Risk of Cerebrovascular Events in Deep Brain Stimulation for Parkinson’s Disease Focused on STN and GPi: Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Selection of Studies
2.4. Data Extraction
2.5. Quality Assessment
2.6. Statistical Analysis
2.6.1. Primary Meta-Analysis Model
2.6.2. Overall and Structure-Specific CVE Probability
2.6.3. Target-Specific Probability of CVE Subtypes
2.6.4. Perioperative Period and Technique Effects on CVE
- Perioperative period: Separate random-effects meta-analyses were conducted to estimate the probability of intraoperative (IO) and postoperative (PO) CVEs, using the total number of DBS patients per study as the denominator. Note that variability in the definition of the PO period may contribute to heterogeneity in these estimates.
- The technique (MER vs. NON-MER): The influence of MER was evaluated by conducting separate meta-analyses for the MER and NON-MER subgroups using the primary random-effects model.
2.6.5. Heterogeneity and Publication Bias Assessment
3. Results
3.1. Search Results
3.2. Patient Characteristics
3.3. CVE in PD-DBS Patients
3.4. CVE per Structure in PD-DBS Patients
3.5. Type of CVE per Structure
3.5.1. Hemorrhages
3.5.2. Ischemias
- For STN, 2788 at-risk patients reported two ischemic events, resulting in a crude combined proportion of 0.07% (95% CI: 0.01–0.26%).
- For GPi, 252 patients at risk reported five ischemic events, yielding a crude combined proportion of 1.98% (95% CI: 0.65–4.57%).
3.6. Probability of CVE in the Perioperative Period
3.7. CVE per Technique in PD-DBS Patients
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PD | Parkinson’s disease |
DBS | Deep brain stimulation |
STN | Subthalamic nucleus |
GPi | Internal globus pallidus |
CVE | Cerebrovascular event |
NOS | Newcastle–Ottawa scale |
CI | Confidence intervals |
fMRI | Functional magnetic resonance imaging |
MER | Microelectrode recording |
IO | Intraoperative |
PO | Postoperative |
References
- Li, H.; Liang, S.; Yu, Y.; Wang, Y.; Cheng, Y.; Yang, H.; Tong, X. Effect of Subthalamic Nucleus Deep Brain Stimulation (STN-DBS) on Balance Performance in Parkinson’s Disease. PLoS ONE 2020, 15, e0238936. [Google Scholar] [CrossRef] [PubMed]
- Malek, N. Deep Brain Stimulation in Parkinson’s Disease. Neurol. India 2019, 67, 968. [Google Scholar] [CrossRef]
- Marín, G.; Castillo-Rangel, C.; Salomón-Lara, L.; Vega-Quesada, L.A.; Zarate Calderon, C.J.; Borda-Low, C.D.; Soto-Abraham, J.E.; Coria-Avila, G.A.; Manzo, J.; García-Hernández, L.I. Deep Brain Stimulation in Neurological Diseases and Other Pathologies. Neurol. Perspect. 2022, 2, 151–159. [Google Scholar] [CrossRef]
- Bucur, M.; Papagno, C. Deep Brain Stimulation in Parkinson Disease: A Meta-Analysis of the Long-Term Neuropsychological Outcomes. Neuropsychol. Rev. 2023, 33, 307–346. [Google Scholar] [CrossRef]
- Xu, W.; Wang, J.; Li, X.-N.; Liang, J.; Song, L.; Wu, Y.; Liu, Z.; Sun, B.; Li, W.-G. Neuronal and Synaptic Adaptations Underlying the Benefits of Deep Brain Stimulation for Parkinson’s Disease. Transl. Neurodegener. 2023, 12, 55. [Google Scholar] [CrossRef]
