Improving the Antioxidant Activity and Flavor of Faba (Vicia faba L.) Leaves by Domestic Cooking Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Materials and Domestic Cooking
2.3. Sample Extraction
2.4. High Performance Liquid Chromatography (HPLC) Analysis of Antioxidant Phytochemicals
2.4.1. HPLC Analysis of l-dopa
2.4.2. HPLC and LC-MS/MS (Mass Spectrometry) Analysis of Flavonoids
2.5. Determination of Total Phenolics Content (TPC), Total Flavonoids Content (TFC), and Antioxidant Activities
2.6. Headspace Solid-Phase Microextraction Gas Chromatography–Mass Spectrometry (HS-SPME-GC–MS) Analysis of VOCs
2.6.1. Sample Preparation
2.6.2. HS-SPME and GC–MS Analysis
2.7. Statistics Analysis
3. Results and Discussion
3.1. Effects of Domestic Cooking on Faba Leaf l-dopa Content Variations
3.2. Effects of Domestic Cooking on Faba Leaf Flavonoid Metabolites Variations
3.3. Effects of Domestic Cooking on Changes in the TPC, TFC and Antioxidant Activities of Faba Leaves
3.4. Effects of Domestic Cooking on Changes in the Contents of VOCs of Faba Leaves
3.4.1. Alcohols
3.4.2. Aldehydes/Ketones/Esters
3.4.3. Alkanes/Alkenes/Aromatic Hydrocarbons
3.4.4. Organic Acids/Other Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Etemadi, F.; Hashemi, M.; Autio, W.R.; Mangan, F.X.; Zandvakili, O. Yield and accumulation trend of biomass and l-DOPA in different parts of eight faba bean cultivars. Crop Sci. 2018, 58, 2020–2028. [Google Scholar] [CrossRef]
- Renna, M.; Signore, A.; Paradiso, V.M.; Santamaria, P. Faba greens, globe artichoke’s offshoots, crenate broomrape and summer squash greens: Unconventional vegetables of Puglia (Southern Italy) with good quality traits. Front. Plant Sci. 2018, 9, 378. [Google Scholar] [CrossRef] [Green Version]
- Duan, S.; Kwon, S.-J.; Eom, S.H. Effect of thermal processing on color, phenolic compounds, and antioxidant activity of faba bean (Vicia faba L.) leaves and seeds. Antioxidants 2021, 10, 1207. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Kwon, S.-J.; Lim, Y.J.; Gil, C.S.; Jin, C.; Eom, S.H. L-3,4-dihydroxyphenylalanine accumulation in faba bean (Vicia faba L.) tissues during different growth stages. Agronomy 2021, 11, 502. [Google Scholar] [CrossRef]
- Ramya, K.B.; Thaakur, S. Herbs containing l-Dopa: An update. Anc. Sci. Life 2007, 27, 50–55. [Google Scholar]
- Cotzias, G.C.; Papavasiliou, P.S.; Gellene, R. Modification of Parkinsonism-chronic treatment with l-dopa. NEJM 1969, 280, 337–345. [Google Scholar] [CrossRef]
- Patil, S.A.; Apine, O.A.; Surwase, S.N.; Jadhav, J.P. Biological sources of l-DOPA: An alternative approach. Adv. Parkinsons Dis. 2013, 02, 81–87. [Google Scholar] [CrossRef]
- Neugart, S.; Rohn, S.; Schreiner, M. Identification of complex, naturally occurring flavonoid glycosides in Vicia faba and Pisum sativum leaves by HPLC-DAD-ESI-MSn and the genotypic effect on their flavonoid profile. Food Res. Int. 2015, 76, 114–121. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [Green Version]
- Vezza, T.; Rodríguez-Nogales, A.; Algieri, F.; Utrilla, M.; Rodriguez-Cabezas, M.; Galvez, J. Flavonoids in inflammatory bowel disease: A review. Nutrients 2016, 8, 211. [Google Scholar] [CrossRef] [Green Version]
- Webster, B.; Gezan, S.; Bruce, T.; Hardie, J.; Pickett, J. Between plant and diurnal variation in quantities and ratios of volatile compounds emitted by Vicia faba plants. Phytochemistry 2010, 71, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Brilli, F.; Loreto, F.; Baccelli, I. Exploiting plant volatile organic compounds (VOCs) in agriculture to improve sustainable defense strategies and productivity of crops. Front. Plant Sci. 2019, 10, 264. [Google Scholar] [CrossRef] [PubMed]
