Exploring the Association between Misinformation Endorsement, Opinions on the Government Response, Risk Perception, and COVID-19 Vaccine Hesitancy in the US, Canada, and Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Dependent Variable
2.3. Independent Variables
2.4. Statistical Analyses
3. Results
3.1. Sample Characteristics
3.2. COVID-19 Risk Perception
3.3. Perception of Government Response and Request for Government Aid
3.4. Misinformation Endorsement
3.5. Multivariable Analysis
3.6. Multivariable Analysis by Country
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tangcharoensathien, V.; Calleja, N.; Nguyen, T.; Purnat, T.; D’Agostino, M.; Garcia-Saiso, S.; Landry, M.; Rashidian, A.; Hamilton, C.; Abdallah, A.; et al. Framework for Managing the COVID-19 Infodemic: Methods and Results of an Online, Crowdsourced WHO Technical Consultation. J. Med. Internet Res. 2020, 22, e19659. [Google Scholar] [CrossRef] [PubMed]
- Roozenbeek, J.; Schneider, C.R.; Dryhurst, S.; Kerr, J.; Freeman, A.L.J.; Recchia, G.; van der Bles, A.M.; van der Linden, S. Susceptibility to misinformation about COVID-19 around the world. R. Soc. Open Sci. 2020, 7, 201199. [Google Scholar] [CrossRef] [PubMed]
- Loomba, S.; de Figueiredo, A.; Piatek, S.J.; de Graaf, K.; Larson, H.J. Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA. Nat. Hum. Behav. 2021, 5, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Sallam, M. COVID-19 Vaccine Hesitancy Worldwide: A Concise Systematic Review of Vaccine Acceptance Rates. Vaccines 2021, 9, 160. [Google Scholar] [CrossRef] [PubMed]
- Szilagyi, P.G.; Thomas, K.; Shah, M.D.; Vizueta, N.; Cui, Y.; Vangala, S.; Kapteyn, A. National Trends in the US Public’s Likelihood of Getting a COVID-19 Vaccine—April 1 to 8 December 2020. JAMA 2021, 325, 396–398. [Google Scholar] [CrossRef]
- Palamenghi, L.; Barello, S.; Boccia, S.; Graffigna, G. Mistrust in biomedical research and vaccine hesitancy: The forefront challenge in the battle against COVID-19 in Italy. Eur. J. Epidemiol. 2020, 35, 785–788. [Google Scholar] [CrossRef]
- Al-Amer, R.; Maneze, D.; Everett, B.; Montayre, J.; Villarosa, A.R.; Dwekat, E.; Salamonson, Y. COVID-19 vaccination intention in the first year of the pandemic: A systematic review. J. Clin. Nurs. 2022, 31, 62–86. [Google Scholar] [CrossRef]
- Ullah, I.; Khan, K.S.; Tahir, M.J.; Ahmed, A.; Harapan, H. Myths and conspiracy theories on vaccines and COVID-19: Potential effect on global vaccine refusals. Vacunas 2021, 22, 93–97. [Google Scholar] [CrossRef]
- Briand, S.C.; Cinelli, M.; Nguyen, T.; Lewis, R.; Prybylski, D.; Valensise, C.M.; Colizza, V.; Tozzi, A.E.; Perra, N.; Baronchelli, A.; et al. Infodemics: A new challenge for public health. Cell 2021, 184, 6010–6014. [Google Scholar] [CrossRef]
- Lee, C.; Whetten, K.; Omer, S.; Pan, W.; Salmon, D. Hurdles to herd immunity: Distrust of government and vaccine refusal in the US, 2002–2003. Vaccine 2016, 34, 3972–3978. [Google Scholar] [CrossRef]
- Burke, P.F.; Masters, D.; Massey, G. Enablers and barriers to COVID-19 vaccine uptake: An international study of perceptions and intentions. Vaccine 2021, 39, 5116–5128. [Google Scholar] [CrossRef] [PubMed]