- Hariz, M.; Blomstedt, P. Deep Brain Stimulation for Parkinson’s Disease. J. Intern. Med. 2022, 292, 764–778. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zheng, F.; Krischek, B.; Ding, W.; Xiong, C.; Wang, X.; Niu, C. Subthalamic Nucleus and Globus Pallidus Internus Stimulation for the Treatment of Parkinson’s Disease: A Systematic Review. J. Int. Med. Res. 2017, 45, 1602–1612. [Google Scholar] [CrossRef] [PubMed]
- Fukaya, C.; Yamamoto, T. Deep Brain Stimulation for Parkinson’s Disease: Recent Trends and Future Direction. Neurol. Med. Chir. 2015, 55, 422–431. [Google Scholar] [CrossRef]
- Park, C.K.; Jung, N.Y.; Kim, M.; Chang, J.W. Analysis of Delayed Intracerebral Hemorrhage Associated with Deep Brain Stimulation Surgery. World Neurosurg. 2017, 104, 537–544. [Google Scholar] [CrossRef]
- Tonge, M.; Ackermans, L.; Kocabicak, E.; van Kranen-Mastenbroek, V.; Kuijf, M.; Oosterloo, M.; Kubben, P.; Temel, Y. A Detailed Analysis of Intracerebral Hemorrhages in DBS Surgeries. Clin. Neurol. Neurosurg. 2015, 139, 183–187. [Google Scholar] [CrossRef]
- Sobstyl, M.; Aleksandrowicz, M.; Ząbek, M.; Pasterski, T. Hemorrhagic Complications Seen on Immediate Intraprocedural Stereotactic Computed Tomography Imaging during Deep Brain Stimulation Implantation. J. Neurol. Sci. 2019, 400, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Vinke, R.S.; Geerlings, M.; Selvaraj, A.K.; Georgiev, D.; Bloem, B.R.; Esselink, R.A.J.; Bartels, R.H.M.A. The Role of Microelectrode Recording in Deep Brain Stimulation Surgery for Parkinson’s Disease: A Systematic Review and Meta-Analysis. J. Park. Dis. 2022, 12, 2059–2069. [Google Scholar] [CrossRef]
- Qian, K.; Wang, J.; Rao, J.; Zhang, P.; Sun, Y.; Hu, W.; Hao, J.; Jiang, X.; Fu, P. Intraoperative Microelectrode Recording under General Anesthesia Guided Subthalamic Nucleus Deep Brain Stimulation for Parkinson’s Disease: One Institution’s Experience. Front. Neurol. 2023, 14, 1117681. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Rangel, C.; Marín, G.; Hernandez-Contreras, K.A.; Zarate-Calderon, C.; Vichi-Ramirez, M.M.; Cortez-Saldias, W.; Rodriguez-Florido, M.A.; Riley-Moguel, Á.E.; Pichardo, O.; Torres-Pineda, O.; et al. Atlas of Nervous System Vascular Malformations: A Systematic Review. Life 2022, 12, 1199. [Google Scholar] [CrossRef]
- Farrokhi, F.; Buchlak, Q.D.; Sikora, M.; Esmaili, N.; Marsans, M.; McLeod, P.; Mark, J.; Cox, E.; Bennett, C.; Carlson, J. Investigating Risk Factors and Predicting Complications in Deep Brain Stimulation Surgery with Machine Learning Algorithms. World Neurosurg. 2020, 134, e325–e338. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Stang, A. Critical Evaluation of the Newcastle-Ottawa Scale for the Assessment of the Quality of Nonrandomized Studies in Meta-Analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Altman, D.G.; Gotzsche, P.C.; Juni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C. The Cochrane Collaboration’s Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef]
- Seijo, F.; Alvarez De Eulate Beramendi, S.; Santamarta Liébana, E.; Lozano Aragoneses, B.; Saiz Ayala, A.; Fernández De León, R.; Alvarez Vega, M.A. Surgical Adverse Events of Deep Brain Stimulation in the Subthalamic Nucleus of Patients with Parkinson’s Disease. The Learning Curve and the Pitfalls. Acta Neurochir. 2014, 156, 1505–1512. [Google Scholar] [CrossRef]
