Study of Polyphenol Content and Antioxidant Properties of Various Mix of Chocolate Milk Masses with Different Protein Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Material
2.2. Technological Process
- Cocoa masses—16.2%,
- Cocoa butter—12.3%,
- Sugar—50%,
- Milk powder—18.0%,
- Whey—3.2%,
- Lecithins—0.3%.
3. Analytical Methods
3.1. Determination of Dry Matter Content
3.2. Determination of Protein Content
3.3. Determination of Total Polyphenols Content by the Folin–Ciocalteu Method
3.4. Determination the Ability of Extracts to Inactivate Stable DPPH Radicals
3.5. The Statistical Analysis
4. Results and Discussion
4.1. Selection of Raw Materials for Chocolate Milk Masses Production
4.2. Results of Polyphenols Content Determination in Chocolate Milk Masses
4.3. Results of Determination of Antioxidant Activity in Chocolate Milk Masses
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Di Mattia, C.D.; Sacchetti, G.; Mastrocola, D.; Serafini, M. From cocoa to chocolate: The impact of processing on in vitro antioxidant activity and the e ects of chocolate on antioxidant markers in vivo. Front. Immunol. 2017, 8, 1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Żyżelewicz, D.; Budryn, G.; Oracz, J.; Antolak, H.; Kregiel, D.; Kaczmarska, M. The effect on bioactive components and characteristics of chocolate by functionalization with raw cocoa beans. Food Res. Int. 2018, 113, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Montagna, M.T.; Diella, G.; Triggiano, F.; Caponio, G.R.; Giglio, O.D.; Caggiano, G.; Ciaula, A.D.; Portincasa, P. Chocolate, “food of the gods”: History, science, and human health. Int. J. Environ. Res. Public Health 2019, 16, 4960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmermann, B.F.; Ellinger, S. Cocoa, chocolate, and human health. Nutrients 2020, 12, 698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mota-Gutierrez, J.; Barbosa-Pereira, L.; Ferrocino, I.; Cocolin, L. Traceability of functional volatile compounds generated on inoculated cocoa fermentation and its potential health benefits. Nutrients 2019, 11, 884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsang, C.; Hodgson, L.; Bussu, A.; Farhat, G.; Al-Dujaili, E. Effect of polyphenol-rich dark chocolate on salivary cortisol and mood in adults. Antioxidants 2019, 8, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oracz, J.; Zyzelewicz, D. In vitro antioxidant activity and ftir characterization of high-molecular weight melanoidin fractions from different types of cocoa beans. Antioxidants 2019, 8, 560. [Google Scholar] [CrossRef] [Green Version]
- Da Veiga Moreira, I.M.; De Figueiredo Vilela, L.; Santos, C.; Lima, N.; Schwan, R.F. Volatile compounds and protein profiles analyses of fermented cocoa beans and chocolates from different hybrids cultivated in Brazil. Food Res. Int. 2018, 109, 196–203. [Google Scholar] [CrossRef]
- Engeseth, N.J.; Ac Pangan, M.F. Current context on chocolate flavor development—A review. Curr. Opin. Food Sci. 2018, 21, 84–91. [Google Scholar] [CrossRef]
- Hinneh, M.; Semanhyia, E.; van de Walle, D.; de Winne, A.; Tzompa Sosa, D.A.; Scalone, G.L.; de Meulenaer, B. Assessing the influence of pod storage on sugar and free amino acid profiles and the implications on some maillard reaction related flavor volatiles in forastero cocoa beans. Food Res. Int. 2018, 111, 607–620. [Google Scholar] [CrossRef]
