Gut–Brain Axis and Brain Microbiome Interactions from a Medical Perspective
Abstract
:1. Introduction
1.1. Background
1.2. Knowledge Gap
1.3. Aims and Objectives
- To synthesize existing evidence on the gut–brain axis and investigate the mechanistic pathways that link the gut microbiome and the CNS.
- To explore the novel concept of the brain microbiome and determine its existence and the role it plays in one’s neurological health.
- To identify and analyze existing data on the interactions between the gut and brain microbiomes to determine their collective impact on neurological health factors such as neuroinflammation and neurodegeneration.
- To point out existing gaps in research on the gut–brain axis, especially the mostly unexplored brain microbiome.
2. Materials and Methods
2.1. Search Strategy
{“Gut-Brain Axis”/“Brain-Gut Axis”/Gut Microbiota”/“Gastrointestinal Microbiome”} + {“Microbiome”/“Microbial Interactions”/“Microbial Metabolites”/“Dysbiosis”/“Short-chain fatty acids”} + {“Central Nervous System”/“Neuroimmunology”/“Neuroinflammation”/“Blood-Brain Barrier”/“Neurotransmitters”} + {“Neurological disorders”/“Alzheimer Disease”/“Parkinson Disease”/Autism Spectrum Disorder”/“Mental Disorders”} +{“Pathogenesis”/“Disease Susceptibility”/“Risk Factors”/“Gene-environment Interaction”} + {“Genome-wide association study”/“Epigenomics”/“Transcriptome”/“Proteomics”/ “DNA Methylation”} + {“Systematic Review”/“Meta-analysis”/Case-control studies”/“Cohort Studies”}
2.2. Inclusion/Exclusion Criteria
2.3. Study Selection and Quality Assessment
2.4. Data Extraction
- Study characteristics: Basic information such as author details, publication name and data, and the research design recorded in a spreadsheet. This information was used to confirm whether the study met all inclusion criteria before inclusion.
- Gut–brain microbiome data: All relevant findings related to the gut–brain axis and microbiomes were extracted and recorded. This information formulated the discussion topics of the systematic review.
- Study limitations: All recorded or observed weaknesses were recorded. This information paints a clearer picture of the current state of research on subjects such as the brain microbiome and highlights what needs to be covered in future research.
- Research outcomes: The main conclusions of each article were noted and summarized before being transferred to the systematic review’s discussion section.
2.5. Data Synthesis
2.6. Quality Assessment
3. Results
Overview of Selected Studies and PRISMA Diagram
4. Key Findings
4.1. The Neurological Relevance of the Gut Microbiota
4.2. Gut Imbalances and Neurological Health
4.3. Diseases Where the Gut Microbiota Could Be Pathogenic
4.4. Diseases Where Modulation of the Gut Microbiota Could Be Beneficial
4.5. Mechanistic Pathways Involved in the Gut–Brain Axis
4.6. Emerging Evidence of the Brain Microbiome
4.7. Interplay Between the Gut and Brain Microbiomes
4.8. Challenges and Research Gaps
4.9. Most Significant Findings
5. Discussion
5.1. Study Limitations
5.2. Study Implications
- Advancements in Neurological and Psychiatric Research—This research reveals how gut microbiota influences neuroinflammation, neurotransmitter regulation, and cognitive function and presents new perspective to handle neurological diseases such as Alzheimer’s, Parkinson’s, and multiple sclerosis
- Potential for Microbiome-Based Therapies—The results reveal the importance of probiotics, prebiotics, and fecal microbiota transplantation to address the neurodegenerative and psychiatric disorders
- Public Health and Preventive Strategies—The relationship between gut microbiota and neurological health reveals the need for a proper diet, lifestyle, and environmental factors to prevent neurological diseases. Public health policies could improve the preventive measures to address the issues.
- Clinical and Diagnostics Innovations—The gut bacteria composition could be a biomarker for detecting early neurodegenerative and psychiatric disorders, permitting earlier interventions and proper disease management.
- Interdisciplinary Collaboration—The findings reveal the need for neuroscientists, microbiologists, and clinicians to collaborate and establish a comprehensive knowledge of the gut–brain axis and propose strategic interventions.
5.3. Study Recommendations
- Future research directions—The findings provide direction for future longitudinal and causal studies, mechanistic investigations, and brain microbiome validation.
- Clinical and Therapeutic Applications—The findings could help establish the development of microbiome-based therapies, personalized medicine approaches, and early diagnosis and biomarker identification.
- Public Health and Lifestyle Recommendations—Healthcare stakeholders should adopt effective stress and lifestyle management, microbiome-friendly diets, and education and awareness campaigns.
- Interdisciplinary Collaboration—Interdisciplinary teams could collaborate to integrate neuroscience and microbiome research and policy development for gut health interventions.
