Phytochemical, Antimicrobial, and Antioxidant Activity of Different Extracts from Frozen, Freeze-Dried, and Oven-Dried Jostaberries Grown in Moldova
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Materials
2.2. Biological Material
2.3. Characterization of Jostaberry—Physicochemical Analysis
2.4. Antimicrobial Activity
2.4.1. Test Organisms
2.4.2. Preparation of the Inoculum
2.4.3. Agar Well Diffusion Method
2.4.4. Determination of Minimum Inhibitory Concentrations (MIC) and Minimum Bactericidal/Fungicidal Concentrations (MBC/MFC)
2.5. Jostaberry Extract Characterization
2.5.1. Determination of DPPH Free Radical Scavenging Activity
2.5.2. Determination of ABTS Free Cation-Radical Scavenging Activity
2.5.3. Total Phenolic and Flavonoid Content (TPC and TFC)
2.5.4. Total Anthocyanin (TA)
2.6. Color Analysis
2.7. Obtaining Jostaberry Extracts to Determine the Influence of pH Values, Processing, and Storage Conditions on the Color Parameters and Antioxidant Activity
2.7.1. High-Performance Liquid Chromatography with Photo Diode Array (HPLC-PDA) Detection
2.7.2. Quantification of Organic Acids
2.8. Mathematical Modeling
2.9. Statistical Analysis
3. Results and Discussion
3.1. Jostaberry Characteristics
3.2. In Vitro Antimicrobial Activity of Jostaberries
3.3. Selection of the Optimal Extraction Regime: Duration of Ultrasound Action, Duration, and Power of Microwaves
3.4. Comparative Elucidation of BAC Content in UAE and MAE Extracts of FJ, FDJ, and DJ Determined by the UV-Vis Spectrophotometric Method
3.4.1. Total Polyphenols
3.4.2. Total Flavonoids
3.4.3. Total Anthocyanins
3.5. HPLC Analysis of the Jostaberry Extracts Profile Obtained under Optimal UAE and MAE Conditions
3.5.1. Anthocyanins
3.5.2. Ascorbic Acid
3.5.3. Chlorogenic Acid
3.5.4. Caffeic Acid and Rutosides
3.5.5. Citric and Malic Acids
3.6. Influence of Freeze Drying and Drying Regime on AA by DPPH and ABTS of Jostaberry Extracts—Correlation between BAC and AA of Extracts
3.6.1. TEAC Assay by DPPH
3.6.2. TEAC Assay by ABTS
3.7. The Influence of Jostaberry Pretreatment and Extraction Methods on the Color Parameters
3.8. The Influence of Jostaberry Extract pH on the Color Parameters and AA
3.9. The Influence of Jostaberry Extract Storage Conditions on Color Parameters and AA
3.10. Mathematical Modeling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bauer, A. New results of breeding Ribes nidigrolaria: Amphidiploid species hybrids between blackcurrant and gooseberry. ISHS Acta Hortic. 1986, 183, 107–110. [Google Scholar] [CrossRef]
- Barney, D.; Hummer, K. Currants, Gooseberries, and Jostaberries: A Guide for Growers, Marketers, and Researchers in North America; CRC Press: Boca Raton, FL, USA, 2005; pp. 7–9. [Google Scholar]
- Sava, P. Study on the qualities of the related bacifera cultures: Gooseberry, black currant and Josta. Fruit Grow. Vitic. Winemak. 2014, 4, 9–11. (In Romanian) [Google Scholar]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed]
- Cianciosi, D.; Simal-Gándara, J.; Forbes-Hernández, T.Y. The importance of berries in the human diet. Med. J. Nutr. Metab. 2019, 12, 335–340. [Google Scholar] [CrossRef]
- Anisimovienė, N.; Jankauskienė, J.; Jodinskienė, M.; Bendokas, V.; Stanys, V.; Šikšnianas, T. Phenolics, antioxidative activity and characterization of anthocyanins in berries of blackcurrant interspecific hybrids. Acta Biochim. Pol. 2013, 60, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Karaagac, H.E.; Şahan, Y. Comparison of phenolics, antioxidant capacity and total phenol bioaccessibility of Ribes spp. grown in Turkey. Food Sci. Technol. 2020, 40, 512–520. [Google Scholar] [CrossRef]
- Okatan, V. Antioxidant properties and phenolic profile of the most widely appreciated cultivated berry species: A comparative study. Folia Hortic. 2020, 32, 79–85. [Google Scholar] [CrossRef]
- Donno, D.; Mellano, M.G.; Prgomet, Z.; Beccaro, G.L. Advances in Ribes x nidigrolaria Rud. Bauer & A. Bauer fruits as potential source of natural molecules: A preliminary study on physico-chemical traits of an underutilized berry. Sci. Hortic. 2018, 237, 20–27. [Google Scholar]
- Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Stampar, F.; Veberic, R. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. J. Food Sci. 2012, 77, 1064–1070. [Google Scholar] [CrossRef]
- Borges, G.; Degeneve, A.; Mullen, W.; Crozier, A. Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. J. Agric. Food Chem. 2010, 58, 3901–3909. [Google Scholar] [CrossRef]
- Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Vahapoglu, B.; Erskine, E.; Gultekin Subasi, B.; Capanoglu, E. Recent Studies on Berry Bioactives and Their Health-Promoting Roles. Molecules 2022, 27, 108. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; You, L.; Zhao, Y.; Chang, X. Wild Lonicera caerulea berry polyphenol extract reduces cholesterol accumulation and enhances antioxidant capacity in vitro and in vivo. Food Res. Int. 2018, 107, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Medda, R.; Lyros, O.; Schmidt, J.L.; Jovanovic, N.; Nie, L.; Link, B.J.; Otterson, M.F.; Stoner, G.D.; Shaker, R.; Rafiee, P. Antiinflammatory and anti angiogenic effect of black raspberry extract on human esophageal and intestinal microvascular endo-thelial cells. Microvasc. Res. 2015, 97, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Nesello, L.A.N.; Beleza, M.L.M.L.; Mariot, M.; Mariano, L.N.B.; de Souza, P.; Campos, A.; Cechinel-Filho, V.; Andrade, S.F.; Da Silva, L.M. Gastroprotective Value of Berries: Evidences from Methanolic Extracts of Morus nigra and Rubus niveus Fruits. Gastroenterol. Res. Pract. 2017, 2017, 7089697. [Google Scholar] [CrossRef] [PubMed]
- Ribera-Fonseca, A.; Jiménez, D.; Leal, P.; Riquelme, I.; Roa, J.C.; Alberdi, M.; Peek, R.M.; Reyes-Díaz, M. The Anti-Proliferative and Anti-Invasive Effect of Leaf Extracts of Blueberry Plants Treated with Methyl Jasmonate on Human Gastric Cancer In Vitro Is Related to Their Antioxidant Properties. Antioxidants 2020, 9, 45. [Google Scholar] [CrossRef] [PubMed]
- Kranz, S.; Guellmar, A.; Olschowsky, P.; Tonndorf-Martini, S.; Heyder, M.; Pfister, W.; Reise, M.; Sigusch, B. Antimicrobial Effect of Natural Berry Juices on Common Oral Pathogenic Bacteria. Antibiotics 2020, 9, 533. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.-D.; Kang, S.-H.; Moon, K.-H.; Lee, J.-H.; Kim, D.-G.; Kim, W.; Kim, J.-S.; Ahn, B.-Y.; Jin, J.-S. The Effect of Aronia Berry on Type 1 Diabetes In Vivo and In Vitro. J. Med. Food 2018, 21, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Feresin, R.G.; Johnson, S.A.; Pourafshar, S.; Campbell, J.C.; Jaime, S.J.; Navaei, N.; Elam, M.L.; Akhavan, N.S.; Alvarez-Alvarado, S.; Tenenbaum, G.; et al. Impact of daily strawberry consumption on blood pressure and arterial stiffness in pre- and stage 1-hypertensive postmenopausal women: A randomized controlled trial. Food Funct. 2017, 8, 4139–4149. [Google Scholar] [CrossRef]
- Liu, S.; Wu, Z.; Guo, S.; Meng, X.; Chang, X. Polyphenol-rich extract from wild Lonicera caerulea berry reduces cholesterol accumulation by mediating the expression of hepatic miR-33 and miR-122, HMGCR, and CYP7A1 in rats. J. Funct. Foods 2018, 40, 648–658. [Google Scholar] [CrossRef]
- Gaji´c, D.; Saksida, T.; Koprivica, I.; Vujicic, M.; Despotovic, S.; Savikin, K.; Jankovic, T.; Stojanovic, I. Chokeberry (Aronia melanocarpa) fruit extract modulates immune response in vivo and in vitro. J. Funct. Foods 2020, 66, 103836. [Google Scholar] [CrossRef]
- Li, H.; Zheng, T.; Lian, F.; Xu, T.; Yin, W.; Jiang, Y. Anthocyanin-rich blueberry extracts and anthocyanin metabolite proto-catechuic acid promote autophagy-lysosomal pathway and alleviate neurons damage in in vivo and in vitro models of Alz-heimer’s disease. Nutrition 2022, 93, 111473. [Google Scholar] [CrossRef]
- Sadilova, E.; Carle, R.; Stintzing, F.C. Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity. Mol. Nutr. Food Res. 2007, 51, 1461–1471. [Google Scholar] [CrossRef]
