The Effect of High-Intensity Ultrasound and Natural Oils on the Extraction and Antioxidant Activity of Lycopene from Tomato (Solanum lycopersicum) Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Lyophilization of Tomato
2.3. Extraction Process
2.3.1. With Ultrasound Application
2.3.2. Extraction with Agitation
2.4. Determination of Antioxidant Activity
2.5. Color Determination
2.6. Microscopic Visualization of Tomato Lycopene
2.7. Fourier Transform Infrared Spectroscopy (FT-IR)
2.8. Differential Scanning Calorimetry (DSC)
2.9. Ultraviolet-Visible Spectroscopy (UV-Vis)
2.10. Statistical Analysis
3. Results
3.1. Effects of the Inhibitor Used in Antioxidant Activity Test
3.2. Comparison of Sonication vs. Agitation Technique on the Antioxidant Activity
3.3. Interaction of Native Oils with Lycopene
3.4. Color Determination
3.5. Microscopic Structure of Tomato Lycopene
3.6. Fourier Transform Infrared Spectroscopy (FT-IR)
3.7. Differential Scanning Calorimetry (DSC)
3.8. Ultraviolet-Visible Spectroscopy (UV-Vis)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sañudo-Torres, R.R. El Cultivo de Tomate (Lycopersicon esculentum Mill.) y el Potencial Endofítico de Diferentes Aislados de Beauveria bassiana; Universidad Autónoma Indígena de México: Los Mochis, Mexico, 2013. [Google Scholar]
- Casierra-Posada, F.; Avendaño, Ó.A. Calidad en frutos de tomate (Solanum lycopersicum L.) cosechados en diferentes estados de madurez. Agron. Colomb. 2008, 26, 300–307. [Google Scholar]
- Borguini, R.G.; Ferraz Da Silva Torres, E.A. Tomatoes and Tomato Products as Dietary Sources of Antioxidants. Food Rev. Int. 2009, 25, 313–325. [Google Scholar] [CrossRef]
- Lazzarini, C.; Casadei, E.; Valli, E.; Tura, M.; Ragni, L.; Bendini, A.; Gallina Toschi, T. Sustainable Drying and Green Deep Eutectic Extraction of Carotenoids from Tomato Pomace. Foods 2022, 11, 405. [Google Scholar]
- Komijani, M.; Mohebbi, M.; Ghorani, B. Assembly of electrospun tri-layered nanofibrous structure of zein/basil seed gum/zein for increasing the bioaccessibility of lycopene. LWT 2022, 161, 113328. [Google Scholar] [CrossRef]
- Bin-Jumah, M.N.; Nadeem, M.S.; Gilani, S.J.; Mubeen, B.; Ullah, I.; Alzarea, S.I.; Ghoneim, M.M.; Alshehri, S.; Al-Abbasi, F.A.; Kazmi, I. Lycopene: A Natural Arsenal in the War against Oxidative Stress and Cardiovascular Diseases. Antioxidants 2022, 11, 232. [Google Scholar]
- Phinney, D.M.; Frelka, J.C.; Cooperstone, J.L.; Schwartz, S.J.; Heldman, D.R. Effect of solvent addition sequence on lycopene extraction efficiency from membrane neutralized caustic peeled tomato waste. Food Chem. 2017, 215, 354–361. [Google Scholar] [CrossRef]
- Herrera-Covarrubias, D.; Fernandez-Pomares, C.; Aranda-Abreu, G.E.; Dominghez-Ortiz, M.A.; Hernandez-Aguilar, M.E. El licopeno y su papel en la prevención del cáncer de próstata. Rev. Eneurobiol. 2013, 4, 1–16. [Google Scholar]
- Sharifi-Zahabi, E.; Soltani, S.; Malekahmadi, M.; Rezavand, L.; Clark, C.C.T.; Shidfar, F. The effect of lycopene supplement from different sources on prostate specific antigen (PSA): A systematic review and meta-analysis of randomized controlled trials. Complement. Ther. Med. 2022, 64, 102801. [Google Scholar] [CrossRef]