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Loh, J.; Mak, W.; Tan, L.; Ng, C.; Chan, H.; Yeow, S.; Foo, J.; Ong, Y.; How, C.; Khaw, K. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Sign. Trans. Tar. Ther. 2024, 9, 37. [Google Scholar] [CrossRef]
- Foster, J.; Rinaman, L.; Cryan, J. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol. Stress 2017, 7, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Morais, L.; Schreiber, H.; Mazmanian, S. The gut microbiota-brain axis in behavior and brain disorders. Nat. Rev. Microbiol. 2021, 19, 241–255. [Google Scholar] [CrossRef]
- Fried, S.; Wemelle, E.; Cani, P.; Knauf, C. Interactions between the microbiota and enteric nervous system during gut-brain disorders. Neuropharmacology 2021, 197, 108721. [Google Scholar] [CrossRef]
- Toader, C.; Dobrin, N.; Costea, D.; Glavan, L.; Busuioc, R.; Dumitrascu, D.; Bratu, B.; Costin, H.; Ciurea, A. Mind, mood, and microbiota—Gut-brain axis in psychiatric disorders. Int. J. Mol. Sci. 2024, 25, 3340. [Google Scholar] [CrossRef] [PubMed]
- Rutsch, A.; Kantsjo, J.; Ronchi, F. The gut-brain axis: How microbiota and host inflammasome influence brain physiology and pathology. Front. Psychol. 2020, 11, 604179. [Google Scholar] [CrossRef]
- Socala, K.; Doboszewska, U.; Szopa, A.; Serefko, A.; Wlodarczyk, M.; Zielinska, A.; Poleszak, E.; Fichna, J.; Wlaz, P. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol. Res. 2021, 172, 105840. [Google Scholar] [CrossRef]
- Barrio, C.; Arias-Sánchez, S.; Martín-Monzón, I. The gut microbiota-brain axis, psychobiotics and its influence on brain and behavior: A systematic review. Psychoneuroendocrinology 2022, 137, 105640. [Google Scholar] [CrossRef]
- Simpson, C.A.; Diaz-Arteche, C.; Eliby, D.; Schwartz, O.S.; Simmons, J.G.; Cowan, C.S.M. The gut microbiota in anxiety and depression—A systematic review. Clin. Psychol. Rev. 2021, 83, 101943. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Ni, J.J.; Han, B.X.; Yan, S.S.; Wei, X.T.; Feng, G.J.; Zhang, H.; Zhang, L.; Li, B.; Pei, Y.F. Causal relationship between gut microbiota and autoimmune diseases: A two-sample Mendelian randomization study. Front. Immunol. 2022, 12, 746998. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, N.; Yang, J.J.; Zhao, D.M.; Chen, B.; Zhang, G.Q.; Chen, S.; Cao, R.F.; Yu, H.; Zhao, C.Y.; et al. Probiotics and fructo-oligosaccharide intervention modulate the microbiota-gut brain axis to improve autism spectrum reducing also the hyper-serotonergic state and the dopamine metabolism disorder. Pharmacol. Res. 2020, 157, 104784. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.S.; Cha, L.; Sim, M.; Jung, S.; Chun, W.Y.; Baik, H.W.; Shin, D.M. Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults: A randomized, double-blind, placebo-controlled, multicenter trial. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Alli, S.R.; Gorbovskaya, I.; Liu, J.C.W.; Kolla, N.J.; Brown, L.; Müller, D.J. The gut microbiome in depression and potential benefit of prebiotics, probiotics, and synbiotics: A systematic review of clinical trials and observational studies. Int. J. Mol. Sci. 2022, 23, 4494. [Google Scholar] [CrossRef] [PubMed]
- McGuinness, A.J.; Davis, J.A.; Dawson, S.L.; Loughman, A.; Collier, F.; O’Hely, M.; Simpson, C.A.; Green, J.; Marx, W.; Hair, C.; et al. A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder, and schizophrenia. Mol. Psychiatry 2022, 27, 1920–1935. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.R.; Clarke, G.; Cryan, J.F.; Dinan, T.G. Brain-gut-microbiota axis: Challenges for translation in psychiatry. Ann. Epidemiol. 2016, 26, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Eastwood, J.; Walton, G.; Van Hemert, S.; Williams, C.; Lamport, D. The effect of probiotics on cognitive function across the human lifespan: A systematic review. Neurosci. Biobehav. Rev. 2021, 128, 311–327. [Google Scholar] [CrossRef]
- Korteniemi, J.; Karlsson, L.; Aatsinki, A. Systematic review: Autism spectrum disorder and the gut microbiota. Acta Psychiatr. Scand. 2023, 148, 242–254. [Google Scholar] [CrossRef]
- Cheng, Y.; Tan, G.; Zhu, Q.; Wang, C.; Ruan, G.; Ying, S.; Qie, J.; Hu, X.; Xiao, Z.; Xu, F.; et al. Efficacy of fecal microbiota transplantation in patients with Parkinson’s disease: Clinical trial results from a randomized, placebo-controlled design. Gut Microbes 2023, 15, 2284247. [Google Scholar] [CrossRef] [PubMed]
