Comparison of the Safety and Immunogenicity of FAKHRAVAC and BBIBP-CorV Vaccines when Administrated as Booster Dose: A Parallel Two Arms, Randomized, Double Blind Clinical Trial
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Participants
2.3. Randomization and Masking
2.4. Procedures
2.5. Outcomes
2.6. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pouwels, K.B.; Pritchard, E.; Matthews, P.C.; Stoesser, N.; Eyre, D.W.; Vihta, K.-D.; House, T.; Hay, J.; Bell, J.I.; Newton, J.N. Effect of Delta variant on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK. Nat. Med. 2021, 27, 2127–2135. [Google Scholar] [CrossRef] [PubMed]
- Nordström, P.; Ballin, M.; Nordström, A. Effectiveness of heterologous ChAdOx1 nCoV-19 and mRNA prime-boost vaccination against symptomatic COVID-19 infection in Sweden: A nationwide cohort study. Lancet Reg. Health-Eur. 2021, 11, 100249. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shaw, R.H.; Stuart, A.S.; Greenland, M.; Aley, P.K.; Andrews, N.J.; Cameron, J.C.; Charlton, S.; Clutterbuck, E.A.; Collins, A.M. Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): A single-blind, randomised, non-inferiority trial. Lancet 2021, 398, 856–869. [Google Scholar] [CrossRef]
- FDA. Available online: https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-COVID-19/spikevax-and-moderna-COVID-19-vaccine#additional (accessed on 13 August 2022).
- Munro, A.P.; Janani, L.; Cornelius, V.; Aley, P.K.; Babbage, G.; Baxter, D.; Bula, M.; Cathie, K.; Chatterjee, K.; Dodd, K. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): A blinded, multicentre, randomised, controlled, phase 2 trial. Lancet 2021, 398, 2258–2276. [Google Scholar] [CrossRef]
- WHO. Available online: https://extranet.who.int/pqweb/vaccines/vaccinescovid-19-vaccine-eul-issued (accessed on 13 August 2022).
- Tracker, V. Available online: https://covid19.trackvaccines.org/vaccines/5/ (accessed on 13 August 2022).
- Ghasemi, S.; Naderi Saffar, K.; Ebrahimi, F.; Khatami, P.; Monazah, A.; Alizadeh, G.-A.; Ettehadi, H.-A.; Rad, I.; Nojehdehi, S.; Kehtari, M. Development of Inactivated FAKHRAVAC® Vaccine against SARS-CoV-2 Virus: Preclinical Study in Animal Models. Vaccines 2021, 9, 1271. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.; Day, N. The design of case-control studies: The influence of confounding and interaction effects. Int. J. Epidemiol. 1984, 13, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Mallapaty, S. China’s COVID vaccines have been crucial—Now immunity is waning. Nature 2021, 598, 398–399. [Google Scholar] [CrossRef] [PubMed]
- Babaee, E.; Amirkafi, A.; Tehrani-Banihashemi, A.; SoleimanvandiAzar, N.; Eshrati, B.; Rampisheh, Z.; Asadi-Aliabadi, M.; Nojomi, M. Adverse effects following COVID-19 vaccination in Iran. BMC Infect. Dis. 2022, 22, 476. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, J.; Das, S.; Aich, S.; Bhattacharyya, P.; Acharya, K. Antiviral potential of nanoparticles for the treatment of Coronavirus infections. J. Trace Elem. Med. Biol. 2022, 126977. [Google Scholar] [CrossRef] [PubMed]