- Downes, A.E.; Pezeshkian, P.; Behnke, E.; Bordelon, Y.; Tagliati, M.; Mamelak, A.; Pouratian, N. Acute Ischemic Stroke during Deep Brain Stimulation Surgery of Globus Pallidus Internus: Report of 5 Cases. Oper. Neurosurg. 2016, 12, 383–390. [Google Scholar] [CrossRef]
- Petraglia, F.W.; Farber, S.H.; Han, J.L.; Verla, T.; Gallis, J.; Lokhnygina, Y.; Parente, B.; Hickey, P.; Turner, D.A.; Lad, S.P. Comparison of Bilateral vs. Staged Unilateral Deep Brain Stimulation (DBS) in Parkinson’s Disease in Patients under 70 Years of Age. Neuromodulation 2016, 19, 31–37. [Google Scholar] [CrossRef]
- Cui, Z.; Pan, L.; Song, H.; Xu, X.; Xu, B.; Yu, X.; Ling, Z. Intraoperative MRI for Optimizing Electrode Placement for Deep Brain Stimulation of the Subthalamic Nucleus in Parkinson Disease. J. Neurosurg. 2016, 124, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, J.; Zhao, H.; Li, N.; Ge, S.; Chen, L.; Li, J.; Jing, J.; Su, M.; Zheng, Z.; et al. Clinical Analysis and Treatment of Symptomatic Intracranial Hemorrhage after Deep Brain Stimulation Surgery. Br. J. Neurosurg. 2017, 31, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.-S.; Kim, M.-S.; You, S.; Kim, M.-J.; Kim, Y.J.; Kim, J.; Kim, K.; Chung, S.J. Comparison of Pallidal and Subthalamic Deep Brain Stimulation in Parkinson’s Disease: Therapeutic and Adverse Effects. J. Mov. Disord. 2017, 10, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Park, K.R.; Park, J.H.; Ahn, J.H.; Cho, J.W.; Park, S.; Lee, J.I.; Youn, J. Bilateral Subthalamic Deep Brain Stimulation Is an Effective and Safe Treatment Option for the Older Patients with Parkinson’s Disease. Clin. Neurol. Neurosurg. 2018, 173, 182–186. [Google Scholar] [CrossRef]
- Koivu, M.; Huotarinen, A.; Scheperjans, F.; Laakso, A.; Kivisaari, R.; Pekkonen, E. Motor Outcome and Electrode Location in Deep Brain Stimulation in Parkinson’s Disease. Brain Behav. 2018, 8, e01003. [Google Scholar] [CrossRef]
- Sharma, V.D.; Lyons, K.E.; Nazzaro, J.M.; Pahwa, R. Deep Brain Stimulation of the Subthalamic Nucleus in Parkinson’s Disease Patients over 75 years of Age. J. Neurol. Sci. 2019, 399, 57–60. [Google Scholar] [CrossRef]
- Mitchell, K.T.; Younce, J.R.; Norris, S.A.; Tabbal, S.D.; Dowling, J.L.; Rich, K.M.; Perlmutter, J.S.; Ushe, M. Bilateral Subthalamic Nucleus Deep Brain Stimulation in Elderly Patients with Parkinson Disease: A Case-Control Study. Oper. Neurosurg. 2020, 19, 234–240. [Google Scholar] [CrossRef]
- Yang, C.; Qiu, Y.; Wang, J.; Wu, Y.; Hu, X.; Wu, X. Intracranial Hemorrhage Risk Factors of Deep Brain Stimulation for Parkinson’s Disease: A 2-Year Follow-up Study. J. Int. Med. Res. 2020, 48, 6747. [Google Scholar] [CrossRef]
- Cordeiro, J.G.; Diaz, A.; Davis, J.K.; Di Luca, D.G.; Farooq, G.; Luca, C.C.; Jagid, J.R. Safety of Noncontrast Imaging–Guided Deep Brain Stimulation Electrode Placement in Parkinson Disease. World Neurosurg. 2020, 134, e1008–e1014. [Google Scholar] [CrossRef]