- Fei, Y.; Wang, R.; Lu, J.; Peng, S.; Yang, S.; Wang, Y.; Zheng, K.; Li, R.; Lin, L.; Li, M. Probiotic intervention benefits multiple neural behaviors in older adults with mild cognitive impairment. Geriatr. Nurs. 2023, 51, 167–175. [Google Scholar] [CrossRef]
- Batista, K.S.; Cintra, V.M.; Lucena, P.A.F.; Manhães-de-Castro, R.; Toscano, A.E.; Costa, L.P.; Queiroz, M.E.B.S.; de Andrade, S.M.; Guzman-Quevedo, O.; Aquino, J.S. The role of vitamin B12 in viral infections: A comprehensive review of its relationship with the muscle-gut-brain axis and implications for SARS-CoV-2 infection. Nutr. Rev. 2022, 80, 561–578. [Google Scholar] [CrossRef]
- Pröbstel, A.K.; Zhou, X.; Baumann, R.; Wischnewski, S.; Kutza, M.; Rojas, O.L.; Sellrie, K.; Bischof, A.; Kim, K.; Ramesh, A.; et al. Gut microbiota-specific IgA(+) B cells traffic to the CNS in active multiple sclerosis. Sci. Immunol. 2020, 5, eabc7191. [Google Scholar] [CrossRef] [PubMed]
- Handajani, Y.S.; Hengky, A.; Schröder-Butterfill, E.; Hogervorst, E.; Turana, Y. Probiotic supplementation improved cognitive function in cognitively impaired and healthy older adults: A systematic review of recent trials. Neurol. Sci. 2023, 44, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wu, X.; Wu, Y.; Yang, L.; Shi, E.; Ding, W.; Chen, L.; Shi, X.; Feng, X.; Su, C.; et al. Indole-3-propionic acid, a gut microbiota metabolite, protects against the development of postoperative delirium. Ann. Surg. 2023, 278, e1164–e1174. [Google Scholar] [CrossRef]
- Heravi, F.S.; Naseri, K.; Hu, H. Gut microbiota composition in patients with neurodegenerative disorders (Parkinson’s and Alzheimer’s) and healthy controls: A systematic review. Nutrients 2023, 15, 4365. [Google Scholar] [CrossRef] [PubMed]
- Önning, G.; Montelius, C.; Hillman, M.; Larsson, N. Intake of Lactiplantibacillus plantarum HEAL9 improves cognition in moderately stressed subjects: A randomized controlled study. Nutrients 2023, 15, 3466. [Google Scholar] [CrossRef] [PubMed]
- Noto, D.; Miyake, S. Gut dysbiosis and multiple sclerosis. Clin. Immunol. 2022, 235, 108380. [Google Scholar] [CrossRef]
- Correale, J.; Hohfeld, R.; Baranzini, S. The role of the gut microbiota in multiple sclerosis. Nat. Rev. Neurol. 2022, 18, 544–558. [Google Scholar] [CrossRef]
- Altieri, C.; Speranza, B.; Corbo, M.; Sinigaglia, M.; Bevilacqua, A. Gut microbiota, and multiple sclerosis: Background, evidence, and perspectives. Nutrients 2023, 15, 942. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Liu, X.; Ye, Y.; Yan, X.; Cheng, Y.; Zhao, L.; Chen, F.; Ling, Z. Gut microbiota: A novel therapeutic target for Parkinson’s disease. Front. Immunol. 2022, 13, 937555. [Google Scholar] [CrossRef]
- Romano, S.; Savva, G.; Bedarf, J.; Charles, I.; Hildebrand, F.; Narbad, A. Meta-analysis of the Parkinson’s disease gut microbiome suggests alterations linked to intestinal inflammation. NPJ Park. Dis. 2021, 7, 27. [Google Scholar] [CrossRef]
- Jiang, C.; Li, G.; Huang, P.; Liu, Z.; Zhao, B. The gut microbiota and Alzheimer’s disease. J. Alzh. Dis. 2017, 58, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.; Holtzman, D. Current understanding of the Alzheimer’s disease-associated microbiome and therapeutic strategies. Exp. Mol. Med. 2024, 56, 86–94. [Google Scholar] [CrossRef]
- Mehra, A.; Arora, G.; Sahni, G.; Kaur, M.; Singh, H.; Sing, B.; Kaur, S. Gut microbiota and autism spectrum disorder: From pathogenesis to potential therapeutic perspectives. J. Tradit. Complement. Med. 2023, 13, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Pramanik, J.; Goyal, N.; Chauhan, D.; Sivamaruthi, B.; Prajapati, B.; Chaiyasut, C. Gut microbiota in anxiety and depression: Unveiling the relationships and management options. Pharmaceuticals 2023, 16, 565. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, H.; Chen, X.; Zhang, Y.; Zhang, H.; Xie, P. Gut microbiota and its metabolites in depression: From pathogenesis to treatment. eBioMedicine 2023, 90, 104257. [Google Scholar] [CrossRef] [PubMed]
- Limbana, T.; Khan, F.; Eskander, N. Gut microbiome and depression: How microbes affect the way we think. Cureus 2020, 12, e9966. [Google Scholar] [CrossRef]
- Butler, M.; Bastiaanssen, T.; Long-Smith, C.; Morkl, S.; Berding, K.; Ritz, N.; Strain, C.; Patangia, D.; Patel, S.; Stanton, C.; et al. The gut microbiome in social disorder: Evidence of altered composition and function. Transl. Psych. 2023, 13, 95. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Xie, Q.; Yuan, Y.; Shen, X.; Hao, Y.; Li, J.; Xu, H.; Kuang, W. Strain-level structure of gut microbiome showed potential association with cognitive function in major depressive disorder: A pilot study. J. Affect. Disord. 2023, 341, 236–247. [Google Scholar] [CrossRef]