- Alavijeh, M.S.; Bani, M.S.; Rad, I.; Hatamie, S.; Zomorod, M.S.; Haghpanahi, M. Antibacterial properties of ferrimagnetic and superparamagnetic nanoparticles: A comparative study. J. Mech. Sci. Technol. 2021, 35, 815–821. [Google Scholar] [CrossRef]
- Leung, K.; Jit, M.; Leung, G.M.; Wu, J.T. The allocation of COVID-19 vaccines and antivirals against emerging SARS-CoV-2 variants of concern in East Asia and Pacific region: A modelling study. Lancet Reg. Health-West. Pac. 2022, 21, 100389. [Google Scholar] [CrossRef] [PubMed]
- Arbel, R.; Hammerman, A.; Sergienko, R.; Friger, M.; Peretz, A.; Netzer, D.; Yaron, S. BNT162b2 vaccine booster and mortality due to COVID-19. N. Engl. J. Med. 2021, 385, 2413–2420. [Google Scholar] [CrossRef] [PubMed]
- Bar-On, Y.M.; Goldberg, Y.; Mandel, M.; Bodenheimer, O.; Freedman, L.; Kalkstein, N.; Mizrahi, B.; Alroy-Preis, S.; Ash, N.; Milo, R. Protection of BNT162b2 vaccine booster against COVID-19 in Israel. N. Engl. J. Med. 2021, 385, 1393–1400. [Google Scholar] [CrossRef] [PubMed]
Items. | BBIBP-CorV | FAKHRAVAC | Total | |
---|---|---|---|---|
(n = 219) | (n = 216) | (n = 435) | ||
Sex | Male | 188(85.84%) | 182(84.26%) | 370(85.06%) |
Female | 31(14.16%) | 34(15.74%) | 65(14.94%) | |
Median (IQR) | 42(18) | 41(16.5) | 41(18) | |
18–30 | 26(11.87%) | 34(15.74%) | 60(13.79%) | |
Age range | 30–40 | 65(29.68%) | 65(30.09%) | 130(29.89%) |
(Percentage of population: %) | 40–50 | 59(26.94%) | 63(29.17%) | 122(28.05%) |
50–60 | 37(16.89%) | 31(14.35%) | 68(15.63%) | |
>60 | 32(14.61%) | 23(10.65%) | 55(12.64%) | |
Body mass index; Mean (SD) | 26.11(3.71) | 26.56(3.90) | 26.33(3.80) | |
Education; n (%) | No formal education | 11(5.02%) | 7(3.24%) | 18(4.14%) |
Up to high school Diploma | 15(6.85%) | 26(12.04%) | 41(9.43%) | |
High school Diploma | 55(25.11%) | 48(22.22%) | 103(23.68%) | |
Diploma plus | 33(15.07%) | 29(13.43%) | 62(14.25%) | |
BSc | 79(36.07%) | 81(37.50%) | 160(36.78%) | |
MSc | 18(8.22%) | 12(5.56%) | 30(6.90%) | |
PhD and above | 8(3.65%) | 13(6.02%) | 21(4.83%) |
Antibodies | BBIBP-CorV (n = 219) | FAKHRAVAC (n = 216) | Total (n = 435) |
---|---|---|---|
Antibody for S1RBD Ag, GM | 2.46 | 3.02 | 2.73 |
Antibody for N Ag, GM | 2.37 | 3.19 | 2.74 |
Neutralizing antibody activity, GMT | 17.84 | 26.09 | 21.54 |
Indices | Baseline | Day 14 | |
---|---|---|---|
GMT (95% CI) | BBIBP-CorV (n = 52) | 2.4 (2.0, 2.9) | 37.8 (26.7, 53.4) |
FAKHRAVAC (n = 46) | 2.6 (2.1, 3.3) | 40.7 (29.8, 56.2) | |
GMFI (95% CI) a | BBIBP-CorV (n = 52) | 1.0 (Ref) | 26.18 (16.31–42.04, n = 52) |
FAKHRAVAC (n = 46) | 1.0 (Ref) | 24.08 (15.23–38.06, n = 46) | |
GMR (95% CI) b | BBIBP-CorV (n = 52) | 1.0 (Ref) | 1.0 (Ref) |
FAKHRAVAC (n = 46) | 1.15 (0.95–1.38, n = 53) | 1.08 (0.57–2.03, n = 46) | |
GMFR (95% CI) c | BBIBP-CorV (n = 52) | 1.0 (Ref) | 1.0 (Ref) |
FAKHRAVAC (n = 46) | 1.0 (Ref) | 0.94 (0.52–1.7, n = 46) | |