- Jung, I.-H.; Chang, K.W.; Park, S.H.; Chang, W.S.; Jung, H.H.; Chang, J.W. Complications After Deep Brain Stimulation: A 21-Year Experience in 426 Patients. Front. Aging Neurosci. 2022, 14, 819730. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Wang, J.; Chen, T.; Li, X.; Cui, Z. Short- and Long-Term Efficacy and Safety of Deep-Brain Stimulation in Parkinson’s Disease Patients Aged 75 Years and Older. Brain Sci. 2022, 12, 1588. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.K.; Kim, M.S.; Yoon, H.H.; Chung, S.J.; Jeon, S.R. The Risk Factors of Intracerebral Hemorrhage in Deep Brain Stimulation: Does Target Matter? Acta Neurochir. 2022, 164, 587–598. [Google Scholar] [CrossRef]
- Servello, D.; Galbiati, T.F.; Iess, G.; Minafra, B.; Porta, M.; Pacchetti, C. Complications of Deep Brain Stimulation in Parkinson’s Disease: A Single-Center Experience of 517 Consecutive Cases. Acta Neurochir. 2023, 165, 3385–3396. [Google Scholar] [CrossRef]
- Mainardi, M.; Ciprietti, D.; Pilleri, M.; Bonato, G.; Weis, L.; Cianci, V.; Biundo, R.; Ferreri, F.; Piacentino, M.; Landi, A.; et al. Deep Brain Stimulation of Globus Pallidus Internus and Subthalamic Nucleus in Parkinson’s Disease: A Multicenter, Retrospective Study of Efficacy and Safety. Neurol. Sci. 2024, 45, 177–185. [Google Scholar] [CrossRef]
- Del Bene, V.A.; Martin, R.C.; Brinkerhoff, S.A.; Olson, J.W.; Nelson, M.J.; Marotta, D.; Gonzalez, C.L.; Mills, K.A.; Kamath, V.; Cutter, G.; et al. Differential Cognitive Effects of Unilateral Subthalamic Nucleus Deep Brain Stimulation for Parkinson’s Disease. Ann. Neurol. 2024, 95, 1205–1219. [Google Scholar] [CrossRef]
- Eiamcharoenwit, J.; Akavipat, P. Incidence of Complications Associated with Deep Brain Stimulation Surgery in Patients with Parkinson’s Disease: An 8-Year Retrospective Study. Saudi J. Anaesth. 2024, 18, 62–69. [Google Scholar] [CrossRef]
- Holewijn, R.A.; Wiggerts, Y.; Bot, M.; Verbaan, D.; De Bie, R.M.A.; Schuurman, R.; Van Den Munckhof, P. Surgical Complications in Subthalamic Nucleus Deep Brain Stimulation for Parkinson’s Disease: Experience in 800 Patients. Ster. Funct. Neurosurg. 2024, 102, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Cui, Y.; Zhang, J.; Yan, R.; Su, D.; Zhao, D.; Wang, A.; Feng, T. Temporal Trends in the Prevalence of Parkinson’s Disease from 1980 to 2023: A Systematic Review and Meta-Analysis. Lancet Healthy Longev. 2024, 5, e464–e479. [Google Scholar] [CrossRef]
- Anderson, V.C.; Burchiel, K.J.; Hogarth, P.; Favre, J.; Hammerstad, J.P. Pallidal vs Subthalamic Nucleus Deep Brain Stimulation in Parkinson Disease. Arch. Neurol. 2005, 62, 554. [Google Scholar] [CrossRef]
- Cheyuo, C.; Vetkas, A.; Sarica, C.; Kalia, S.K.; Hodaie, M.; Lozano, A.M. Comprehensive Characterization of Intracranial Hemorrhage in Deep Brain Stimulation: A Systematic Review of Literature from 1987 to 2023. J. Neurosurg. 2024, 141, 381–393. [Google Scholar] [CrossRef]
- Tiefenbach, J.; Favi Bocca, L.; Hogue, O.; Nero, N.; Baker, K.B.; Machado, A.G. Intracranial Bleeding in Deep Brain Stimulation Surgery: A Systematic Review and Meta-Analysis. Ster. Funct. Neurosurg. 2023, 101, 207–216. [Google Scholar] [CrossRef]