- Nazarova, L.; Liu, H.; Xie, H.; Wang, L.; Ding, H.; An, H.; Huang, D. Targeting gut-brain axis through scalp-abdominal electroacupuncture in Parkinson’s disease. Brain Res. 2022, 1790, 147956. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Masuy, I.; Biesiekierski, J.R.; Fitzke, H.E.; Parikh, C.; Schofield, L.; Shaikh, H.; Bhagwanani, A.; Aziz, Q.; Taylor, S.A.; et al. Gut-brain axis dysfunction underlies FODMAP-induced symptom generation in irritable bowel syndrome. Aliment. Pharmacol. Ther. 2022, 55, 670–682. [Google Scholar] [CrossRef] [PubMed]
- Komorniak, N.; Kaczmarczyk, M.; Łoniewski, I.; Martynova-Van Kley, A.; Nalian, A.; Wroński, M.; Kaseja, K.; Kowalewski, B.; Folwarski, M.; Stachowska, E. Analysis of the efficacy of diet and short-term probiotic intervention on depressive symptoms in patients after bariatric surgery: A randomized double-blind placebo-controlled pilot. Nutrients 2023, 15, 4905. [Google Scholar] [CrossRef] [PubMed]
- Olavarría-Ramírez, L.; Cooney-Quane, J.; Murphy, G.; McCafferty, C.P.; Cryan, J.F.; Dockray, S. A systematic review of the effects of gut microbiota depletion on social and anxiety-related behaviours in adult rodents: Implications for translational research. Neurosci. Biobehav. Rev. 2023, 145, 105013. [Google Scholar] [CrossRef] [PubMed]
- Xiong, R.; Li, J.; Cheng, J.; Zhou, D.; Wu, S.; Huang, S.; Saimaiti, A.; Yang, Z.; Gan, R.; Li, H. The role of the gut microbiota in anxiety, depression, and other mental disorders as well as the protective effects of dietary components. Nutrients 2023, 15, 3258. [Google Scholar] [CrossRef] [PubMed]
- Anton-Păduraru, D.T.; Trofin, F.; Nastase, E.V.; Miftode, R.S.; Miftode, I.L.; Trandafirescu, M.F.; Cojocaru, E.; Țarcă, E.; Mindru, D.E.; Dorneanu, O.S. The role of the gut microbiota in anorexia nervosa in children and adults—Systematic review. Int. J. Mol. Sci. 2023, 25, 41. [Google Scholar] [CrossRef]
- Arneth, B.M. Gut-brain axis biochemical signaling from the gastrointestinal tract to the central nervous system: Gut dysbiosis and altered brain function. Postgrad. Med. J. 2018, 94, 446–452. [Google Scholar] [CrossRef]
- Hassib, L.; de Oliveira, C.L.; Rouvier, G.A.; Kanashiro, A.; Guimarães, F.S.; Ferreira, F.R. Maternal microbiome disturbance induces deficits in the offspring’s behaviors: A systematic review and meta-analysis. Gut Microbes. 2023, 15, 2226282. [Google Scholar] [CrossRef]
- Ticinesi, A.; Tana, C.; Nouvenne, A.; Prati, B.; Lauretani, F.; Meschi, T. Gut microbiota, cognitive frailty and dementia in older individuals: A systematic review. Clin. Interv. Aging 2018, 13, 1497–1511. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, J.; Ze, X.; Li, L.; Li, Y.; Zhou, Z.; Wu, S.; Jia, W.; Liu, M.; Li, Y.; et al. Lacticaseibacillus paracasei 207-27 alters the microbiota-gut-brain axis to improve wearable device-measured sleep duration in healthy adults: A randomized, double-blind, placebo-controlled trial. Food Funct. 2024, 15, 10732–10745. [Google Scholar] [CrossRef] [PubMed]
- Frileux, S.; Boltri, M.; Doré, J.; Leboyer, M.; Roux, P. Cognition and gut microbiota in schizophrenia spectrum and mood disorders: A systematic review. Neurosci. Biobehav. Rev. 2024, 162, 105722. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, D.; Xie, F.; Zhang, H. The causal relationship between gut microbiota and neuroblastoma: A bidirectional Mendelian randomization analysis and meta-analysis. Microbiol. Spectr. 2024, 12, e0365623. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, M.; Pan, Y.; Wang, Q.; Zhang, L.; Tang, F.; Lu, B.; Zhong, S. Causal relationships between gut microbiota and hypothyroidism: A Mendelian randomization study. Endocrine 2024, 83, 708–718. [Google Scholar] [CrossRef] [PubMed]
- Khine, W.W.T.; Voong, M.L.; Ng, T.K.S.; Feng, L.; Rane, G.A.; Kumar, A.P.; Kua, E.H.; Mahendran, R.; Mahendran, R.; Lee, Y.K. Mental awareness improved mild cognitive impairment and modulated gut microbiome. Aging 2020, 12, 24371–24393. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.L.; Abbaspour, A.; Mkoma, G.F.; Bulik, C.M.; Rück, C.; Djurfeldt, D. Gut microbiota in psychiatric disorders: A systematic review. Psychosom. Med. 2021, 83, 679–692. [Google Scholar] [CrossRef] [PubMed]