- Cruz-Bojórquez, R.M.; González Gallego, J.; Pilar, S.C. Propiedades funcionales y beneficios para la salud del licopeno. Nutr. Hosp. 2013, 28, 6–15. [Google Scholar] [CrossRef]
- Amorim, A.d.G.N.; Vasconcelos, A.G.; Souza, J.; Oliveira, A.; Gullón, B.; de Souza de Almeida Leite, J.R.; Pintado, M. Bio-Availability, Anticancer Potential, and Chemical Data of Lycopene: An Overview and Technological Prospecting. Antioxidants 2022, 11, 360. [Google Scholar]
- Ordóñez, A.L.; Balanza, M.E.; Martín, F.R.; Flores, C.A. Estabilidad del Carotenoide Licopeno en Tomates en Conserva. Inf. Tecnol. 2009, 20, 31–37. [Google Scholar]
- Rodriguez Riera, Z.; Robaina Mesa, M.; Jauregui Haza, U. Use of ultrasound radiation for extraction of bioactive compounds from natural sources Current events and perspectives. Rev. CENIC Cienc. Quim. 2014, 45, 139–147. [Google Scholar]
- Li, Y.; Fabiano-Tixier, A.S.; Tomao, V.; Cravotto, G.; Chemat, F. Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent. Ultrason. Sonochem. 2013, 20, 12–18. [Google Scholar] [CrossRef]
- Arándiga-Marti, G.; Díaz-Sánchez, S. Estudio del Licopeno del Tomate Como Colorante Natural Desde la Perspectiva Analítica e Industrial; Universidad Politécnica de Cataluña: Cataluña, España, 2008. [Google Scholar]
- Catalkaya, G.; Kahveci, D. Optimization of enzyme assisted extraction of lycopene from industrial tomato waste. Sep. Purif. Technol. 2019, 219, 55–63. [Google Scholar] [CrossRef]
- Hatami, T.; Meireles, M.A.A.; Ciftci, O.N. Supercritical carbon dioxide extraction of lycopene from tomato processing by-products: Mathematical modeling and optimization. J. Food Eng. 2019, 241, 18–25. [Google Scholar] [CrossRef]
- Cadoni, E.; Rita De Giorgi, M.; Medda, E.; Poma, G. Supercritical CO2 extraction of lycopene and β-carotene from ripe tomatoes. Dye. Pigment. 1999, 44, 27–32. [Google Scholar] [CrossRef]
- Baysal, T.; Ersus, S.; Starmans, D.A. Supercritical CO2 extraction of beta-carotene and lycopene from tomato paste waste. J. Agric. Food Chem. 2000, 48, 5507–5511. [Google Scholar]
- Yi, C.; Shi, J.; Xue, S.J.; Jiang, Y.; Li, D. Effects of supercritical fluid extraction parameters on lycopene yield and antioxidant activity. Food Chem. 2009, 113, 1088–1094. [Google Scholar] [CrossRef]
- Gümüşay, Ö.A.; Borazan, A.A.; Ercal, N.; Demirkol, O. Drying effects on the antioxidant properties of tomatoes and ginger. Food Chem. 2015, 173, 156–162. [Google Scholar] [CrossRef]
- Rahimi, S.; Mikani, M. Lycopene green ultrasound-assisted extraction using edible oil accompany with response surface methodology (RSM) optimization performance: Application in tomato processing wastes. Microchem. J. 2019, 146, 1033–1042. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar]
- Stinco, C.M.; Rodríguez-Pulido, F.J.; Escudero-Gilete, M.L.; Gordillo, B.; Vicario, I.M.; Meléndez-Martínez, A.J. Lycopene isomers in fresh and processed tomato products: Correlations with instrumental color measurements by digital image analysis and spectroradiometry. Food Res. Int. 2013, 50, 111–120. [Google Scholar] [CrossRef]
- Chemat-Djenni, Z.; Ferhat, M.A.; Tomao, V.; Chemat, F. Carotenoid Extraction from Tomato Using a Green Solvent Resulting from Orange Processing Waste. J. Essent. Oil Bear. Plants 2010, 13, 139–147. [Google Scholar] [CrossRef]