- Uddin, M.S.; Hawlader, M.N.A.; Ding, L.; Mujumdar, A.S. Degradation of ascorbic acid in dried guava during storage. J. Food Eng. 2002, 51, 21–26. [Google Scholar] [CrossRef]
- Karaklajic-Stajic, Z.; Tomic, J.; Pesakovic, M.; Paunovic, S.M.; Stampar, F.; Mikulic-Petkovsek, M.; Grohar, M.C.; Hudina, M.; Jakopic, J. Black Queens of Fruits: Chemical Composition of Blackberry (Rubus subg. rubus Watson) and Black Currant (Ribes nigrum L.) Cultivars Selected in Serbia. Foods 2023, 12, 2775. [Google Scholar]
- Karaklajic-Stajic, Ž.; Nikolić, M.; Tomić, J.; Miletić, R.; Pešaković, M. Influence of ripeness stage on the rate of pigment degradation in blackberry fruits during frozen storage. Eur. J. Hortic. Sci. 2017, 82, 198–203. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, M.; Mujumdar, A. Berry drying: Mechanism, pretreatment, drying technology, nutrient preservation, and mathematical models. Food Eng. Rev. 2019, 11, 61–77. [Google Scholar] [CrossRef]
- Chen, W.; Guo, Y.; Zhang, J.; Zhang, X.; Meng, Y. Effect of different drying processes on the physicochemical and antioxidant properties of thinned young apple. Int. J. Food Eng. 2015, 11, 207–219. [Google Scholar] [CrossRef]
- Sadowska, K.; Andrzejewska, J.; Klóska, L. Influence of freezing, lyophilisation and air-drying on the total monomeric anthocyanins, vitamin C and antioxidant capacity of selected berries. Int. J. Food Sci. Technol. 2017, 52, 1246–1251. [Google Scholar] [CrossRef]
- Sadowska, A.; Świderski, F.; Hallmann, E. Bioactive, physicochemical and sensory properties as well as microstructure of organic strawberry powders obtained by various drying methods. Appl. Sci. 2020, 10, 4706. [Google Scholar] [CrossRef]
- Whang, L.; Wen, H.; Yang, N.; Li, H. Effect of vacuum freeze drying and hot air drying on dried mulberry fruit quality. PLoS ONE 2023, 18, e0283303. [Google Scholar] [CrossRef] [PubMed]
- Gurev, A.; Cesko, T.; Dragancea, V.; Ghendov-Mosanu, A.; Pintea, A.; Sturza, R. Ultrasound- and Microwave-Assisted Extraction of Pectin from Apple Pomace and Its Effect on the Quality of Fruit Bars. Foods 2023, 12, 2773. [Google Scholar] [CrossRef] [PubMed]
- Gadioli Tarone, A.; Keven Silva, E.; Dias de Freitas Queiroz Barros, H.; Baú Betim Cazarin, C.; Roberto Marostica Junior, M. High-Intensity Ultrasound-Assisted Recovery of Anthocyanins from Jabuticaba by-Products Using Green Solvents: Effects of Ultrasound Intensity and Solvent Composition on the Extraction of Phenolic Compounds. Food Res. Int. 2021, 140, 110048. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Qu, W.; Ma, H.; Atungulu, G.G.; McHugh, T.H. Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrason. Sonochem. 2012, 19, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Areej Alsobh, A.; Zin, M.; Mardokić, A.; Gyula Vatai, G.; Bánvölgyi, S. Heat, ultrasound, and microwave assisted extraction methods for recovering bioactive components from hawthorn fruit (Crataegus monogyna Jacq.). Prog. Agric. Eng. Sci. 2024, 1–15. [Google Scholar]
- Hanula, M.; Wyrwisz, J.; Moczkowska, M.; Horbańczuk, O.K.; Pogorzelska-Nowicka, E.; Wierzbicka, A. Optimization of Microwave and Ultrasound Extraction Methods of Açai Berries in Terms of Highest Content of Phenolic Compounds and Antioxidant Activity. Appl. Sci. 2020, 10, 8325. [Google Scholar] [CrossRef]
- Association of Offical Analytical Chemists. Official Methods of Analysis, 19th ed.; Association of Offical Analytical Chemists: Washington, DC, USA, 2012. [Google Scholar]
- Hsouna, A.B.; Trigui, M.; Mansour, R.B.; Jarraya, R.M.; Damak, M.; Jaoua, S. Chemical composition, cytotoxicity effect and antimicrobial activity of ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. Int. J. Food Microbiol. 2011, 148, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Trigui, M.; Hsouna, A.B.; Tounsi, S.; Jaoua, S. Chemical composition and evaluation of antioxidant and antimicrobial activities of Tunisian Thymelaea hirsuta with special reference to its mode of action. Ind. Crop. Prod. 2013, 41, 150–157. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement; Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2015; Volume 35, pp. 1–236. [Google Scholar]