- Ramli, N.; Hassan, O.; Said, M.; Samsudin, W.; Idris, N.A. Influence of roasting conditions on volatile flavor ofroasted Malaysian cocoa beans. J. Food Process. Preserv. 2006, 30, 280–298. [Google Scholar] [CrossRef]
- Farah, D.M.H.; Zaibunnisa, A.H.; Misnawi, J.; Zainal, S. Effect of roasting process on the concentration of acrylamide and pyrazines in roasted cocoa beans from different origins. APCBEE Procedia 2012, 4, 204–208. [Google Scholar] [CrossRef] [Green Version]
- Ioannone, F.; di Mattia, C.D.; de Gregorio, M.; Sergi, M.; Serafini, M.; Sacchetti, G. Flavanols, proanthocyanidins and antioxidant activity changes during cocoa (Theobroma cacao L.) roasting as affected by temperature and time of processing. Food Chem. 2015, 174, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Stanley, T.H.; Van Buiten, B.; Baker, S.A.; Elias, R.J.; Anantheswaran, R.C.; Lambert, J.D. Impact of roasting on the flavan-3-ol com-position, sensory-related chemistry, and in vitro pancreatic lipase inhibitory activity of cocoa beans. Food Chem. 2018, 255, 414–420. [Google Scholar] [CrossRef]
- Żyżelewicz, D.; Krysiak, W.; Oracz, J.; Sosnowska, D.; Budryn, G.; Nebesny, E. The influence of the roasting process conditions on the polyphenol content in cocoa beans, nibs and chocolates. Food Res. Int. 2016, 89, 918–929. [Google Scholar] [CrossRef]
- Beckett, S.T. Liquid chocolate making. In The Science of Chocolate, 2nd ed.; Paperbacks; Royal Society of Chemistry: London, UK, 2008; Volume 4, pp. 61–79. [Google Scholar]
- Owusu, M.; Petersen, M.A.; Heimdal, H. Effect of fermantation method roasting and conching conditions on the aroma volatiles of dark chocolate. J. Food Process. Preserv. 2012, 36, 446–456. [Google Scholar] [CrossRef]
- Vivar-Vera, G.; Torrestiana Sanchez, B.; Monrey Rivera, J.A.; Brito de La Fuente, E. Influence of temperature and mixing speed on dynamic rheological properties of dark chocolate mass during conching. In Food Science and Food Biotechnology Essentials: A Contemporary Perspective; Moorillan, G.V.N., Ortega-Rivas, E., Eds.; Associacion Mexicana de Ciencia de los Alimentos, A.C: Durango, Mexico, 2014; pp. 247–252. [Google Scholar]
- Toker, O.S.; Palabiyik, I.; Konar, N. Chocolate quality and conching. Trends Food Sci. Technol. 2019, 91, 446–456. [Google Scholar] [CrossRef]
- Chen, K.; Zhao, J.; Shi, X.; Abdul, Q.; Jiang, Z. Characterization and antioxidant activity of products derived from xylose–bovine casein hydrolysate maillard reaction: Impact of reaction time. Foods 2019, 8, 242. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, A.B.; Brandelli, A.; Schumacher, E.W.; Macedo, F.C.; Pietai, L.; Klug, T.; de Jong, E.V. Development and evaluation of a laboratory scale conch for chocolate production. Int. J. Food Sci. Technol. 2009, 44, 616–622. [Google Scholar] [CrossRef]
- Albak, F.; Tekin, A.R. Variation of total aroma and polyphenol content of dark chocolate during three phase of conching. J. Food Sci. Technol. 2016, 53, 848–855. [Google Scholar] [CrossRef] [Green Version]