- Okun, M.S. Deep-Brain Stimulation for Parkinson’s Disease. N. Engl. J. Med. 2013, 368, 482–484. [Google Scholar] [CrossRef]
- Baydin, S.; Baran, O.; Gungor, A.; Kuruoglu, E.; Tanriover, N. Vascularization of the Subthalamic Nucleus: Highlighting the Significance of the Premamillary Artery. World Neurosurg. 2020, 135, e562–e566. [Google Scholar] [CrossRef]
- Mejías Alpízar, Y.; García Barrios, C.; Bacallao Cabrera, I. Anatomía de Los Sistemas Arteriales de La Coroidea Anterior y Comunicante Posterior. Arch. Méd. Camagüey 2010, 14, 1–7. [Google Scholar]
- Clifton, W.; Damon, A. The Three-dimensional Printing Renaissance of Individualized Anatomical Modeling: Are We Repeating History? Clin. Anat. 2020, 33, 428–430. [Google Scholar] [CrossRef]
- Martinez-Ferre, A.; Martinez, S. Molecular Regionalization of the Diencephalon. Front. Neurosci. 2012, 6, 73. [Google Scholar] [CrossRef]
- Mavridis, I.; Boviatsis, E.; Anagnostopoulou, S. Anatomy of the Human Subthalamic Nucleus: A Combined Morphometric Study. Anat. Res. Int. 2013, 2013, 319710. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, J.; Liang, S.-H.; Ge, J.; Lu, Y.-C.; Li, J.-N.; Chen, Y.-B.; Luo, D.-S.; Li, H.; Li, Y.-Q. Involvement of the Ventrolateral Periaqueductal Gray Matter-Central Medial Thalamic Nucleus-Basolateral Amygdala Pathway in Neuropathic Pain Regulation of Rats. Front. Neuroanat. 2020, 14, 32. [Google Scholar] [CrossRef]
- Djulejić, V.; Marinković, S.; Georgievski, B.; Stijak, L.; Aksić, M.; Puškaš, L.; Milić, I. Clinical Significance of Blood Supply to the Internal Capsule and Basal Ganglia. J. Clin. Neurosci. 2016, 25, 19–26. [Google Scholar] [CrossRef]
- Dostrovsky, J.O.; Hutchison, W.D.; Lozano, A.M. The Globus Pallidus, Deep Brain Stimulation, and Parkinson’s Disease. Neurosci. 2002, 8, 284–290. [Google Scholar] [CrossRef]
- Feekes, J.A.; Cassell, M.D. The Vascular Supply of the Functional Compartments of the Human Striatum. Brain 2006, 129, 2189–2201. [Google Scholar] [CrossRef]
- Au, K.L.K.; Wong, J.K.; Tsuboi, T.; Eisinger, R.S.; Moore, K.; Lemos Melo Lobo Jofili Lopes, J.; Holland, M.T.; Holanda, V.M.; Peng-Chen, Z.; Patterson, A.; et al. Globus Pallidus Internus (GPi) Deep Brain Stimulation for Parkinson’s Disease: Expert Review and Commentary. Neurol. Ther. 2021, 10, 7–30. [Google Scholar] [CrossRef]
- Ide, S.; Kakeda, S.; Yoneda, T.; Moriya, J.; Watanabe, K.; Ogasawara, A.; Futatsuya, K.; Ohnari, N.; Sato, T.; Hiai, Y.; et al. Internal Structures of the Globus Pallidus in Patients with Parkinson’s Disease: Evaluation with Phase Difference-Enhanced Imaging. Magn. Reson. Med. Sci. 2017, 16, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Ineichen, C.; Shepherd, N.R.; Sürücü, O. Understanding the Effects and Adverse Reactions of Deep Brain Stimulation: Is It Time for a Paradigm Shift Toward a Focus on Heterogenous Biophysical Tissue Properties Instead of Electrode Design Only? Front. Hum. Neurosci. 2018, 12, 468. [Google Scholar] [CrossRef] [PubMed]
- Deuschl, G.; Antonini, A.; Costa, J.; Śmiłowska, K.; Berg, D.; Corvol, J.; Fabbrini, G.; Ferreira, J.; Foltynie, T.; Mir, P.; et al. European Academy of Neurology/Movement Disorder Society—European Section Guideline on the Treatment of Parkinson’s Disease: I. Invasive Therapies. Eur. J. Neurol. 2022, 29, 2580–2595. [Google Scholar] [CrossRef] [PubMed]