- Naomi, R.; Embong, H.; Othman, F.; Ghazi, H.F.; Maruthey, N.; Bahari, H. Probiotics for Alzheimer’s disease: A systematic review. Nutrients 2021, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Bundgaard-Nielsen, C.; Knudsen, J.; Leutscher, P.D.C.; Lauritsen, M.B.; Nyegaard, M.; Hagstrøm, S.; Sørensen, S. Gut microbiota profiles of autism spectrum disorder and attention-deficit/hyperactivity disorder: A systematic literature review. Gut Microbes. 2020, 11, 1172–1187. [Google Scholar] [CrossRef]
- Yang, J.; Fu, X.; Liao, X.; Li, Y. Effects of gut microbial-based treatments on gut microbiota, behavioral symptoms, and gastrointestinal symptoms in children with autism spectrum disorder: A systematic review. Psychiatry Res. 2020, 293, 113471. [Google Scholar] [CrossRef]
- Wang, H.; Braun, C.; Enck, P. Effects of rifaximin on central responses to social stress—A pilot experiment. Neurotherapeutics 2018, 15, 807–818. [Google Scholar] [CrossRef]
- Kossowska, M.; Olejniczak, S.; Karbowiak, M.; Mosiej, W.; Zielińska, D.; Brzezicka, A. The interplay between gut microbiota and cognitive functioning in the healthy aging population: A systematic review. Nutrients 2024, 16, 852. [Google Scholar] [CrossRef]
- Arulsamy, A.; Tan, Q.Y.; Balasubramaniam, V.; O’Brien, T.J.; Shaikh, M.F. Gut microbiota and epilepsy: A systematic review on their relationship and possible therapeutics. ACS Chem. Neurosci. 2020, 11, 3488–3498. [Google Scholar] [CrossRef]
- Di Lodovico, L.; Mondot, S.; Doré, J.; Mack, I.; Hanachi, M.; Gorwood, P. Anorexia nervosa and gut microbiota: A systematic review and quantitative synthesis of pooled microbiological data. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 106, 110114. [Google Scholar] [CrossRef]
- Baske, M.M.; Timmerman, K.C.; Garmo, L.G.; Freitas, M.N.; McCollum, K.A.; Ren, T.Y. Fecal microbiota transplant on Escherichia-Shigella gut composition and its potential role in the treatment of generalized anxiety disorder: A systematic review. J. Affect Disord. 2024, 354, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Van Nieuwenhove, T.; Rasschaert, G.; Kharagjitsingh, A.; Keymeulen, B.; Reynaert, H.; Kindt, S. The prevalence of disorders of the gut-brain axis in type 2 diabetes mellitus patients with metabolic dysfunction-associated fatty liver disease: An observational study. Acta Gastroenterol. Belg. 2021, 84, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cheng, N.; Liang, J.; Deng, Y.; Xiang, P.; Hei, Z.; Li, X. Gut microbiota changes in animal models of spinal cord injury: A preclinical systematic review and meta-analysis. Ann. Med. 2023, 55, 2269379. [Google Scholar] [CrossRef] [PubMed]
- Beltrán-Velasco, A.I.; Reiriz, M.; Uceda, S.; Echeverry-Alzate, V. Lactiplantibacillus (Lactobacillus) plantarum as a complementary treatment to improve symptomatology in neurodegenerative disease: A systematic review of open access literature. Int. J. Mol. Sci. 2024, 25, 3010. [Google Scholar] [CrossRef]
- Wong, L.C.; Hsu, C.J.; Wu, Y.T.; Chu, H.F.; Lin, J.H.; Wang, H.P.; Hu, S.C.; Tsai, Y.C.; Tsai, W.C.; Lee, W.T. Investigating the impact of probiotic on neurological outcomes in Rett syndrome: A randomized, double-blind, and placebo-controlled pilot study. Autism 2024, 28, 2267–2281. [Google Scholar] [CrossRef] [PubMed]
- Diebold, M.; Meola, M.; Purushothaman, S.; Siewert, L.K.; Pössnecker, E.; Roloff, T.; Lindberg, R.L.; Kuhle, J.; Kappos, L.; Derfuss, T.; et al. Gut microbiota composition as a candidate risk factor for dimethyl fumarate-induced lymphopenia in multiple sclerosis. Gut Microbes. 2022, 14, 2147055. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Hua, D.; Wang, Q.; Yang, L.; Wang, X.; Luo, A.; Yang, C. The role of bacteria and its derived metabolites in chronic pain and depression: Recent findings and research progress. Int. J. Neuropsychopharmacol. 2020, 23, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Lan, Y.; Zhang, J.; Cao, M.; Yang, X.; Wang, X. Effects of early-life gut microbiota on the neurodevelopmental outcomes of preterm infants: A multi-center, longitudinal observational study in China. Eur. J. Pediatr. 2024, 183, 1733–1740. [Google Scholar] [CrossRef]
- Herselman, M.F.; Bailey, S.; Deo, P.; Zhou, X.F.; Gunn, K.M.; Bobrovskaya, L. The effects of walnuts and academic stress on mental health, general well-being, and the gut microbiota in a sample of university students: A randomized clinical trial. Nutrients 2022, 14, 4776. [Google Scholar] [CrossRef] [PubMed]