- Foh, M.B.K.; Amadou, I.; Foh, B.M.; Kamara, M.T.; Xia, W. Functionality and antioxidant properties of tilapia (Oreochromis niloticus) as influenced by the degree of hydrolysis. Int. J. Mol. Sci. 2010, 11, 1851–1869. [Google Scholar]
- León-López, A.; Fuentes-Jiménez, L.; Hernández-Fuentes, A.D.; Campos-Montiel, R.G.; Aguirre-Álvarez, G. Hydrolysed collagen from sheepskins as a source of functional peptides with antioxidant activity. Int. J. Mol. Sci. 2019, 20, 3931. [Google Scholar]
- Nazir, N.N.; Adrian, M.R. The Improvement Lycopene Availability and Antioxidant Activities of Tomato (Lycopersicum esculentum, Mill) Jelly Drink. Agric. Agric. Sci. Procedia 2016, 9, 328–334. [Google Scholar] [CrossRef] [Green Version]
- Azuola, R.; Vargas-Aguilar, P. Extracción de sustancias asistida por ultrasonido (EUA). Rev. Tecnol. Marcha 2007, 20, 30–40. [Google Scholar]
- Anaya-Esparza, L.M.; Velázquez-Estrada, R.; Roig-Sagués, A.; Garcia, H.; Sayago-Ayerdi, S.; Montalvo-González, E. Thermosonication: An alternative processing for fruit and vegetable juices. Trends Food Sci. Technol. 2017, 61, 26–37. [Google Scholar] [CrossRef]
- Varas Condori, M.A. Efecto Antioxidante del Extracto de Licopeno de Tomate (Solanum lycopersicum) Sobre la Vida útil del Aceite de Linaza (Linum usitatissimum L.); Universidad Nacional Agraria La Molina, Facultad de Industrias Alimentarias: Lima, Peru, 2019. [Google Scholar]
- Rawson, A.; Tiwari, B.K.; Patras, A.; Brunton, N.; Brennan, C.; Cullen, P.J.; O’Donnell, C. Effect of thermosonication on bioactive compounds in watermelon juice. Food Res. Int. 2011, 44, 1168–1173. [Google Scholar] [CrossRef]
- Hernández Pérez, V.; Hellín García, P.; Fenoll Serrano, J.; Molina Menor, M.V.; Cava Artero, J.; Garrido González, I.; Flores Fernández–Villamil, P. Efecto de la temperatura sobre la acumulación de carotenoides en frutos de tomate en diferentes estados de desarrollo. In III Workshop en Investigación Agroalimentaria; Universidad Politécnica de Cartagena, Servicio de Documentación: Cartagena, Colombia, 2014. [Google Scholar]
- Cardona, E.M.; Ríos, L.A.; Restrepo, G.M. Extraction of the carotenoid lycopene from chonto tomato (Lycopersicum esculentum). Vitae 2006, 13, 44–53. [Google Scholar]
- Martínez, H.V. Metalurgia semisólida de aleaciones y composites metálicos procesados por agitación mecánica. Rev. Latinoam. Metal. Mater. 2007, 27, 13–27. [Google Scholar]
- Meléndez-Martínez, A.J.; Vicario-Romero, I.; Heredia-Mira, F.J. Pigmentos carotenoides: Consideraciones estructurales y fisioquímicas. Soc. Latinoam. Nutr. 2007, 57, 109–117. [Google Scholar]
- Rendón-Marín, S. Actividad Antioxidante In Vivo de Licopeno del Tomate, Papaya y Guayaba Rosada para la Prevención del Cáncer Colorrectal; Corporación Universitaria Lasallista: Antioquia, Colombia, 2016. [Google Scholar]
- Carranco Jáuregui, M.E.; Calvo Carrillo, M.; Pérez-Gil Romo, F. Carotenoides y su función antioxidante: Revisión. Arch. Latinoam. Nutr. 2011, 61, 233–241. [Google Scholar]
- Faine, L.A.; Rodrigues, H.G.; Galhardi, C.M.; Ebaid, G.M.; Diniz, Y.S.; Padovani, C.R.; Novelli, E.L. Effects of olive oil and its minor constituents on serum lipids, oxidative stress, and energy metabolism in cardiac muscle. Can. J. Physiol. Pharmacol. 2006, 84, 239–245. [Google Scholar]