- Odekerken, V.J.J.; Boel, J.A.; Schmand, B.A.; de Haan, R.J.; Figee, M.; van den Munckhof, P.; Schuurman, P.R.; de Bie, R.M.A.; de Bie, R.M.A.; Bour, L.; et al. GPi vs STN Deep Brain Stimulation for Parkinson Disease. Neurology 2016, 86, 755–761. [Google Scholar] [CrossRef]
- Fenoy, A.J.; Simpson, R.K. Risks of Common Complications in Deep Brain Stimulation Surgery: Management and Avoidance. J. Neurosurg. 2014, 120, 132–139. [Google Scholar] [CrossRef]
- Kunstmann, C.; Valdivia, F.; De Marinis, A.; Ayach, F.; Montes, J.M.; Chana-Cuevas, P. Estimulación cerebral profunda en enfermedad de Parkinson. Rev. Med. Chile 2018, 146, 562–569. [Google Scholar] [CrossRef]
- Nishiguchi, Y.; Matsuura, K.; Hirata, Y.; Mizutani, A.; Katoh, N.; Ishikawa, H.; Miyashita, K.; Utsunomiya, T.; Kajikawa, H.; Nishikawa, H.; et al. Relationship of Brain Edema after Deep Brain Stimulation Surgery with Motor and Cognitive Function. Heliyon 2022, 8, e08900. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, J.; Wu, B.; Ling, Y.; Guo, Q.; Wang, S.; Liu, L.; Jiang, N.; Chen, L.; Liu, J. Subthalamic Nucleus Deep Brain Stimulation Treats Parkinson’s Disease Patients with Cardiovascular Disease Comorbidity: A Retrospective Study of a Single Center Experience. Brain Sci. 2023, 13, 70. [Google Scholar] [CrossRef] [PubMed]
- Hanna, J.A.; Scullen, T.; Kahn, L.; Mathkour, M.; Gouveia, E.E.; Garces, J.; Evans, L.M.; Lea, G.; Houghton, D.J.; Biro, E.; et al. Comparison of Elderly and Young Patient Populations Treated with Deep Brain Stimulation for Parkinson’s Disease: Long-Term Outcomes with up to 7 Years of Follow-Up. J. Neurosurg. 2019, 131, 807–812. [Google Scholar] [CrossRef]
- Kim, A.; Yang, H.-J.; Kwon, J.-H.; Kim, M.-H.; Lee, J.; Jeon, B. Mortality of Deep Brain Stimulation and Risk Factors in Patients with Parkinson’s Disease: A National Cohort Study in Korea. J. Korean Med. Sci. 2023, 38, e10. [Google Scholar] [CrossRef] [PubMed]
- DeLong, M.R.; Huang, K.T.; Gallis, J.; Lokhnygina, Y.; Parente, B.; Hickey, P.; Turner, D.A.; Lad, S.P. Effect of Advancing Age on Outcomes of Deep Brain Stimulation for Parkinson Disease. JAMA Neurol. 2014, 71, 1290. [Google Scholar] [CrossRef]
- Boehme, A.K.; Esenwa, C.; Elkind, M.S.V. Stroke Risk Factors, Genetics, and Prevention. Circ. Res. 2017, 120, 472–495. [Google Scholar] [CrossRef] [PubMed]
- Wakim, A.A.; Mattar, J.B.; Lambert, M.; Ponce, F.A. Perioperative Complications of Deep Brain Stimulation among Patients with Advanced Age: A Single-Institution Retrospective Analysis. J. Neurosurg. 2021, 135, 1421–1428. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, S. Association between Parkinson’s Disease and the Risk of Adverse Cardiovascular Events: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2023, 10, 1284826. [Google Scholar] [CrossRef]
- Tong, X.; Schieb, L.; George, M.G.; Gillespie, C.; Merritt, R.K.; Yang, Q. Racial/Ethnic and Geographic Variations in Long-Term Survival Among Medicare Beneficiaries After Acute Ischemic Stroke. Prev. Chronic Dis. 2021, 18, 200242. [Google Scholar] [CrossRef]