- Casiday, R.; Cresswell, T.; Wilson, D.; Panter-Brick, C. A survey of UK parental attitudes to the MMR vaccine and trust in medical authority. Vaccine 2006, 24, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Andrade, G. Medical conspiracy theories: Cognitive science and implications for ethics. Med. Health Care Philos. 2020, 23, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Farhart, C.E.; Douglas-Durham, E.; Trujillo, K.L.; Vitriol, J.A. Vax attacks: How conspiracy theory belief undermines vaccine support. Prog. Mol. Biol. Transl. Sci. 2022, 188, 135–169. [Google Scholar]
- Pereira, P.S.; Silveira, A.D.S.; Pereira, A. Disinformation and Conspiracy Theories in the Age of COVID-19. Front. Sociol. 2020, 5, 560681. [Google Scholar] [CrossRef]
- Duplaga, M. The Determinants of Conspiracy Beliefs Related to the COVID-19 Pandemic in a Nationally Representative Sample of Internet Users. Int. J. Environ. Res. Public Health 2020, 17, 7818. [Google Scholar] [CrossRef]
- Seale, H.; Heywood, A.E.; Leask, J.; Sheel, M.; Thomas, S.; Durrheim, D.N.; Bolsewicz, K.; Kaur, R. COVID-19 is rapidly changing: Examining public perceptions and behaviors in response to this evolving pandemic. PLoS ONE 2020, 15, e0235112. [Google Scholar] [CrossRef]
- Larson, H.J.; Clarke, R.M.; Jarrett, C.; Eckersberger, E.; Levine, Z.; Schulz, W.S.; Paterson, P. Measuring trust in vaccination: A systematic review. Hum. Vaccin Immunother. 2018, 14, 1599–1609. [Google Scholar] [CrossRef]
- Khairat, S.; Zou, B.; Adler-Milstein, J. Factors and reasons associated with low COVID-19 vaccine uptake among highly hesitant communities in the US. Am. J. Infect. Control. 2022, 50, 262–267. [Google Scholar] [CrossRef]
- King, W.C.; Rubinstein, M.; Reinhart, A.; Mejia, R. Time trends, factors associated with, and reasons for COVID-19 vaccine hesitancy: A massive online survey of US adults from January–May 2021. PLoS ONE 2021, 16, e0260731. [Google Scholar] [CrossRef]
- Trent, M.; Seale, H.; Chughtai, A.A.; Salmon, D.; MacIntyre, C.R. Trust in government, intention to vaccinate and COVID-19 vaccine hesitancy: A comparative survey of five large cities in the United States, United Kingdom, and Australia. Vaccine 2021, 40, 2498–2505. [Google Scholar] [CrossRef]
- Agley, J.; Xiao, Y. Misinformation about COVID-19: Evidence for differential latent profiles and a strong association with trust in science. BMC Public Health 2021, 21, 89. [Google Scholar] [CrossRef] [PubMed]
- Larson, H.J.; Jarrett, C.; Eckersberger, E.; Smith, D.M.D.; Paterson, P. Understanding vaccine hesitancy around vaccines and vaccination from a global perspective: A systematic review of published literature, 2007–2012. Vaccine 2014, 32, 2150–2159. [Google Scholar] [CrossRef]
- Casara, B.G.S.; Suitner, C.; Bettinsoli, M.L. Viral suspicions: Vaccine hesitancy in the Web 2.0. J. Exp. Psychol. Appl. 2019, 25, 354–371. [Google Scholar] [CrossRef] [PubMed]
- Janz, N.K.; Becker, M.H. The Health Belief Model: A decade later. Health Educ. Q 1984, 11, 1–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, L.P.; Alias, H.; Wong, P.-F.; Lee, H.Y.; Abubakar, S. The use of the health belief model to assess predictors of intent to receive the COVID-19 vaccine and willingness to pay. Hum. Vaccin Immunother. 2020, 16, 2204–2214. [Google Scholar] [CrossRef] [PubMed]