- Zarrin, M.; Amirrajab, N.; Nejad, B. In vitro antifungal activity of Satureja khuzestanica jamzad against Cryptococcus neoformans. J. Med. Sci. Res. 2010, 26, 880–882. [Google Scholar]
- Paulpriya, K.; Packia Lincy, M.; Tresina Soris, P.; Veerabahu Ramasamy, M. In vitro antioxidant activity, total phenolic and total flavonoid contents of aerial part extracts of Daphniphyllum neilgherrense (wt.) Rosenth. Ethnopharm. J. Biol. Innov. 2015, 4, 257–268. [Google Scholar]
- Arnao, M.B.; Cano, A.; Alcolea, J.F.; Acosta, M. Estimation of free radical-quenching activity of leaf pigment extracts. Phytochem. Anal. 2001, 12, 138–143. [Google Scholar] [CrossRef]
- Bouyahya, A.; Dakka, N.; Talbaoui, A.; Moussaoui, N.E.; Abrini, J.; Bakri, Y. Phenolic contents and antiradical capacity of vegetable oil from Pistacia lentiscus (L.). J. Mater. Environ. Sci. 2018, 9, 1518–1524. [Google Scholar]
- Popescu, L.; Ceșco, T.; Gurev, A.; Ghendov-Mosanu, A.; Sturza, R.; Tarna, R. Impact of Apple Pomace Powder on the Bioactivity, and the Sensory and Textural Characteristics of Yogurt. Foods 2022, 11, 3565. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.; Rossi, J. Colorimetry of total phenolic compounds with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Wrolstad, R.E.; Durst, R.E.; Jungmin Lee, J. Tracking color and pigment changes in anthocyanin products. Trends Food Sci. Technol. 2005, 16, 423–428. [Google Scholar] [CrossRef]
- Cristea, E.; Ghendov-Mosanu, A.; Patras, A.; Socaciu, C.; Pintea, A.; Tudor, C.; Sturza, R. The influence of temperature, storage conditions, pH, and ionic strength on the antioxidant activity and color parameters of rowan berries extracts. Molecules 2021, 26, 3786. [Google Scholar] [CrossRef]
- Peres, R.G.; Moraes, E.P.; Micke, G.A.; Tonin, F.G. Rapid method for the determination of organic acids in wine by capillary electrophoresis with indirect UV detection. Food Control 2009, 20, 548–552. [Google Scholar] [CrossRef]
- Paninski, L. Estimation of entropy and mutual information. Neural. Comput. 2003, 15, 1191–1253. [Google Scholar] [CrossRef]
- Kalugina, I.; Kalugina, J. Structural and mechanical properties of the jostaberry jelly. Ukr. J. Food Sci. 2017, 5, 72–81. [Google Scholar] [CrossRef]
- Trajković, M.; Kitić, D.; Mihajilov-Krstev, T.; Šavikin, K.; Ranđelović, M.; Milutinović, M.; Branković, S.; Kitić, N.; Miladinović, B. Antimicrobial activity evaluation of black currant (Ribes nigrum L.) variety Čačanska crna juice and extract. Acta Fac. Medicae Naissensis 2023, 40, 208–216. [Google Scholar] [CrossRef]
- Quinto, E.J.; Caro, I.; Villalobos-Delgado, L.H.; Mateo, J.; de Mateo-Silleras, B.; Redondo-Del-Río, M.P. Food Safety through Natural Antimicrobials. Antibiotics 2019, 8, 208. [Google Scholar] [CrossRef] [PubMed]
- Milić, A.; Daničić, T.; Tepić Horecki, A.; Šumić, Z.; Teslić, N.; Bursać Kovačević, D.; Putnik, P.; Pavlić, B. Sustainable Extractions for Maximizing Content of Antioxidant Phytochemicals from Black and Red Currants. Foods 2022, 11, 325. [Google Scholar] [CrossRef] [PubMed]
- Annegowda, H.V.; Anwar, L.N.; Mordi, M.N.; Ramanathan, S.; Mansor, S.M. Influence of sonication on the phenolic content and antioxidant activity of Terminalia catappa L. leaves. Pharmacogn. Res. 2010, 2, 368–373. [Google Scholar] [CrossRef]
- Mereles, L.; Caballero, S.; Burgos-Edwards, A.; Benítez, M.; Ferreira, D.; Coronel, E.; Ferreiro, O. Extraction of Total Anthocyanins from Sicana odorifera Black Peel Fruits Growing in Paraguay for Food Applications. Appl. Sci. 2021, 11, 6026. [Google Scholar] [CrossRef]
- Sady, S.; Matuszak, L.; Błaszczyk, A. Optimisation of ultrasonic-assisted extraction of bioactive compounds from chokeberry pomace using response surface methodology. Acta Sci. Pol. Technol. Aliment. 2019, 18, 249–256. [Google Scholar] [PubMed]