- Sacks, L.; Kunkoski, E. Digital Health Technology to Measure Drug Efficacy in Clinical Trials for Parkinson’s Disease: A Regulatory Perspective. J. Park. Dis. 2021, 11, S111–S115. [Google Scholar] [CrossRef]
- Scelzo, E.; Beghi, E.; Rosa, M.; Angrisano, S.; Antonini, A.; Bagella, C.; Bianchi, E.; Caputo, E.; Lena, F.; Lopiano, L.; et al. Deep Brain Stimulation in Parkinson’s Disease: A Multicentric, Long-Term, Observational Pilot Study. J. Neurol. Sci. 2019, 405, 116411. [Google Scholar] [CrossRef]
- Cook, R.; Chennell Dutton, N.; Silburn, P.A.; Meagher, L.J.; Fracchia, G.; Anderson, N.; Cooper, G.; Dinh, H.-M.; Cook, S.J.; Silberstein, P. Minimising the Rate of Vascular Complications in Deep Brain Stimulation Surgery for the Management of Parkinson’s Disease: A Single-Centre 600-Patient Case Series. BMJ Neurol. Open 2024, 6, e000793. [Google Scholar] [CrossRef] [PubMed]
- Runge, J.; Cassini Ascencao, L.; Blahak, C.; Kinfe, T.M.; Schrader, C.; Wolf, M.E.; Saryyeva, A.; Krauss, J.K. Deep Brain Stimulation in Patients on Chronic Antiplatelet or Anticoagulation Treatment. Acta Neurochir. 2021, 163, 2825–2831. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.-C.; Tai, C.-H.; Tseng, S.-H. Platelet Abnormalities in Patients with Parkinson’s Disease Undergoing Preoperative Evaluation for Deep Brain Stimulation. Sci. Rep. 2022, 12, 14625. [Google Scholar] [CrossRef]
- Olson, M.C.; Shill, H.; Ponce, F.; Aslam, S. Deep Brain Stimulation in PD: Risk of Complications, Morbidity, and Hospitalizations: A Systematic Review. Front. Aging Neurosci. 2023, 15, 1258190. [Google Scholar] [CrossRef] [PubMed]
- Williams, N.R.; Foote, K.D.; Okun, M.S. Subthalamic Nucleus Versus Globus Pallidus Internus Deep Brain Stimulation: Translating the Rematch into Clinical Practice. Mov. Disord. Clin. Pract. 2014, 1, 24–35. [Google Scholar] [CrossRef]
- Doshi, P.K.; Rai, N.; Das, D. Surgical and Hardware Complications of Deep Brain Stimulation—A Single Surgeon Experience of 519 Cases Over 20 Years. Neuromodul. Technol. Neural Interface 2022, 25, 895–903. [Google Scholar] [CrossRef]
- Sammouda, R.; El-Zaart, A. An Optimized Approach for Prostate Image Segmentation Using K-Means Clustering Algorithm with Elbow Method. Comput. Intell. Neurosci. 2021, 2021, 4553832. [Google Scholar] [CrossRef]
- Martin, A.J.; Starr, P.A.; Ostrem, J.L.; Larson, P.S. Hemorrhage Detection and Incidence during Magnetic Resonance-Guided Deep Brain Stimulator Implantations. Ster. Funct. Neurosurg. 2017, 95, 307–314. [Google Scholar] [CrossRef]
Author and Year | Study Design | Total Number of DBS Patients | Structure | Type of CVE | Number of CVE | Quality | Use of MER | Age | Country |
---|---|---|---|---|---|---|---|---|---|
Seijo et al., 2014 [19] | R | 233 | STN | H | 10 | 7 | YES | - | Thailand and |
Tonge et al., 2015 [10] | R | 137 | - | H | 3 | 7 | YES | - | Poland |
Downes et al., 2016 [20] | R | 112 | Gpi | I | 4 | 7 | YES | 61.09 (7.8) | Spain |
Petraglia et al., 2016 [21] | R | 713 | - | H | 20 | 9 | - | 55.14 (13.8) | South Korea |