- Di Mattia, C.; Martuscelli, M.; Sacchetti, G.; Bahaydt, B.; Matsrocola, D.; Pittia, P. Effect of different conching processes on procyanidins content and antioxidant properties of chocolate. Food Res. Int. 2014, 63, 367–372. [Google Scholar] [CrossRef]
- E.U. Directive 2000/36/EC of the European parliament and of the council of 23 June 2000 relating to cocoa and chocolate products intended. Off. J. 2020, 197, 19–25. [Google Scholar]
- Furlán, L.T.R.; Baracco, Y.; Lecot, J.; Zaritzky, N.; Campderrós, M.E. Influence of hydrogenated oil as cocoa butter replacers in the development of sugar-free compound chocolates: Use of inulin as stabilizing agent. Food Chem. 2017, 217, 637–647. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, J.; Barry, K.; Delaney, C.; Keogh, K. Assessment of the flowability of spraydried milk powders for chocolate manufacture. Lait 2005, 85, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Haylock, S.J.; Dodds, T.M. Ingredients from Milk. In Industrial Chocolate Manufacture and Use, 3rd ed.; Beckett, S.T., Ed.; Blackwell Science: Oxford, UK, 1999; pp. 1–77. [Google Scholar]
- Kowalska, J.; Małoszewska, E. Commodity evaluation of high cocoa chocolates. Sci. Nat. Technol. 2009, 3, 141. [Google Scholar]
- Maidannyk, V.; McSweeney, D.J.; Hogan, S.A.; Miao, S.; Montgomery, S.; Auty, M.A.E.; McCarthy, N.A. Water sorption and hydration in spray-dried milk protein powders: Selected physicochemical properties. Food Chem. 2020, 304, 125418. [Google Scholar] [CrossRef]
- Da Silva Medeiros, N.; Marder, R.K.; Farias Wohlenberg, M.; Funchal, C.; Dani, C. Total phenolic content and antioxidant activity of different types of chocolate, milk, semisweet, dark, and soy, in cerebral cortex, hippocampus, and cerebellum of wistar rats. Biochem. Res. Int. 2015, 2015, 294659. [Google Scholar] [CrossRef] [Green Version]
- Wołosiak, R.; Drużyńska, B.; Piecyk, M.; Worobiej, E.; Majewska, E.; Lewicki, P. Influence of industrial sterilisation, freezing and steam cooking on antioxidant properties of green peas and string beans. Int. J. Food Sci. Technol. 2011, 46, 93–100. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomo-lybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Tailor, C.S.; Goyal, A. Activity by DPPH radical scavenging method of ageratum conyzoideslinn. Leaves Am. J. Ethnomed. 2014, 1, 244–249. [Google Scholar]
- Jumnongpon, R.; Chaiseri, S.; Hongsprabhas, P.; Healy, J.P.; Meade, S.J.; Gerrard, J.A. Cocoa protein crosslinking using Maillard chemistry. Food Chem. 2012, 134, 375–380. [Google Scholar] [CrossRef]
- Torres-Moreno, M.; Tarrega, A.; Costell, E.; Blanch, C. Dark chocolate acceptability: Influence of cocoa origin and processing conditions. J. Sci. Food Agric. 2012, 92, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Hebert, E.M.; Saavedra, L.; Ferranti, P. Bioactive peptides derived from casein and whey proteins. In Biotechnology of Lactic Acid Bacteria: Novel Application; Mozzi, F., Raya, R.R., Vignolo, G.M., Eds.; Blackwell Publishing: Oxford, UK, 2010. [Google Scholar] [CrossRef]