- Petakh, P.; Oksenych, V.; Kamyshna, I.; Boisak, I.; Lyubomirskaya, K.; Kamyshnyi, O. Exploring the interplay between posttraumatic stress disorder, gut microbiota, and inflammatory biomarkers: A comprehensive meta-analysis. Front. Immunol. 2024, 15, 1349883. [Google Scholar] [CrossRef] [PubMed]
- Karakula-Juchnowicz, H.; Rog, J.; Juchnowicz, D.; Łoniewski, I.; Skonieczna-Żydecka, K.; Krukow, P.; Futyma-Jedrzejewska, M.; Kaczmarczyk, M. The study evaluating the effect of probiotic supplementation on the mental status, inflammation, and intestinal barrier in major depressive disorder patients using gluten-free or gluten-containing diet (SANGUT study): A 12-week, randomized, double-blind, and placebo-controlled clinical study protocol. Nutr. J. 2019, 18, 50. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhou, X.; Yuan, S.; Wang, L.; Yu, L.; Sun, J.; Chen, J.; Xiao, Q.; Wan, Z.; Zheng, J.S.; et al. Exploring the complex relationship between gut microbiota and risk of colorectal neoplasia using bidirectional mendelian randomization analysis. Cancer Epidemiol. Biomark. Prev. 2023, 32, 809–817. [Google Scholar] [CrossRef] [PubMed]
- Davies, C.; Mishra, D.; Eshraghi, R.S.; Mittal, J.; Sinha, R.; Bulut, E.; Mittal, R.; Eshraghi, A.A. Altering the gut microbiome to potentially modulate behavioral manifestations in autism spectrum disorders: A systematic review. Neurosci. Biobehav. Rev. 2021, 128, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhu, J.; Song, G. The impact of aerobic exercise training on cognitive function and gut microbiota in methamphetamine-dependent individuals in the community. Physiol. Behav. 2023, 270, 114302. [Google Scholar] [CrossRef]
- Luo, Y.; Li, Z.; Gu, L.; Zhang, K. Fermented dairy foods consumption and depressive symptoms: A meta-analysis of cohort studies. PLoS ONE 2023, 18, e0281346. [Google Scholar] [CrossRef]
- Zhu, B.; Shen, J.; Jiang, R.; Jin, L.; Zhan, G.; Liu, J.; Sha, Q.; Xu, R.; Miao, L.; Yang, C. Abnormalities in gut microbiota and serum metabolites in hemodialysis patients with mild cognitive decline: A single-center observational study. Psychopharmacology 2020, 237, 2739–2752. [Google Scholar] [CrossRef]
- Ceccarelli, G.; Fratino, M.; Selvaggi, C.; Giustini, N.; Serafino, S.; Schietroma, I.; Corano Scheri, G.; Pavone, P.; Passavanti, G.; Alunni Fegatelli, D.; et al. A pilot study on the effects of probiotic supplementation on neuropsychological performance and microRNA-29a-c levels in antiretroviral-treated HIV-1-infected patients. Brain Behav. 2017, 7, e00756. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Xiao, H.; Zhu, H.; Du, Y.; Wang, L. Revealing the gut microbiome mystery: A meta-analysis revealing differences between individuals with autism spectrum disorder and neurotypical children. Biosci. Trends 2024, 18, 233–249. [Google Scholar] [CrossRef] [PubMed]
- Bonnechère, B.; Amin, N.; van Duijn, C. What are the key gut microbiota involved in neurological diseases? A systematic review. Int. J. Mol. Sci. 2022, 23, 13665. [Google Scholar] [CrossRef] [PubMed]
- Althubeati, S.; Avery, A.; Tench, C.R.; Lobo, D.N.; Salter, A.; Eldeghaidy, S. Mapping brain activity of gut-brain signaling to appetite and satiety in healthy adults: A systematic review and functional neuroimaging meta-analysis. Neurosci. Biobehav. Rev. 2022, 136, 104603. [Google Scholar] [CrossRef]
- Saleh-Ghadimi, S.; Dehghan, P.; Sarmadi, B.; Maleki, P. Improvement of sleep by resistant dextrin prebiotic in type 2 diabetic women coincides with attenuation of metabolic endotoxemia: Involvement of gut-brain axis. J. Sci. Food Agric. 2022, 102, 5229–5237. [Google Scholar] [CrossRef] [PubMed]
- Nikrad, N.; Farhangi, M.A.; Fard Tabrizi, F.P.; Vaezi, M.; Mahmoudpour, A.; Mesgari-Abbasi, M. The effect of calorie-restriction along with thylakoid membranes of spinach on the gut-brain Axis Pathway and oxidative stress biomarkers in obese women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled clinical trial. J. Ovarian Res. 2023, 16, 216. [Google Scholar] [CrossRef]
Disease/Disor. | Role(s) Played by Gut Microbiota | Potential Interventions | Risk Factors | Mechanisms |
---|---|---|---|---|
Multiple Sclerosis | Pathogenic: Imbalances in the gut microbiome may trigger autoimmunity, which could lead to MS symptoms [21,26,27]. | Probiotics and dietary adjustments to reduce gut imbalances and dysbiosis. | High-fat diets, genetics, antibiotic usage | The gut microbiota influences immune system regulation which may trigger autoimmune responses that attack the CNS [28]. |