- Pantelidis, G.E.; Vasilakakis, M.; Manganaris, G.A.; Diamantidis, G.R. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and cornelian cherries. Food Chem. 2007, 102, 777–783. [Google Scholar] [CrossRef]
- Chiang, C.J.; Kadouh, H.; Zhou, K. Phenolic compounds and antioxidant properties of gooseberry as affected by in vitro digestion. LWT-Food Sci. Technol. 2013, 51, 417–422. [Google Scholar] [CrossRef]
- Poei-Langston, M.S.; Wrolstad, R.E. Color degradation in an ascorbic acid anthocyanin flavanol model system. J. Food Sci. 1981, 46, 1218–1236. [Google Scholar] [CrossRef]
- West, M.; Mauer, L.J. Color and chemical stability of a variety of anthocyanins and ascorbic acid in solution and powder forms. J. Agric. Food Chem. 2013, 61, 4169–4179. [Google Scholar] [CrossRef]
- Del Pozo-Insfran, D.; Brenes, C.H.; Talcott, S.T. Phytochemical composition and pigment stability of acai (Euterpe oleracea Mart.). J. Agric. Food Chem. 2004, 52, 1539–1545. [Google Scholar] [CrossRef]
- Talcott, S.T.; Brines, C.H.; Piers, D.M.; Del Pozo-Insfran, D. Photochemical stability and color retention of co pigmented and processed Muscadine grape juice. J. Agric. Food Chem. 2003, 51, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Schaich, K.M.; Tian, X.; Xie, J. Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. J. Funct. Foods 2015, 14, 111–125. [Google Scholar] [CrossRef]
- Wojdyło, A.; Figiel, A.; Oszmianski, J. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, colour, and antioxidant activity of strawberry fruits. J. Agric. Food Chem. 2009, 57, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, H.; Kunitake, H.; Kawasaki-Takaki, R.; Nishiyama, K.; Yamasaki, M.; Komatsu, H.; Yukizaki, C. Antioxidant Activities and Anti-Cancer Cell Proliferation Properties of Natsuhaze (Vaccinium oldhamii Miq.), Shashanbo (V. bracteatum Thunb.) and Blueberry Cultivars. Plants 2013, 2, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Brouillard, R.; Delaporte, B. Chemistry of anthocyanin pigments: Kinetic and thermodynamic study of proton transfer, hydration, and tautomeric reactions of malvidin 3-glucoside. J. Am. Chem. Soc. 1977, 99, 8461–8468. [Google Scholar] [CrossRef]
- Alcalde, B.; Granados, M.; Saurina, J. Exploring the antioxidant features of polyphenols by spectroscopic and electrochemical methods. Antioxidants 2019, 8, 523. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Schaich, K.M. Re-evaluation of the 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity. J. Agric. Food Chem. 2014, 62, 4251–4260. [Google Scholar] [CrossRef] [PubMed]
- Platzer, M.; Kiese, S.; Herfellner, T.; Schweiggert-Weisz, U.; Miesbauer, O.; Eisner, P. Common Trends and Differences in Antioxidant Activity Analysis of Phenolic Substances Using Single Electron Transfer Based Assays. Molecules 2021, 26, 1244. [Google Scholar] [CrossRef] [PubMed]
- Sariburun, E.; Sahin, S.; Demir, C.; Türkben, C.; Uylaser, V. Phenolic Content and Antioxidant Activity of Raspberry and Blackberry Cultivars. J. Food Sci. 2010, 75, C328–C335. [Google Scholar] [CrossRef]
- Kim, J.S. Antioxidant Activities of Selected Berries and Their Free, Esterified, and Insoluble-Bound Phenolic Acid Contents. Prev. Nutr. Food Sci. 2018, 23, 35–45. [Google Scholar] [CrossRef]
- Marquez, A.; Perez-Serratosa, M.; Varo, M.A.; Merida, J. Effect of temperature on the anthocyanin extraction and color evolution during controlled dehydration of Tempranillo grapes. J. Agric. Food Chem. 2014, 62, 7897–7902. [Google Scholar] [CrossRef] [PubMed]
- Vasylyshyna, O.; Postolenko, Y. Influence of freezing method on color change and antioxidant activity in cherry fruit. Carpath. J. Food Sci. Technol. 2019, 11, 133–140. [Google Scholar]
- Hidalgo, G.-I.; Almajano, M.P. Red Fruits: Extraction of Antioxidants, Phenolic Content, and Radical Scavenging Determination: A Review. Antioxidants 2017, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Andersen, O.M.; Markham, K.R. (Eds.) Flavonoids: Chemistry, Biochemistry and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2005; p. 1256. [Google Scholar]