- Olivares-Corichi, I.M.; Guzmán-Grenfell, A.M.; Vargas, M.P.S.; Atencio, R.d.S.M.; Gómez, J.J.H. Perspectives in the use of antioxidants for the treatment of asthma. Rev. Inst. Nac. Enferm. Respir. 2005, 18, 154–161. [Google Scholar]
- Pérez Trueba, G. Los flavonoides: Antioxidantes o prooxidantes. Rev. Cuba. Investig. Bioméd. 2003, 22, 48–57. [Google Scholar]
- Aguirre-Cruz, G.; León-López, A.; Cruz-Gómez, V.; Jiménez-Alvarado, R.; Aguirre-Álvarez, G. Collagen Hydrolysates for Skin Protection: Oral Administration and Topical Formulation. Antioxidants 2020, 9, 181. [Google Scholar] [CrossRef] [Green Version]
- Egea, I.; Barsan, C.; Bian, W.; Purgatto, E.; Latche, A.; Chervin, C.; Bouzayen, M.; Pech, J.C. Chromoplast differentiation: Current status and perspectives. Plant Cell Physiol. 2010, 51, 1601–1611. [Google Scholar] [CrossRef] [Green Version]
- Movasaghi, Z.; Rehman, S.; ur Rehman, D.I. Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2008, 43, 134–179. [Google Scholar] [CrossRef]
- Aghel, N.; Ramezani, Z.; Amirfakhrian, S. Isolation and quantification of lycopene from tomato cultivated in Dezfoul, Iran. Jundishapur J. Nat. Pharm. Prod. 2011, 6, 9–15. [Google Scholar]
- Damayanti, J.D.; Azmilia, R.; Ainun, Z.; Nurdin, M.I. Isolation of Lycopene Component from Tamarillo (Solanum betaceum). Indones. J. Chem. Res. 2021, 9, 99–104. [Google Scholar]
- Nyuk, C.M.; Mohamad Isa, M.I.N. The Oleic Acid Composition Effect on the Carboxymethyl Cellulose Based Biopolymer Electrolyte. J. Cryst. Process Technol. 2013, 3, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Márquez, A.J. Resultados preliminares en la caracterización de mezclas de aceite de oliva por calorimetría diferencial de barrido. CYTA-J. Food 2003, 4, 47–54. [Google Scholar]
Sample | L | −a* + | −b* + |
---|---|---|---|
G | 39.41 ± 0.22 c | −1.73 ± 0.04 a | 17.36 ± 0.19 c |
GL | 17.05 ± 0.27 a | 27.08 ± 0.33 d | 11.38 ±0.18 a |
O | 41.08 ± 0.45 d | 3.52 ± 1.03 c | 26.89 ± 0.12 e |
OL | 19.16 ± 0.05 b | 26.98 ± 0.01 d | 12.79 ± 0.03 b |
P | 39.84 ± 0.20 c | 0.52 ± 0.02 b | 19.12 ± 0.06 d |
PL | 16.72 ± 0.05 a | 27.10 ± 0.38 d | 11.16 ± 0.03 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos-Lozada, G.; Pérez-Marroquín, X.A.; Callejas-Quijada, G.; Campos-Montiel, R.G.; Morales-Peñaloza, A.; León-López, A.; Aguirre-Álvarez, G.
The Effect of High-Intensity Ultrasound and Natural Oils on the Extraction and Antioxidant Activity of Lycopene from
Campos-Lozada G, Pérez-Marroquín XA, Callejas-Quijada G, Campos-Montiel RG, Morales-Peñaloza A, León-López A, Aguirre-Álvarez G.
The Effect of High-Intensity Ultrasound and Natural Oils on the Extraction and Antioxidant Activity of Lycopene from
Campos-Lozada, Gieraldin, Xóchitl Alejandra Pérez-Marroquín, Graciela Callejas-Quijada, Rafael G. Campos-Montiel, Alejandro Morales-Peñaloza, Arely León-López, and Gabriel Aguirre-Álvarez.
2022. "The Effect of High-Intensity Ultrasound and Natural Oils on the Extraction and Antioxidant Activity of Lycopene from
Campos-Lozada, G., Pérez-Marroquín, X. A., Callejas-Quijada, G., Campos-Montiel, R. G., Morales-Peñaloza, A., León-López, A., & Aguirre-Álvarez, G.
(2022). The Effect of High-Intensity Ultrasound and Natural Oils on the Extraction and Antioxidant Activity of Lycopene from