- Palermo, M.; Pellegrini, N.; Fogliano, V. The effect of cooking on the phytochemical content of vegetables. J. Sci. Food Agric. 2014, 94, 1057–1070. [Google Scholar] [CrossRef] [PubMed]
- Turkmen, N.; Sari, F.; Velioglu, Y. The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem. 2005, 93, 713–718. [Google Scholar] [CrossRef]
- Sergio, L.; Boari, F.; Pieralice, M.; Linsalata, V.; Cantore, V.; Di Venere, D. Bioactive phenolics and antioxidant capacity of some wild edible greens as affected by different cooking treatments. Foods 2020, 9, 1320. [Google Scholar] [CrossRef]
- Jiang, Z.-Q.; Pulkkinen, M.; Wang, Y.-J.; Lampi, A.-M.; Stoddard, F.L.; Salovaara, H.; Piironen, V.; Sontag-Strohm, T. Faba bean flavour and technological property improvement by thermal pre-treatments. LWT 2016, 68, 295–305. [Google Scholar] [CrossRef]
- Wieczorek, M.N.; Jeleń, H.H. Volatile compounds of selected raw and cooked Brassica vegetables. Molecules 2019, 24, 391. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Li, H.; Yu, X.-C.; Sun, D.-W. Effects of low temperature cooking on the retention of 4-(methylthio)-3-butenyl isothiocyanate (MTBITC) of chinese white radish (Raphanussativus L.). Food Bioprocess Technol. 2016, 9, 1640–1647. [Google Scholar] [CrossRef]
- Selli, S.; Guclu, G.; Sevindik, O.; Kelebek, H. Variations in the key aroma and phenolic compounds of champignon (Agaricus bisporus) and oyster (Pleurotus ostreatus) mushrooms after two cooking treatments as elucidated by GC–MS-O and LC-DAD-ESI-MS/MS. Food Chem. 2021, 354, 129576. [Google Scholar] [CrossRef]
- Lim, Y.J.; Kwon, S.-J.; Qu, S.; Kim, D.-G.; Eom, S.H. Antioxidant contributors in seed, seed coat, and cotyledon of γ-ray-induced soybean mutant lines with different seed coat colors. Antioxidants 2021, 10, 353. [Google Scholar] [CrossRef]
- Lim, Y.J.; Eom, S.H. Kiwifruit cultivar ‘Halla gold’ functional component changes during preharvest fruit maturation and postharvest storage. Sci. Hortic. 2018, 234, 134–139. [Google Scholar] [CrossRef]
- Raigar, R.K.; Upadhyay, R.; Mishra, H.N. Optimization of microwave roasting of peanuts and evaluation of its physicochemical and sensory attributes. J. Food Sci. Technol. 2017, 54, 2145–2155. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; He, Y.; Wang, F.; Wu, J.; Ci, Z.; Chen, L.; Xu, R.; Yang, M.; Lin, J.; Han, L.; et al. Microwave technology: A novel approach to the transformation of natural metabolites. Chin. Med. 2021, 16, 87. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Stoddard, F.L.; Neugart, S.; Sadras, V.O.; Lindfors, A.; Morales, L.O.; Aphalo, P.J. Responses of flavonoid profile and associated gene expression to solar blue and UV radiation in two accessions of Vicia faba L. from contrasting UV environments. Photochem. Photobiol. Sci. 2019, 18, 434–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Y.; Stoddard, F.L.; Neugart, S.; Oravec, M.; Urban, O.; Sadras, V.O.; Aphalo, P.J. The transgenerational effects of solar short-UV radiation differed in two accessions of Vicia faba L. from contrasting UV environments. J. Plant Physiol. 2020, 248, 153145. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhao, Y.; Haytowitz, D.B.; Chen, P.; Pehrsson, P.R. Effects of domestic cooking on flavonoids in broccoli and calculation of retention factors. Heliyon 2019, 5, e01310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaaban, H.; Ioannou, I.; Chebil, L.; Slimane, M.; Gérardin, C.; Paris, C.; Charbonnel, C.; Chekir, L.; Ghoul, M. Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. J. Food Process. Preserv. 2017, 41, e13203. [Google Scholar] [CrossRef]