- Ghosh, S.; Chakraborty, R.; Raychaudhuri, U. Determination of pH-dependent antioxidant activity of palm (Borassus flabellifer) polyphenol compounds by photoluminol and DPPH methods: A comparison of redox reaction sensitivity. Biotech 2015, 5, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, M.; Cel, K.; Sroka, Z. The mechanistic insights into the role of pH and solvent on antiradical and prooxidant properties of polyphenols—Nine compounds case study. Food Chem. 2023, 407, 134677. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.S.; Huang, W.Y.; Ho, P.Y.; Hu, S.Y.; Lin, Y.Y.; Chen, C.Y.; Chang, M.Y.; Huang, S.L. Effects of Storage Time and Temperature on Antioxidants in Juice from Momordica charantia L. and Momordica charantia L. var. abbreviata Ser. Molecules 2020, 25, 3614. [Google Scholar] [CrossRef] [PubMed]
- Pateiro, M.; Vargas-Ramella, M.; Franco, D.; Gomes da Cruz, A.; Zengin, G.; Kumar, M.; Dhama, K.; Lorenzo, J.M. The role of emerging technologies in the dehydration of berries: Quality, bioactive compounds, and shelf life. Food Chem. 2022, 16, 100465. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour-Gilandeh, Y.; Kaveh, M.; Fatemi, H.; Aziz, M. Combined Hot Air, Microwave, and Infrared Drying of Hawthorn Fruit: Effects of Ultrasonic Pretreatment on Drying Time, Energy, Qualitative, and Bioactive Compounds’ Properties. Foods 2021, 10, 1006. [Google Scholar] [CrossRef] [PubMed]
- Kartini, K.; Huda, M.B.; Hayati, Z.M.; Sastika, S.; Nawatila, R. Scaling up stirring-assisted extraction and transformation of roselle anthocyanins into dried powder using spray-drying and oven-drying. Appl. Food Res. 2023, 3, 100357. [Google Scholar] [CrossRef]
- Ghendov-Mosanu, A.; Cristea, E.; Patras, A.; Sturza, R.; Niculaua, M. Rose Hips, a valuable source of antioxidants to improve gingerbread characteristics. Molecules 2020, 25, 5659. [Google Scholar] [CrossRef]
- Ghendov-Mosanu, A.; Cojocari, D.; Balan, G.; Patras, A.; Lung, I.; Soran, M.-L.; Opriș, O.; Cristea, E.; Sturza, R. Chemometric Optimization of Biologically Active Compounds Extraction from Grape Marc: Composition and Antimicrobial Activity. Molecules 2022, 27, 1610. [Google Scholar] [CrossRef] [PubMed]
Used Standard Compound | PDA Maximum, nm | Retention Time, min | Detection Limit, mg/L | R2 | Linear Range, mol/L |
---|---|---|---|---|---|
Ascorbic Acid | 244 | 4.3 | 0.27 | 0.99 | (1.10–11.0) × 10−5 |
Cyanidine-3-O-Glucoside | 520 | 12.3 | 0.29 | 0.97 | (0.41–4.10) × 10−5 |
Chlorogenic Acid | 325 | 13.5 | 0.30 | 0.98 | (0.56–5.60) × 10−5 |
Caffeic Acid | 325 | 14.0 | 0.23 | 0.99 | (1.10–11.0) × 10−5 |
Rutin (Quercetin-3-O-rutoside) | 355 | 17.6 | 0.68 | 0.98 | (0.35–3.50) × 10−5 |
Indices | Jostaberries | ||
---|---|---|---|
FJ | FDJ | DJ | |
Dry matter, % | 19.76 ± 0.45 a | 92.00 ± 1.02 b | 96.50 ± 0.98 b,c |
Protein content, % | 1.00 ± 0.02 a | 3.75 ± 0.15 b | 3.65 ± 0.08 b |
Fat content, % | 0.70 ± 0.04 a | 2.05 ± 0.06 c | 1.70 ± 0.07 b |
Ash content, % | 0.82 ± 0.02 a | 3.86 ± 0.05 b | 3.96 ± 0.04 c |
Test Strains | Zone of Inhibition, mm * | MIC, mg/mL | MBC/MFC, mg/mL | MIC, mg/mL | DMSO | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
FJP | FDJP | DJP | FJP | FDJP | DJP | FJP | FDJP | DJP | Tetracycline | ||
Gram-positive bacteria | |||||||||||
Staphylococcus aureus | 18.0 ± 0.7 c,d | 23.0 ± 0.6 d,e | 18.0 ± 0.5 c,d | 10.6 ± 0.2 b | 13.7 ± 0.8 b,c | 20.8 ± 0.5 d | 10.6 ± 0.1 b | 27.5 ± 0.5 e | 41.6 ± 1.3 f | 1.0 ± 0.1 a | N/E |
Bacillus cereus | 23.0 ± 1.3 e,f | 26.0 ± 0.0 f | 25.0 ± 0.8 f | 2.7 ± 0.1 b | 3.4 ± 0.2 b | 5.2 ± 0.4 b,c | 2.7 ± 0.2 b | 6.8 ± 0.7 c | 10.4 ± 0.4 d | 1.2 ± 0.1 a | N/E |
Gram-negative bacteria | |||||||||||
Escherichia coli | 13.0 ± 0.8 b | 23.0 ± 1.0 d | 18.0 ± 0.7 c | 10.6 ± 0.5 b | 13.7 ± 0.7 b | 20.8 ± 1.2 c,d | 10.6 ± 0.6 b | 27.5 ± 1.3 e | 41.6 ± 1.3 f | 5.0 ± 0.0 a | N/E |
Salmonella Abony | 13.0 ± 0.6 b | 10.0 ± 0.5 b | 10.0 ± 0.3 b | 10.6 ± 0.7 b | 55.0 ± 1.6 e | 41.6 ± 1.3 d | 21.2 ± 0.9 c | 110.0 ± 0.0 g | 83.0 ± 1.0 f | 5.0 ± 0.1 a,b | N/E |