- Marseglia, A.; Dellafiora, L.; Prandi, B.; Lolli, V.; Sforza, S.; Cozzini, P.; Tedeschi, T.; Galaverna, G.; Caligiani, A. Simulated gastrointestinal digestion of cocoa: Detection of resistant peptides and in silico/in vitro prediction of their ace inhibitory activity. Nutrients 2019, 11, 985. [Google Scholar] [CrossRef] [Green Version]
- Darewicz, M.; Dziuba, J. Structure and functional properties of milk proteins. Food Sci. Technol. Qual. 2005, 2, 47–60. [Google Scholar]
- Domian, E. Profile of spray-dried emulsions stabilised by milk proteins. Food Sci. Technol. Qual. 2011, 18, 5–23. [Google Scholar] [CrossRef]
- Vásquez, C.; Henríquez, G.; López, J.; Penott-Chang, E.; Sandoval, A.; Müller, A. The effect of composition on the rheological behavior of commercial chocolates. LWT 2019, 111, 744–750. [Google Scholar] [CrossRef]
- Singh, H.; Creamer, L.K. Denaturation, aggregation and heat stability of milk protein during the manufacture of skim milk powder. J. Dairy Res. 1991, 58, 269–283. [Google Scholar] [CrossRef]
- Kurozawa, L.E.; Park, K.J.; Hubinger, M.D. Effect of carrier agents on the physicochemical properties of a spray dried chicken meat protein hydrolysate. J. Food Eng. 2009, 94, 326–333. [Google Scholar] [CrossRef]
- Scheidegger, D.; Radici, P.M.; Vergara-Roig, V.A.; Bosio, N.S.; Pesce, S.F.; Pecora, R.P.; Romano, J.C.P.; Kivatinitz, S.C. Evaluation of milk powder quality by protein oxidative modifications. J. Dairy Sci. 2013, 96, 3414–3423. [Google Scholar] [CrossRef]
- Pihlanto, A. Antioxidative peptides derived from milk proteins. Int. Dairy J. 2016, 16, 1306. [Google Scholar] [CrossRef]
- Besle, J.M.; Viala, D.; Martin, B.; Pradel, P.; Meunier, B.; Berdagué, J.L.; Fraisse, D.; Lamaison, J.L.; Coulon, J.B. Ultraviolet-absorbing compounds in milk are related to forage polyphenols. J. Dairy Sci. 2010, 93, 2846–2856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ertan, K.; Bayana, D.; Gokce, O.; Alatossava, J.T.; Yilmaz, Y.; Gursoy, O. Total antioxidant capacity and phenolic content of pasteurized and UHT-treated cow milk samples marketed in Turkey. Akad. Gıda Derg. 2017, 15, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Gallo, M.; Vinci, G.; Graziani, G.; de Simone, C.; Ferranti, P. The interaction of cocoa polyphenols with milk proteins studied by protomic techniques. Food Res. Int. 2013, 54, 406–415. [Google Scholar] [CrossRef]
- Arranz, E.; Corrochano, A.R.; Shanahan, C.; Villalva, M.; Jaime, L.; Santoyo, S.; Callanan, M.J.; Murphy, E.; Giblin, L. Antioxidant activity and characterization of whey protein-based beverages: Effect of shelf life and gastrointestinal transit on bioactivity. Innov. Food Sci. Emerg. 2019, 57. [Google Scholar] [CrossRef]
- Scheidegger, D.; Pecora, R.P.; Radici, P.M.; Kivatinitz, S.C. Protein oxidative changes in whole and skim milk after ultraviolet or fluorescent light exposure. J. Dairy Sci. 2010, 93, 5101–5109. [Google Scholar] [CrossRef] [Green Version]
- Thomas, M.E.C.; Scher, J.; Desobry-Banon, S.; Desobry, S. Milk powders ageing: Effect on physical and functional properties. Crit. Rev. Food Sci. Nutr. 2004, 44, 297–322. [Google Scholar] [CrossRef]
- Todorovic, V.; Radojcic, I.; Todorovic, Z.; Jankovic, G.; Dodevsk, M.; Sobajic, S. Polyphenols methylxanthines and antioxidant capacity of chocolates produced in Serbia. J. Food Compos. 2015, 41, 137–143. [Google Scholar] [CrossRef]