- Nayak, B.; Liu, R.H.; Tang, J. Effect of processing on phenolic pntioxidants of pruits, vegetables, and grains—A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 887–918. [Google Scholar] [CrossRef]
- Gülçin, I. Comparison of in vitro antioxidant and antiradical activities of l-tyrosine and l-Dopa. Amino Acids 2007, 32, 431–438. [Google Scholar] [CrossRef]
- Sharma, S.; Joshi, R.; Kumar, D. Quantitative analysis of flavonols, flavonol glycoside and homoisoflavonoids in Polygonatum verticillatum using UHPLC-DAD-QTOF-IMS and evaluation of their antioxidant potential. Phytochem. Anal. 2020, 31, 333–339. [Google Scholar] [CrossRef]
- Liang, N.; Kitts, D. Antioxidant property of coffee components: Assessment of methods that define mechanisms of action. Molecules 2014, 19, 19180–19208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bibi Sadeer, N.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M.F. The versatility of antioxidant assays in food science and safety-chemistry, applications, strengths, and limitations. Antioxidants 2020, 9, 709. [Google Scholar] [CrossRef]
- Holopainen, J.K.; Gershenzon, J. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 2010, 15, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Akkad, R.; Kharraz, E.; Han, J.; House, J.D.; Curtis, J.M. Characterisation of the volatile flavour compounds in low and high tannin faba beans (Vicia faba var. minor) grown in Alberta, Canada. Food Res. Int. 2019, 120, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Akkad, R.; Buchko, A.; Johnston, S.P.; Han, J.; House, J.D.; Curtis, J.M. Sprouting improves the flavour quality of faba bean flours. Food Chem. 2021, 364, 130355. [Google Scholar] [CrossRef] [PubMed]
- Acree, T.; Arn, H. Odors. Retrieved from Flavornet and Human Odor Space. 2004. Available online: http://www.flavornet.org/flavornet.html (accessed on 15 February 2021).
- Davoli, P.; Bellesia, F.; Pinetti, A. Comments on truffle aroma analysis by headspace solid phase microextraction [Is butylated hydroxytoluene (BHT) a “Natural” volatile constituent of truffles?]. J. Agric. Food Chem. 2003, 51, 4483. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Yu, J.; Pei, F.; Mariga, A.M.; Ma, N.; Fang, Y.; Hu, Q. Effect of hot air drying on volatile compounds of Flammulina velutipes detected by HS-SPME–GC–MS and electronic nose. Food Chem. 2016, 196, 860–866. [Google Scholar] [CrossRef]
- Material Safety Data Sheets-Para-Xylene. Material Safety Data Sheets. 2016. Available online: https://web.archive.org/web/20160304000856/http://siri.org/msds/mf/amoco/files/01263000.html (accessed on 4 March 2016).
- Eom, S.H.; Jin, C.W.; Park, H.J.; Kim, E.H.; Chung, I.M.; Kim, M.J.; Yu, C.Y.; Cho, D.H. Far infrared ray irradiation stimulates antioxidant activity in Vitis flexuosa THUNB. berries. KJMCS 2007, 15, 319–323. [Google Scholar]
- Eom, S.H.; Park, H.J.; Seo, D.W.; Kim, W.W.; Cho, D.H. Stimulating effects of far-infrared ray radiation on the release of antioxidative phenolics in grape berries. Food Sci. Biotechnol. 2009, 18, 362–366. [Google Scholar]
- Kim, W.W.; Ghimeray, A.K.; Wu, J.C.; Eom, S.H.; Lee, B.-G.; Kang, W.-S.; Cho, D.-H. Effect of far infrared drying on antioxidant property, anti-inflammatory activity, and inhibitory activity in A549 cells of Gamguk (Chrysanthemum indicum L.) flower. Food Sci. Biotechnol. 2012, 21, 261–265. [Google Scholar] [CrossRef]