Pseudomonas aeruginosa | 13.0 ± 0.5 b,c | 17.0 ± 0.8 d,e | 18.0 ± 0.7 e | 10.6 ± 0.3 a | 13.7 ± 0.6 c | 10.4 ± 0.2 a | 10.6 ± 0.3 a | 27.5 ± 0.5 g | 20.8 ± 0.2 f | 12.5 ± 0.5 b | N/E |
Yeast | Miconazole | ||||||||||
Candida albicans | N/E | 16.0 ± 0.3 a | 15.0 ± 0.5 a | N/E | 110.0 ± 1.1 c | 83.0 ± 0.9 b | N/E | 220.0 ± 2.0 e | 166.0 ± 1.8 d | 16.0 ± 0.3 a | N/E |
Jostaberry Extracts | Anthocyanins after Cy-3-O-Glucoside, mg/g DW | Ascorbic Acid, mg/g DW | Chlorogenic Acid, mg/g DW | Caffeic Acid, mg/g DW | Rutoside, mg/g DW | Citric Acid, mg/g DW | Malic Acid, mg/g DW | |
---|---|---|---|---|---|---|---|---|
UAE-20 | FJ | 17.15 ± 0.03 f | 2.00 ± 0.17 c | 2.60 ± 0.19 f,g | 0.242 ± 0.005 g | 1.28 ± 0.05 f | 0.82 ± 0.02 b | 7.83 ± 0.05 d |
FDJ | 7.48 ± 0.08 d | 1.43 ± 0.02 b | 1.77 ± 0.04 d | 0.162 ± 0.001 c | 0.73 ± 0.03 d | 1.61 ± 0.05 d | 2.02 ± 0.01 b | |
DJ | 0.11 ± 0.02 a | 0.55 ± 0.03 a | 0.87 ± 0.03 b | 0.180 ± 0.001 e | 0.74 ± 0.03 d | 1.33 ± 0.03 c | 10.81 ± 0.07 e | |
MAE 100-6 | FJ | 2.42 ± 0.17 b | 3.60 ± 0.26 d,e | 1.80 ± 0.17 d,e | 0.165 ± 0.002 c,d | 0.30 ± 0.03 a | 0.91 ± 0.04 b | 1.16 ± 0.01 a |
FDJ | 6.71 ± 0.26 d | 4.03 ± 0.17 e | 1.78 ± 0.03 d | 0.163 ± 0.004 c,d | 0.72 ± 0.02 d | 2.04 ± 0.06 e | 2.34 ± 0.03 b | |
DJ | 0.12 ± 0.02 a | 0.46 ± 0.03 a | 0.70 ± 0.02 a | 0.149 ± 0.003 b,c | 0.53 ± 0.02 b,c | 1.35 ± 0.02 c | 10.85 ± 0.04 e | |
MAE 180-6 | FJ | 6.58 ± 0.42 c,d | 3.47 ± 0.16 d | 2.15 ± 0.18 e,f | 0.184 ± 0.002 e | 0.77 ± 0.04 d | 1.06 ± 0.02 b | 1.15 ± 0.01 a |
FDJ | 5.61 ± 0.21 c | 3.31 ± 0.15 d | 1.58 ± 0.04 d | 0.134 ± 0.003 a,b | 0.62 ± 0.03 c | 3.31 ± 0.03 f | 4.12 ± 0.02 c | |
DJ | 0.09 ± 0.02 a | 0.42 ± 0.03 a | 0.74 ± 0.03 a,b | 0.168 ± 0.004 d | 0.55 ± 0.02 b,c | 1.44 ± 0.01 c | 11.61 ± 0.09 f | |
MAE 300-6 | FJ | 7.90 ± 0.50 d,e | 7.52 ± 0.48 g | 3.28 ± 0.01 h | 0.271 ± 0.004 h | 1.05 ± 0.04 e | 0.72 ± 0.02 a,b | 0.92 ± 0.01 a |
FDJ | 8.59 ± 0.30 e | 6.79 ± 0.21 f | 2.45 ± 0.05 f | 0.217 ± 0.003 f | 0.98 ± 0.02 e | 3.63 ± 0.0 f | 4.54 ± 0.07 c | |
DJ | 0.09 ± 0.02 a | 0.57 ± 0.03 a | 1.30 ± 0.04 e | 0.216 ± 0.003 f | 0.96 ± 0.01 e | 1.41 ± 0.01 c | 11.93 ± 0.05 f |
Jostaberry Extracts | L* | a* | b* | C* | h*, ° | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Extraction Methods | Time, min | FJ | FDJ | DJ | FJ′ | FDJ | DJ | FJ | FDJ | DJ | FJ | FDJ | DJ | FJ | FDJ | DJ |
UAE | 5 | 67.21 ± 0.65 j | 54.96 ± 0.19 f | 57.87 ± 0.27 f,g | 25.04 ± 0.08 c | 55.03 ± 0.29 i | 37.83 ± 0.17 e,f | 2.21 ± 0.02 a | 1.52 ± 0.01 a | 50.70 ± 0.23 h | 25.14 ± 0.09 c | 55.05 ± 0.33 g | 63.26 ± 0.46 h | 5.04 ± 0.14 b | 1.58 ± 0.07 a | 53.27 ± 0.30 i |
10 | 68.84 ± 0.71 j,k | 55.63 ± 0.42 f | 56.46 ± 0.28 f | 26.90 ± 0.11 c | 45.88 ± 0.31 g | 42.92 ± 0.24 g | 2.18 ± 0.02 a | 4.65 ± 0.01 b | 48.16 ± 0.17g | 26.99 ± 0.07 c | 46.12 ± 0.26 f | 64.51 ± 0.40 h,i | 4.63 ± 0.09 b | 5.79 ± 0.03 b | 48.29 ± 0.27 h | |
15 | 70.22 ± 0.44 k | 56.22 ± 0.38 f | 53.58 ± 0.31 e | 25.15 ± 0.16 c | 40.86 ± 0.24 f | 46.98 ± 0.32 g | 1.96 ± 0.03 a | 7.04 ± 0.06 b | 44.16 ± 0.14 f | 25.23 ± 0.13 c | 41.46 ± 0.31 e,f | 64.48 ± 0.36 h,i | 4.46 ± 0.07 b | 9.78 ± 0.15 c | 43.23 ± 0.24 g | |
20 | 69.22 ± 0.61 j,k | 56.80 ± 0.41 f | 51.41 ± 0.38 d,e | 27.51 ± 0.19 c | 57.52 ± 0.02j | 49.92 ± 0.24 h | 2.09 ± 0.02 a | 2.10 ± 0.01 a | 41.33 ± 0.18 f | 27.59 ± 0.10 c | 57.56 ± 0.37 g | 64.81 ± 0.33 h,i | 4.34 ± 0.05 b | 2.09 ± 0.08 a | 39.62 ± 0.31 f | |
25 | 77.28 ± 0.54 l | 58.65 ± 0.38 f | 53.72 ± 0.30 e | 21.89 ± 0.15 b | 43.50 ± 0.29 g | 45.06 ± 0.33 g | 2.18 ± 0.01 a | 9.11 ± 0.02 c | 57.64 ± 0.11 i | 22.00 ± 0.04 b | 44.44 ± 0.21 f | 73.16 ± 0.26 j | 5.69 ± 0.08 b | 11.83 ± 0.04 c | 51.98 ± 0.19 i | |
30 | 79.64 ± 0.39 m | 62.00 ± 0.29 h | 53.56 ± 0.38 e | 16.5 ± 0.26 a | 41.11 ± 0.36 f | 42.30 ± 0.31 f,g | 2.57 ± 0.02 a | 12.55 ± 0.05 d | 63.64 ± 0.22 j | 16.70 ± 0.27 a | 42.98 ± 0.15 f | 76.42 ± 0.31 j,k | 8.85 ± 0.04 c | 16.98 ± 0.08 e | 56.39 ± 0.31 j | |