- Serafini, M.; Testa, M.F.; Villaño, D.; Pecorari, M.; Peluso, I.; Brambilla, A. Antioxidant activity of blueberry fruit is impaired by the association with milk. Ann. Nutr. Metab. 2008, 55. [Google Scholar] [CrossRef]
- Dubeau, S.; Samson, G. Dual effect of milk on the antioxidant capacity of green, Darjeeling, and English breakfast teas. Food Chem. 2010, 122, 539–545. [Google Scholar] [CrossRef]
- Vertuani, S.; Scalambra, E.; Vittorio, T.; Bino, A.; Malisardi, G.; Baldisserotto, A.; Manfredini, S. Evaluation of antiradical activity of different cocoa and chocolate products: Relation with lipid and protein composition, 2014. J. Med. Food 2013, 17, 512–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belščak, A.; Komes, D.; Horzic, D.; Kovacevic, K.; Karlovic, D. Comparative study of commercially available cocoa products in terms of their bioactive composition. Food Res. Int. 2009, 42, 707–716. [Google Scholar] [CrossRef]
- Miller, K.B.; Stuart, D.A.; Smith, N.L.; Lee, C.Y.; Mchale, N.L.; Flanagan, J.A.; Ou, B.; Hurst, W.J. Antioxidant activity and polyphenol and procyanidin contents of selected commercially available cocoa-containing and chocolate products in the United States. J. Agric. Food Chem. 2006, 54, 4062–4068. [Google Scholar] [CrossRef] [PubMed]
- Loffredo, L.; Perri, L.; Nocella, C.; Violi, F. Antioxidant and antiplatelet activity by polyphenol-rich nutrients: Focus on extra virgin olive oil and cocoa. Br. J. Clin. Pharmacol. 2017, 83, 96–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, I.; Bentsen, I.; Lisby, M. A Flp-nick system to study repair of a single protein-bound nick in vivo. Nat. Methods 2009, 6, 753–757. [Google Scholar] [CrossRef]
Milk Sample Number | Characteristics of Milk Type of Milk/Supplier/Milking Time/Production Technique | Protein Content (%) | Dry Matter Content (%) |
---|---|---|---|
1 | WMP- MX/I 2018/D | 28.53 ± 0.9 | 97.02 ± 0.08 |
2 | WMP- MX/XII 2018/D | 31.10 ± 1.1 | 97.35 ± 0.1 |
3 | WMP- MX/IV 2017/D | 30.35 ± 0.6 | 97.15 ± 0.2 |
4 | WMP- MX/II 2018/D | 27.44 ± 0.6 | 96.51 ± 0.1 |
5 | WMP- MX/IX 2018/D | 29.14 ± 0.8 | 96.72 ± 0.2 |
6 | WMP- MX/VIII 2018/D | 28.41 ± 1.0 | 96.34 ± 0.1 |
7 | WMP- MX/V 2018/D | 29.06 ± 0.8 | 97.31 ± 0.3 |
8 | WMP- MX/IX 2018/D | 29.00 ± 0.7 | 96.85 ± 0.09 |
9 | WMP- MX/II 2018/D | 27.99 ± 0.8 | 97.25 ± 0.1 |
10 | WMP- MX/V 2018/D | 28.86 ± 0.9 | 96.41 ± 0.2 |
11 | WP- MX/III 2018/D | 13.51 ± 1.1 | 97.91 ± 0.1 |
12 | WMP- MX/I 2018/D | 29.47 ± 0.9 | 95.92 ± 0.3 |
13 | MP - MX/IV 2018/C (consisting in 80% of WM, enriched with lactose and WP) | 18.90 ± 0.8 | 96.55 ± 0.09 |
14 | MP - MX/IV 2018/C (consisting of 47% sugar and the remainder of milk, permeate and cream) | 13.19 ± 1.0 | 97.26 ± 0.1 |
15 | WMP- MX/VII 2018/D | 25.78 ± 1.1 | 95.32 ± 0.2 |
16 | WMP- MX/VI 2018/D | 26.43 ± 0.9 | 95.17 ± 0.2 |
17 | WMP- MX/V 2018/D | 27.02 ± 0.6 | 96.24 ± 0.3 |
18 | WMP- MZ/V 2018/D | 26.76 ± 0.7 | 97.56 ± 0.09 |
19 | WP- MZ/V 2018/D | 11.61 ± 0.9 | 97.14 ± 0.1 |
Sample Code | Characteristics of the Test Material |
---|---|
Ch_1 | Cocoa liquor/unroasted beans/Peru, |
Ch_2 | Cocoa liquor/roasted beans/Ivory Coast |
Ch_3 | Cocoa liquor/roasted beans/Ghana |
Ml_1 | WMP- MX/IV 2017/D |