- Kappe, C.O. Reply to the correspondence on microwave effects in organic synthesis. Angew. Chem. Int. Ed. 2013, 125, 8080–8084. [Google Scholar] [CrossRef]
Peak No. | Rt (min) | MW | MS | MS/MS | Identification |
---|---|---|---|---|---|
1 | 10.87 | 432.5 | 431.5 | K-3-O-rha | |
2 | 11.37 | 886.7 | 885.7 | 739, 449.7 | K-3-O- rha-glc -7-O-rha-4′-rha |
3 | 12.71 | 610.6 | 609.6 | 447.2, 301 | Q-3-O- rha-glc |
4 | 13.43 | 756.6 | 755.6 | 609, 447.3 | Q-3-O- rha-gal (glc)-7-O-rha |
5 | 13.87 | 726.5 | 725.5 | 579.3, 446.2 | Q-3-O- rha-ara-7-O-rha |
6 | 15.49 | 594.8 | 593.8 | 447.2, 285 | K-3-O-gal-7-O-rha |
7 | 15.83 | 740.8 | 739.8 | 593.3 | K-3-O-rha-gal (glc)-7-O-rha |
8 | 18.03 | 710.9 | 709.9 | 563.3 | K-3-O-rha-ara-7-O-rha |
9 | 19.25 | 564.6 | 563.6 | 417.2, 285.1 | K-3-O-ara-7-O-rha |
10 | 20.15 | 782.8 | 781.8 | 635.4 | K-3-O-acetyl-rha-gal-7-O-rha |
11 | 27.34 | 578.8 | 577.8 | 431.2, 285.1 | K-3-O-rha-7-O-rha |
12 | 27.79 | 625.1 | 624.1 | 579.2 | K-G (Unknown) |
13 | 30.06 | 636.8 | 635.8 | 431.1, 285.1 | K-3-O-acetyl-gal-7-O-rha |
Flavonols | Glycosides | Domestic Cooking Methods | ||||
---|---|---|---|---|---|---|
FD | MW | RT | SM | BL | ||
K-G | 3-rha | 0.22 ± 0.02 a | 0.18 ± 0.01 a | 0.22 ± 0.05 a | 0.18 ± 0.01 a | 0.15 ± 0.01 a |
3- rha-glc-7-rha-4′-rha | 0.34 ± 0.03 a | 0.29 ± 0.03 a | 0.31 ± 0.08 a | 0.29 ± 0.03 a | 0.22 ± 0.02 a | |
3-gal-7-rha | 0.39 ± 0.04 a | 0.36 ± 0.02 a | 0.41 ± 0.04 a | 0.36 ± 0.02 a | 0.35 ± 0.03 a | |
3-rha-gal (glc)-7-rha | 0.94 ± 0.07 b | 0.89 ± 0.03 b | 1.21 ± 0.06 a | 0.89 ± 0.03 b | 0.72 ± 0.00 b | |
3-rha-ara-7-rha | 1.78 ± 0.27 a | 1.79 ± 0.12 a | 1.85 ± 0.38 a | 1.79 ± 0.12 a | 1.39 ± 0.02 a | |
3-ara-7-rha | 4.78 ± 0.52 ab | 4.40 ± 0.12 b | 6.13 ± 0.37 a | 4.40 ± 0.12 b | 2.83 ± 0.15 c | |
3-acetyl-rha-gal-7-rha | 0.41 ± 0.03 ab | 0.48 ± 0.06 ab | 0.63 ± 0.06 a | 0.48 ± 0.06 ab | 0.29 ± 0.03 b | |
3-rha-7-rha + un | 3.40 ± 0.24 a | 3.18 ± 0.06 a | 3.90 ± 0.66 a | 3.18 ± 0.06 a | 1.56 ± 0.08 b | |
3-acetyl-gal-7-rha | 0.71 ± 0.10 a | 0.83 ± 0.06 a | 0.75 ± 0.14 a | 0.83 ± 0.06 a | 0.51 ± 0.04 a | |
Q-G | 3-rha-glc | 0.07 ± 0.00 a | 0.09 ± 0.01 a | 0.07 ± 0.01 a | 0.09 ± 0.01 a | 0.06 ± 0.02 a |
3-rha-gal (glc)-7-rha | 0.12 ± 0.01 b | 0.17 ± 0.01 a | 0.15 ± 0.01 ab | 0.17 ± 0.01 a | 0.15 ± 0.00 ab | |
3-rha-ara-7-rha | 0.06 ± 0.01 b | 0.12 ± 0.01 a | 0.07 ± 0.00 b | 0.12 ± 0.01 a | 0.10 ±0.01 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, S.; Kwon, S.-J.; Gil, C.S.; Eom, S.H. Improving the Antioxidant Activity and Flavor of Faba (Vicia faba L.) Leaves by Domestic Cooking Methods. Antioxidants 2022, 11, 931. https://doi.org/10.3390/antiox11050931
Duan S, Kwon S-J, Gil CS, Eom SH. Improving the Antioxidant Activity and Flavor of Faba (Vicia faba L.) Leaves by Domestic Cooking Methods. Antioxidants. 2022; 11(5):931. https://doi.org/10.3390/antiox11050931
Chicago/Turabian StyleDuan, Shucheng, Soon-Jae Kwon, Chan Saem Gil, and Seok Hyun Eom. 2022. "Improving the Antioxidant Activity and Flavor of Faba (Vicia faba L.) Leaves by Domestic Cooking Methods" Antioxidants 11, no. 5: 931. https://doi.org/10.3390/antiox11050931
APA StyleDuan, S., Kwon, S. -J., Gil, C. S., & Eom, S. H. (2022). Improving the Antioxidant Activity and Flavor of Faba (Vicia faba L.) Leaves by Domestic Cooking Methods. Antioxidants, 11(5), 931. https://doi.org/10.3390/antiox11050931