- Suess, C.; Maddock, J.E.; Dogru, T.; Mody, M.; Lee, S. Using the Health Belief Model to examine travelers’ willingness to vaccinate and support for vaccination requirements prior to travel. Tour. Manag. 2022, 88, 104405. [Google Scholar] [CrossRef] [PubMed]
- Glanz, K.; Rimer, B.K.; Viswanath, K. (Eds.) Health Behavior and Health Education: Theory, Research, and Practice, 4th ed.; Jossey-Bass: San Francisco, CA, USA, 2008. [Google Scholar]
- Piltch-Loeb, R.; DiClemente, R. The Vaccine Uptake Continuum: Applying Social Science Theory to Shift Vaccine Hesitancy. Vaccines 2020, 8, 76. [Google Scholar] [CrossRef] [Green Version]
- Mocanu, D.; Rossi, L.; Zhang, Q.; Karsai, M.; Quattrociocchi, W. Collective attention in the age of (mis)information. Comput. Hum. Behavior. 2015, 51, 1198–1204. [Google Scholar] [CrossRef] [Green Version]
- Bessi, A.; Coletto, M.; Davidescu, G.A.; Scala, A.; Caldarelli, G.; Quattrociocchi, W. Science vs. conspiracy: Collective narratives in the age of misinformation. PLoS ONE 2015, 10, e0118093. [Google Scholar] [CrossRef] [Green Version]
- Quattrociocchi, W.; Scala, A.; Sunstein, C. Echo Chambers on Facebook. SSRN Electron. J. 2016. [Google Scholar] [CrossRef] [Green Version]
- Pollfish. Available online: www.pollfish.com (accessed on 8 December 2020).
- Goel, S.; Obeng, A.; Rothschild, D. Non-Representative Surveys: Fast, Cheap, and Mostly Accurate. Available online: https://5harad.com/papers/dirtysurveys.pdf (accessed on 15 April 2022).
- Rothschild, D.; Konitzer, T. Random Device Engagement (RDE) with Organic Samples; Pollfish: New York, NY, USA, 2018. [Google Scholar]
- Hughes, B.; Miller-Idriss, C.; Piltch-Loeb, R.; Goldberg, B.; White, K.; Criezis, M.; Savoia, E. Development of a Codebook of Online Anti-Vaccination Rhetoric to Manage COVID-19 Vaccine Misinformation. Int. J. Environ. Res. Public Health 2021, 18, 7556. [Google Scholar] [CrossRef]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 398. [Google Scholar]
- Hosmer, D.W.; Lemesbow, S. Goodness of fit tests for the multiple logistic regression model. Commun. Stat. Theory Methods 1980, 9, 1043–1069. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Hosmer, T.; Cessie, S.L.; Lemeshow, S. A comparison of goodness-of-fit tests for the logistic regression model. Stat. Med. 1997, 16, 965–980. [Google Scholar] [CrossRef]
- Malik, A.A.; McFadden, S.M.; Elharake, J.; Omer, S.B. Determinants of COVID-19 vaccine acceptance in the US. EClinicalMedicine 2020, 26, 100495. [Google Scholar] [CrossRef] [PubMed]
- Caserotti, M.; Girardi, P.; Rubaltelli, E.; Tasso, A.; Lotto, L.; Gavaruzzi, T. Associations of COVID-19 risk perception with vaccine hesitancy over time for Italian residents. Soc. Sci. Med. 2021, 272, 113688. [Google Scholar] [CrossRef]
- Joshi, A.; Kaur, M.; Kaur, R.; Grover, A.; Nash, D.; El-Mohandes, A. Predictors of COVID-19 Vaccine Acceptance, Intention, and Hesitancy: A Scoping Review. Front. Public Health 2021, 9, 698111. [Google Scholar] [CrossRef]
- Bollyky, T.J.; Crosby, S.; Kiernan, S. Fighting a Pandemic Requires Trust: Governments Have to Earn It. Foreign Affairs. 23 October 2020. Available online: https://www.foreignaffairs.com/articles/united-states/2020-10-23/coronavirus-fighting-requires-trust (accessed on 15 April 2022).