Ml_2 | WMP/- MX/II 2018/D |
Ml_3 | WMP/- MX/IX 2018/D |
Ml_4 | MP – MX/IV 2018/C (consisting in 80% of WM, enriched with lactose and WP) |
Ml_5 | MP – MX/IV 2018/C (consisting of 47% sugar and the remainder of milk, permeate and cream) |
Ml_6 | WMP- MX/VII 2018/D |
Ml_7 | WMP- MZ/V 2018/D |
Sample Code | Characteristics of Chocolate Milk Masses | Sample Code | Characteristics of Chocolate Milk Masses |
---|---|---|---|
T-1 | CMM prepared using Ch_1 and Ml_1 | T-12 | CMM prepared using Ch_2 and Ml_5 |
T-2 | CMM prepared using Ch_1 and Ml_2 | T-13 | CMM prepared using Ch_2 and Ml_6 |
T-3 | CMM prepared using Ch_1 and Ml_3 | T-14 | CMM prepared using Ch_2 and Ml_7 |
T-4 | CMM prepared using Ch_1 and Ml_4 | T-15 | CMM prepared using Ch_3 and Ml_1 |
T-5 | CMM prepared using Ch_1 and Ml_5 | T-16 | CMM prepared using Ch_3 and Ml_2 |
T-6 | CMM prepared using Ch_1 and Ml_6 | T-17 | CMM prepared using Ch_3 and Ml_3 |
T-7 | CMM prepared using Ch_1 and Ml_7 | T-18 | CMM prepared using Ch_3 and Ml_4 |
T-8 | CMM prepared using Ch_2 and Ml_1 | T-19 | CMM prepared using Ch_3 and Ml_5 |
T-9 | CMM prepared using Ch_2 and Ml_2 | T-20 | CMM prepared using Ch_3 and Ml_6 |
T-10 | CMM prepared using Ch_2 and Ml_3 | T-21 | CMM prepared using Ch_3 and Ml_7 |
T-11 | CMM prepared using Ch_2 and Ml_4 |
Sample Code | Dry Matter | Proteins | Polyphenols | Antioxidant Activity |
---|---|---|---|---|
% (w/w) | % (w/w) | mg GAE 100 g−1 | % (w/w) | |
Ch_1 | 97.75 ± 0.3 | 13.62 ± 1.2 | 3284.4 ± 20.3 | 93.5 ± 2.4 |
Ch_2 | 98.92 ± 0.6 | 14.67 ± 1.7 | 2881.3 ± 29.5 | 91.6 ± 3.6 |
Ch_3 | 98.96 ± 0.4 | 14.25 ± 1.6 | 2723.6 ± 18.6 | 90.2 ± 4.3 |
Codes of Masses | Polyph. | DPPH | Codes of Masses | Polyph. | DPPH | Codes of Masses | Polyph. | DPPH |
---|---|---|---|---|---|---|---|---|
T-1 | J | h | T-8 | A | a | T-15 | B C | b |
T-2 | K | j | T-9 | C G | c | T-16 | D E | de |
T-3 | J | ij | T-10 | A B | b | T-17 | C D | c |
T-4 | L | m | T-11 | G H | gh | T-18 | G | ij |
T-5 | M | n | T-12 | I | i | T-19 | H | k |
T-6 | K | l | T-13 | E F | de | T-20 | F | fg |
T-7 | K | k | T-14 | D E | cd | T-21 | E F | ef |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbańska, B.; Szafrański, T.; Kowalska, H.; Kowalska, J. Study of Polyphenol Content and Antioxidant Properties of Various Mix of Chocolate Milk Masses with Different Protein Content. Antioxidants 2020, 9, 299. https://doi.org/10.3390/antiox9040299
Urbańska B, Szafrański T, Kowalska H, Kowalska J. Study of Polyphenol Content and Antioxidant Properties of Various Mix of Chocolate Milk Masses with Different Protein Content. Antioxidants. 2020; 9(4):299. https://doi.org/10.3390/antiox9040299
Chicago/Turabian StyleUrbańska, Bogumiła, Tomasz Szafrański, Hanna Kowalska, and Jolanta Kowalska. 2020. "Study of Polyphenol Content and Antioxidant Properties of Various Mix of Chocolate Milk Masses with Different Protein Content" Antioxidants 9, no. 4: 299. https://doi.org/10.3390/antiox9040299
APA StyleUrbańska, B., Szafrański, T., Kowalska, H., & Kowalska, J. (2020). Study of Polyphenol Content and Antioxidant Properties of Various Mix of Chocolate Milk Masses with Different Protein Content. Antioxidants, 9(4), 299. https://doi.org/10.3390/antiox9040299