Cui et al., 2016 [22] | P | 110 | STN | H | 2 | 6 | YES | 75 (IQR: 75–85) | China |
Park et al., 2017 [9] | R | 136 | STN | H | 9 | 7 | YES | 57.0 (13.6) | Netherlands and Turkey |
Wang et al., 2017 [23] | R | 318 | STN | H | 10 | 7 | NO | 58 (IQR: 39–77) | China |
Ryu et al., 2017 [24] | R | 42 | STN and Gpi | H and I | 2 | 8 | - | 55.7 (14.8) | China |
Kim et al., 2018 [25] | R | 55 | STN | H | 1 | 7 | YES | 60.3 (14.3) | United States |
Koivu et al., 2018 [26] | R | 87 | STN | H | 1 | 6 | NO | 61 (IRQ: 35–77) | Italy |
Sharma et al., 2019 [27] | P | 30 | STN | H | 1 | 7 | YES | 77.5 (2.1) | United States |
Sobstyl et al., 2019 [11] | R | 186 | - | H | 7 | 7 | NO | 62.22 (6.08) | China |
Mitchell et al., 2020 [28] | R | 104 | STN | H | 4 | 9 | YES | 61.1 (9.9) | United States |
Yang et al., 2020 [29] | R | 352 | STN and Gpi | H | 11 | 7 | - | 57.5 (11.9) | South Korea |
Cordeiro et al., 2020 [30] | R | 152 | - | H | 2 | 7 | YES | STN: 58 (IQR 14); GPi: 61 (IQR 11.5) | Italy |
Jung et al., 2022 [31] | R | 315 | - | H | 9 | 6 | YES | STN: 56.9 (7.7); GPi: 57.9 (8.4) | South Korea |
Jiang et al., 2022 [32] | R | 21 | STN and Gpi | H | 1 | 7 | YES | L STN: 56.7 (8.6); R STN: 58.9 (6.3) | United States |
Shin et al., 2022 [33] | R | 250 | - | H | 11 | 9 | YES | - | South Korea |
Servello et al., 2023 [34] | R | 517 | STN and Gpi | H | 13 | 7 | YES | Y: 56.7 (5.7); O: 68.5 (2.9) | South Korea |
Mainardi et al., 2024 [35] | R | 48 | STN and Gpi | I | 1 | 9 | - | - | Finland |
Del Bene et al., 2024 [36] | RCT | 31 | STN | H | 2 | Low Risk | YES | Y: 60.8 (7.1); O: 77.6 (2.8) | United States |
Eiamcharoenwit et al., 2024 [37] | R | 46 | STN | H | 3 | 7 | YES | 64.7 (10.4) | United States |
Holewijn et al., 2024 [38] | R | 800 | STN | H and I | 23 | 7 | - | 61.1 (8.4) | Netherlands |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarate-Calderon, C.; Castillo-Rangel, C.; Viveros-Martínez, I.; Castro-Castro, E.; García, L.I.; Marín, G. Risk of Cerebrovascular Events in Deep Brain Stimulation for Parkinson’s Disease Focused on STN and GPi: Systematic Review and Meta-Analysis. Brain Sci. 2025, 15, 413. https://doi.org/10.3390/brainsci15040413
Zarate-Calderon C, Castillo-Rangel C, Viveros-Martínez I, Castro-Castro E, García LI, Marín G. Risk of Cerebrovascular Events in Deep Brain Stimulation for Parkinson’s Disease Focused on STN and GPi: Systematic Review and Meta-Analysis. Brain Sciences. 2025; 15(4):413. https://doi.org/10.3390/brainsci15040413
Chicago/Turabian StyleZarate-Calderon, Cristofer, Carlos Castillo-Rangel, Iraís Viveros-Martínez, Estefanía Castro-Castro, Luis I. García, and Gerardo Marín. 2025. "Risk of Cerebrovascular Events in Deep Brain Stimulation for Parkinson’s Disease Focused on STN and GPi: Systematic Review and Meta-Analysis" Brain Sciences 15, no. 4: 413. https://doi.org/10.3390/brainsci15040413
APA StyleZarate-Calderon, C., Castillo-Rangel, C., Viveros-Martínez, I., Castro-Castro, E., García, L. I., & Marín, G. (2025). Risk of Cerebrovascular Events in Deep Brain Stimulation for Parkinson’s Disease Focused on STN and GPi: Systematic Review and Meta-Analysis. Brain Sciences, 15(4), 413. https://doi.org/10.3390/brainsci15040413