Four-fold rise; n (%) | BBIBP-CorV (n = 52) | - | 44 (84.62%) |
FAKHRAVAC (n = 46) | - | 40 (86.96%) |
Indices | Baseline | Day 14 |
---|---|---|
BBIBP-CorV (n= 52) | 17.84 (13.78–23.11, n = 218) | 72.6 (59.27–88.94, n = 176) |
FAKHRAVAC (n = 46) | 26.09 (20.09–33.89, n = 214) | 84.37 (70.45–101.05, n = 177) |
BBIBP-CorV (n = 52) | 1.0 (Ref) | 7.03 (4.84–10.21, n = 176) |
FAKHRAVAC (n = 46) | 1.0 (Ref) | 6.07 (4.44–8.28, n = 177) |
BBIBP-CorV (n = 52) | 1.0 (Ref) | 1.0 (Ref) |
FAKHRAVAC (n = 46) | 1.73 (1.02–2.94, n = 214) | 1.24 (0.84–1.83, n = 177) |
BBIBP-CorV (n = 52) | 1.0 (Ref) | 1.0 (Ref) |
FAKHRAVAC (n = 46) | 1.0 (Ref) | 0.79 (0.49–1.28, n = 177) |
BBIBP-CorV (n = 52) | - | 70 (39.77%) |
FAKHRAVAC (n = 46) | - | 71 (40.11%) |
Items | BBIBP-CorV | FAKHRAVAC |
---|---|---|
Baseline GM (95% CI) | 2.46 (2.14–2.83, n = 219) | 0.02 (2.65–3.45, n = 216) |
GM (95% CI, n) at day 14 | 5.23 (4.83–5.67, n = 179) | 4.67 (4.23–5.14, n = 181) |
GMFI (95% CI) at day 14 a | 2.08 (1.81–2.39, n = 179) | 1.59 (1.41–1.79, n = 181) |
GMR (95% CI) at day 14 b | 1 (Ref) | 0.89 (0.79–1.01, n = 181) |
GMFR (95% CI) at day 14 c | 1 (Ref) | 0.74 (0.62–0.89, n = 181) |
Seroconversion, n/N (%) | 34/41 (82.93%) | 23/29 (79.31%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahi, M.; Hamidi Farahani, R.; Basiri, P.; Karimi Rahjerdi, A.; Sheidaei, A.; Gohari, K.; Rahimi, Z.; Gholami, F.; Moradi, M.; Ghafoori Naeeni, F.; et al. Comparison of the Safety and Immunogenicity of FAKHRAVAC and BBIBP-CorV Vaccines when Administrated as Booster Dose: A Parallel Two Arms, Randomized, Double Blind Clinical Trial. Vaccines 2022, 10, 1800. https://doi.org/10.3390/vaccines10111800
Ahi M, Hamidi Farahani R, Basiri P, Karimi Rahjerdi A, Sheidaei A, Gohari K, Rahimi Z, Gholami F, Moradi M, Ghafoori Naeeni F, et al. Comparison of the Safety and Immunogenicity of FAKHRAVAC and BBIBP-CorV Vaccines when Administrated as Booster Dose: A Parallel Two Arms, Randomized, Double Blind Clinical Trial. Vaccines. 2022; 10(11):1800. https://doi.org/10.3390/vaccines10111800
Chicago/Turabian StyleAhi, Mohammadreza, Ramin Hamidi Farahani, Pouria Basiri, Ahmad Karimi Rahjerdi, Ali Sheidaei, Kimiya Gohari, Zahra Rahimi, Fatemeh Gholami, Milad Moradi, Farzad Ghafoori Naeeni, and et al. 2022. "Comparison of the Safety and Immunogenicity of FAKHRAVAC and BBIBP-CorV Vaccines when Administrated as Booster Dose: A Parallel Two Arms, Randomized, Double Blind Clinical Trial" Vaccines 10, no. 11: 1800. https://doi.org/10.3390/vaccines10111800
APA StyleAhi, M., Hamidi Farahani, R., Basiri, P., Karimi Rahjerdi, A., Sheidaei, A., Gohari, K., Rahimi, Z., Gholami, F., Moradi, M., Ghafoori Naeeni, F., Saffar, K. N., Ghasemi, S., Barati, B., Moradi, S., Monazah, A., Pouranvari, F., & Forooghizadeh, M. (2022). Comparison of the Safety and Immunogenicity of FAKHRAVAC and BBIBP-CorV Vaccines when Administrated as Booster Dose: A Parallel Two Arms, Randomized, Double Blind Clinical Trial. Vaccines, 10(11), 1800. https://doi.org/10.3390/vaccines10111800