pain Perception in Pre-Clinical Studies: Focus on the Nociceptin/Orphanin FQ–NOP Receptor System" Brain Sciences 14, no. 9: 936. https://doi.org/10.3390/brainsci14090936
APA StylePola, P., Frezza, A., Gavioli, E. C., Calò, G., & Ruzza, C. (2024). Effects of Stress Exposure to Pain Perception in Pre-Clinical Studies: Focus on the Nociceptin/Orphanin FQ–NOP Receptor System. Brain Sciences, 14(9), 936. https://doi.org/10.3390/brainsci14090936