Parkinson’s Disease | Pathogenic: Gut microbiota may promote protein aggregation and affect neurological pathways related to Parkinson’s disease [29,30]. | Probiotics and supplementation with SCFAs to improve microbial balance. | Aging, pesticide exposure, poor diet | Microbial imbalance is linked to the accumulation of alpha-synuclein, which is associated with neurodegeneration and motor dysfunction [39]. |
Alzheimer’s Disease | Pathogenic: Gut dysbiosis increases the risk of neurological inflammation, which could impact Alzheimer’s markers [31,32]. | Probiotics and anti-inflammatory diets to reduce neuroinflammation and subsequent Alzheimer’s symptoms. | Aging, high-fat diets, chronic inflammation of neurological pathways due to external factors | Dysbiosis may activate neuroinflammatory pathways and increase the concentration of beta-amyloid plaques which is linked to cognitive decline [32,40]. |
Autism Spectrum Disorder | Beneficial: Changes in the gut microbiome can positively impact one’s behavior [17,33]. | Probiotics and other dietary interventions to improve gut health. | Overdependence on formula feeding (among infants) as opposed to natural foods and breastfeeding, risks associated with cesarean delivery | Through the gut–brain axis, gut microbiota may affect a person’s behavior and neurodevelopment [41]. |
Depression | Beneficial: The gut microbiome’s contents can help reduce mood dysregulation [9,13]. | Synbiotics and probiotics to minimize gut imbalance. | Stress, poor diet, antibiotic usage | Signals from the gut may increase serotonin production and modulate the hypothalamic–pituitary–adrenal (HPA) axis, improving mood [34]. |
Anxiety | Beneficial: Improvements in gut permeability could reduce anxiety-related symptoms [13,14]. | Probiotics and fecal microbiota transplantation (FMT) to improve the gut microbiome’s health. Introducing bacteria from a healthy person’s gut could help restore balance, but the patient’s diet will play an important part. | Chronic stress, poor diet | The gut microbiome may induce immune modulation and neurotransmitter production [42]. |
Neurodegenerative Diseases | ||
---|---|---|
Authors | Title | Summary |
Loh J, Mak, W, Tan L, Ng C, Chan H, Yeow S, Foo, J, Ong Y, How C, Khaw K. | Microbiota–gut–brain axis and its therapeutic applications in neurodegenerative diseases. | This article investigates the gut–brain axis’s role as a regulator of glial functions and explores how it can be a therapeutic solution to neurodegenerative diseases [1]. |
Heravi FS, Naseri K, Hu H. | Gut microbiota composition in patients with neurodegenerative disorders (Parkinson’s and Alzheimer’s) and healthy controls: a systematic review. | According to this systematic review, patients with Alzheimer’s and Parkinson’s diseases have a distinct gut microbiota composition from healthy individuals, indicating microbial dysbiosis to be linked to the conditions [24]. |
Beltrán-Velasco AI, Reiriz M, Uceda S, Echeverry-Alzate V. | Lactiplantibacillus (Lactobacillus) plantarum as a complementary treatment to improve symptomatology in neurodegenerative disease: a systematic review of open access literature. | Lactiplantibacillus (Lactobacillus) plantarum has great potential for improving motor and cognitive function in persons affected by neurodegenerative diseases [64]. |
Bonnechère B, Amin N, van Duijn C. | What are the key gut microbiota involved in neurological diseases? A systematic review. | Gut microbiota such as Akkermansia, Faecalibacterium, and Prevotella appear altered in patients with neurological disorders such as Alzheimer’s disease and MS [68]. |
Cognitive Health | ||
Authors | Title | Summary |
Handajani YS, Hengky A, Schröder-Butterfill E, Hogervorst E, Turana Y. | Probiotic supplementation improved cognitive function in cognitively impaired and healthy older adults: a systematic review of recent trials. | According to this systematic review, probiotic supplementation led to a significant improvement is the cognitive functions of older adults with Alzheimer’s disease [22]. |
Ticinesi A, Tana C, Nouvenne A, Prati B, Lauretani F, Meschi T. | Gut microbiota, cognitive frailty, and dementia in older individuals: a systematic review. | Alteration of the gut microbiota is linked to cognitive frailty and dementia [47]. |