MAE, 100 W | 2 | 67.95 ± 0.42 j | 60.08 ± 0.36 g | 64.05 ± 0.29 i | 32.84 ± 0.30 c | 57.03 ± 0.43 j | 39.85 ± 0.36 f | 2.73 ± 0.03 a,b | 14.48 ± 0.06 d | 67.21 ± 0.18 k | 32.95 ± 0.19 d | 58.84 ± 0.42 g,h | 78.14 ± 0.27 k | 4.75 ± 0.03 b | 14.25 ± 0.26 d | 59.34 ± 0.28 j,k |
4 | 65.65 ± 0.58 i | 48.07 ± 0.27 c | 57.52 ± 0.48 f,g | 39.64 ± 0.25 f | 60.51 ± 0.38 j | 42.77 ± 0.26 g | 2.42 ± 0.02 a | 13.46 ± 0.08 d | 57.55 ± 0.11 i | 39.71 ± 0.32 e | 61.99 ± 0.32 h | 71.70 ± 0.35 j | 3.49 ± 0.02 b | 12.54 ± 0.13 d | 53.38 ± 0.25 i | |
6 | 64.32 ± 0.49 i | 46.44 ± 0.45 c | 53.14 ± 0.31 e | 41.11 ± 0.20 f | 67.02 ± 0.31 l | 49.13 ± 0.27 h | 1.88 ± 0.01 b | 11.94 ± 0.02 c | 52.16 ± 0.33 h | 41.15 ± 0.26 e,f | 68.08 ± 0.20 i | 71.65 ± 0.27 j | 2.63 ± 0.05 a | 10.10 ± 0.04 c | 46.71 ± 0.38 h | |
MAE, 180 W | 2 | 69.14 ± 0.31 j | 67.40 ± 0.35 j | 56.10 ± 0.28 f | 27.59 ± 0.21 c | 56.81 ± 0.40 i,j | 47.79 ± 0.38 h | 3.02 ± 0.01 b | 17.05 ± 0.14 e | 65.37 ± 0.28 k | 27.75 ± 0.18 c | 59.31 ± 0.30 h | 80.98 ± 0.40 k | 6.25 ± 0.03 b | 16.71 ± 0.09 d | 53.83 ± 0.25 i |
4 | 67.03 ± 0.55 j | 51.22 ± 0.27 d | 52.55 ± 0.32 e | 30.15 ± 0.05 d | 60.65 ± 0.06 j | 50.75 ± 0.13 h | 2.87 ± 0.02 b | 18.63 ± 0.07 e | 62.74 ± 0.13 j | 30.29 ± 0.02 d | 65.36 ± 0.30 i | 80.70 ± 0.37 k | 5.44 ± 0.09 b | 16.56 ± 0.10 d | 51.03 ± 0.12 i | |
6 | 62.89 ± 0.47 h | 48.23 ± 0.42 c | 46.61 ± 0.31 c | 34.08 ± 0.08 e | 69.49 ± 0.16 l | 58.67 ± 0.21 j | 2.05 ± 0.04 a | 11.14 ± 0.02 c | 58.82 ± 0.19 i | 34.14 ± 0.06 d | 70.38 ± 0.12 i | 83.08 ± 0.28 l | 3.44 ± 0.08 b | 9.11 ± 0.14 c | 45.07 ± 0.27 g,h | |
MAE, 300 W | 2 | 71.45 ± 0.31 k | 61.43 ± 0.16 h | 57.82 ± 0.11 g | 25.58 ± 0.18 c | 53.06 ± 0.21 i | 46.46 ± 0.15 g | 2.59 ± 0.01 a | 15.12 ± 0.02 d | 66.66 ± 0.21 k | 25.71 ± 0.09 c | 55.17 ± 0.18 g | 81.25 ± 0.26 k | 5.78 ± 0.04 b | 15.91 ± 0.07 d | 55.12 ± 0.23 j |
4 | 68.76 ± 0.53 j | 45.80 ± 0.23 b,c | 53.07 ± 0.18 e | 32.19 ± 0.11 d | 56.97 ± 0.15 j | 45.15 ± 0.21 g | 2.36 ± 0.05 a | 11.23 ± 0.09 d | 64.29 ± 0.11 k | 32.28 ± 0.21 d | 68.07 ± 0.34 i | 78.56 ± 0.39 k | 4.19 ± 0.06 b | 11.15 ± 0.09 c | 54.92 ± 0.11 j | |
6 | 65.03 ± 0.48 j | 42.56 ± 0.20 a | 43.11 ± 0.31 b | 35.16 ± 0.03 e | 60.18 ± 0.41 j | 48.80 ± 0.29 h | 2.01 ± 0.04 a | 7.06 ± 0.21 b | 59.10 ± 0.18 i,j | 35.22 ± 0.02 d | 60.59 ± 0.28 h | 76.64 ± 0.42 j,k | 3.27 ± 0.29 b | 6.69 ± 0.21 b | 50.45 ± 0.39 i |
Parameter | Influence of Extraction Conditions, bits | |
---|---|---|
Duration of UAE | Duration of MAE at Different Magnetron Powers | |
Total polyphenol content | 0.212 | 0.204 |
Total flavonoid content | ||
mg RuE/g DW | 0.199 | 0.240 |
mg QE/g DW | 0.329 | 0.315 |
Anthocyanins content | 0.367 | 0.333 |
Antioxidant activity (DPPH) | 0.104 | 0.241 |
Antioxidant activity (ABTS) | 0.124 | 0.259 |
pH | 0.048 | 0.111 |
Lightness, L* | 0.141 | 0.130 |
Red–green parameter, a* | 0.010 | 0.222 |
Yellow–blue parameter, b* | 0.020 | 0.278 |
Chromaticity, C* | 0.001 | 0.167 |
Hue angle, h* | 0.141 | 0.129 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulgaru, V.; Gurev, A.; Baerle, A.; Dragancea, V.; Balan, G.; Cojocari, D.; Sturza, R.; Soran, M.-L.; Ghendov-Mosanu, A. Phytochemical, Antimicrobial, and Antioxidant Activity of Different Extracts from Frozen, Freeze-Dried, and Oven-Dried Jostaberries Grown in Moldova. Antioxidants 2024, 13, 890. https://doi.org/10.3390/antiox13080890
Bulgaru V, Gurev A, Baerle A, Dragancea V, Balan G, Cojocari D, Sturza R, Soran M-L, Ghendov-Mosanu A. Phytochemical, Antimicrobial, and Antioxidant Activity of Different Extracts from Frozen, Freeze-Dried, and Oven-Dried Jostaberries Grown in Moldova. Antioxidants. 2024; 13(8):890. https://doi.org/10.3390/antiox13080890
Chicago/Turabian StyleBulgaru, Viorica, Angela Gurev, Alexei Baerle, Veronica Dragancea, Greta Balan, Daniela Cojocari, Rodica Sturza, Maria-Loredana Soran, and Aliona Ghendov-Mosanu. 2024. "Phytochemical, Antimicrobial, and Antioxidant Activity of Different Extracts from Frozen, Freeze-Dried, and Oven-Dried Jostaberries Grown in Moldova" Antioxidants 13, no. 8: 890. https://doi.org/10.3390/antiox13080890