Khine WWT, Voong ML, Ng TKS, Feng L, Rane GA, Kumar AP, Kua EH, Mahendran R, Mahendran R, Lee YK. | Mental awareness improved mild cognitive impairment and modulated gut microbiome. | Cognitive stimulation through mindful awareness helps improve cognitive impairment and induces changes in the gut microbiota, showing that brain function can influence an individual’s gut microbial profile [52]. |
Zhu B, Shen J, Jiang R, Jin L, Zhan G, Liu J, Sha Q, Xu R, Miao L, Yang C. | Abnormalities in gut microbiota and serum metabolites in hemodialysis patients with mild cognitive decline: a single-center observational study. | Gut microbiota and serum metabolite alterations are linked to mild cognitive decline in hemodialysis patients [69]. |
Kossowska M, Olejniczak S, Karbowiak M, Mosiej W, Zielińska D, Brzezicka A. | The interplay between gut microbiota and cognitive functioning in the healthy aging population: a systematic review. | Changes in the composition of the gut microbiota in healthy aging individuals can be used as markers for the onset of Alzheimer’s disease and other forms of dementia [58]. |
Mental Disorders | ||
Authors | Title | Summary |
Xiong R, Li J, Cheng J, Zhou D, Wu S, Huang S, Saimaiti A, Yang Z, Gan R, Li H. | The role of the gut microbiota in anxiety, depression, and other mental disorders, as well as the protective effects of dietary components. | This study explores the role of gut microbiota in mental disorders such as anxiety and depression. Its findings show that protective dietary components can improve an individual’s mental health [38]. |
Arneth BM. | Gut–brain axis biochemical signaling from the gastrointestinal tract to the central nervous system: gut dysbiosis and altered brain function. | The gut–brain axis is responsible for bidirectional communication between the gut and the brain, and it plays an important role in managing mental disorders such as depression and schizophrenia [45]. |
Petakh P, Oksenych V, Kamyshna I, Boisak I, Lyubomirskaya K, Kamyshnyi O. | Exploring the interplay between posttraumatic stress disorder, gut microbiota, and inflammatory biomarkers: a comprehensive meta-analysis. | This meta-analysis explores the link between PTSD, immune system biomarkers, and gut microbiota. Its findings show that reduced microbial diversity could result increased immune dysregulation [70]. |
Olavarría-Ramírez L, Cooney-Quane J, Murphy G, McCafferty CP, Cryan JF, Dockray S. | A systematic review of the effects of gut microbiota depletion on social and anxiety-related behaviors in adult rodents: implications for translational research. | The depletion of gut microbiota among rodents shows changes in anxiety and social behaviors [42]. |
Autoimmune Diseases | ||
Authors | Title | Summary |
Xu Q, Ni JJ, Han BX, Yan SS, Wei XT, Feng GJ, Zhang H, Zhang L, Li B, Pei YF. | The causal relationship between gut microbiota and autoimmune diseases: a two-sample Mendelian randomization study. | This study applies two-sample Mendelian randomization to establish a causal relationship between gut microbiota (Bifidobacterium) and autoimmune diseases (type 1 diabetes and celiac disease) [10]. |
Cancer | ||
Authors | Title | Summary |
Li W, Zhou X, Yuan S, Wang L, Yu L, Sun J, Chen J, Xiao Q, Wan Z, Zheng JS, Zhang CX, Larsson SC, Farrington SM, Law P, Houlston RS, Tomlinson I, Ding KF, Dunlop MG, Theodoratou E, Li X. | Exploring the complex relationship between gut microbiota and risk of colorectal neoplasia using bidirectional Mendelian randomization analysis. | Genetic liability to colorectal neoplasia may affect the composition of gut microbiota, which shows a link between microbiome interactions and cancer risk [43]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arneth, B. Gut–Brain Axis and Brain Microbiome Interactions from a Medical Perspective. Brain Sci. 2025, 15, 167. https://doi.org/10.3390/brainsci15020167
Arneth B. Gut–Brain Axis and Brain Microbiome Interactions from a Medical Perspective. Brain Sciences. 2025; 15(2):167. https://doi.org/10.3390/brainsci15020167
Chicago/Turabian StyleArneth, Borros. 2025. "Gut–Brain Axis and Brain Microbiome Interactions from a Medical Perspective" Brain Sciences 15, no. 2: 167. https://doi.org/10.3390/brainsci15020167
APA StyleArneth, B. (2025). Gut–Brain Axis and Brain Microbiome Interactions from a Medical Perspective. Brain Sciences, 15(2), 167. https://doi.org/10.3390/brainsci15020167