- Vardavas, C.; Odani, S.; Nikitara, K.; El Banhawi, H.; Kyriakos, C.; Taylor, L.; Becuwe, N. Public perspective on the governmental response, communication and trust in the governmental decisions in mitigating COVID-19 early in the pandemic across the G7 countries. Prev. Med. Rep. 2021, 21, 101252. [Google Scholar] [CrossRef]
- Cairney, P.; Wellstead, A. COVID-19: Effective policymaking depends on trust in experts, politicians, and the public. Policy Des. Pract. 2021, 4, 1–14. [Google Scholar] [CrossRef]
- McKee, M.; Coker, R. Trust, terrorism and public health. J. Public Health 2009, 31, 462–465. [Google Scholar] [CrossRef] [Green Version]
- de Blok, L.; Haugsgjerd, A.; Kumlin, S. Welfare State Legitimacy in Times of Crisis and Austerity, in Increasingly Connected? Political Distrust and Dissatisfaction with Public Services in Europe, 2008–2016; Edward Elgar Publishing: Cheltenham, UK, 2020. [Google Scholar]
- Gallè, F.; Sabella, E.A.; Roma, P.; Da Molin, G.; Diella, G.; Montagna, M.T.; Ferracuti, S.; Liguori, G.; Orsi, G.B.; Napoli, C. Acceptance of COVID-19 Vaccination in the Elderly: A Cross-Sectional Study in Southern Italy. Vaccines 2021, 9, 1222. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, O.V.; Johnson, M.S.; Ebling, S.; Amundsen, O.M.; Halsøy, Ø.; Hoffart, A.; Skjerdingstad, N.; Johnson, S.U. Risk, Trust, and Flawed Assumptions: Vaccine Hesitancy During the COVID-19 Pandemic. Front. Public Health 2021, 9, 700213. [Google Scholar] [CrossRef] [PubMed]
- Freeman, D.; Loe, B.S.; Chadwick, A.; Vaccari, C.; Waite, F.; Rosebrock, L.; Jenner, L.; Petit, A.; Lewandowsky, S.; Vanderslott, S.; et al. COVID-19 vaccine hesitancy in the UK: The Oxford coronavirus explanations, attitudes, and narratives survey (Oceans) II. Psychol. Med. 2020, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Managing the COVID-19 Infodemic: Promoting Healthy Behaviours and Mitigating the Harm from Misinformation and Disinformation; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- OECD. OECD Report on Public Communication; OECD: Paris, France, 2021. [Google Scholar]
Variable | United States (n = 726) | Canada (n = 985) | Italy (n = 986) | Total (n = 2697) | Country χ2 p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
COVID-19 Vaccine Hesitancy | |||||||||
Non-Hesitant | 268 | 37% | 572 | 58% | 560 | 57% | 1400 | 52% | <0.001 |
Hesitant | 458 | 63% | 413 | 42% | 426 | 43% | 1297 | 48% | |
Age Category (balanced by design) | |||||||||
18–24 | 141 | 19% | 198 | 20% | 194 | 20% | 533 | 20% | N/A b |
25–34 | 147 | 20% | 193 | 20% | 196 | 20% | 536 | 20% | |
35–44 | 143 | 20% | 196 | 20% | 198 | 20% | 537 | 20% | |
45–54 | 149 | 21% | 199 | 20% | 198 | 20% | 546 | 20% | |
Over 54 | 146 | 20% | 199 | 20% | 200 | 20% | 545 | 20% | |
Sex (balanced by design) | |||||||||
Male | 364 | 50% | 491 | 50% | 489 | 50% | 1344 | 50% | N/A b |
Female | 362 | 50% | 494 | 50% | 497 | 50% | 1353 | 50% | |
Race a | |||||||||
White, Non-Hispanic | 463 | 64% | 677 | 69% | - | - | 1140 | 67% | <0.001 |
Black, Non-Hispanic | 63 | 9% | 52 | 5% | - | - | 115 | 7% | |
Asian | 45 | 6% | 128 | 13% | - | - | 173 | 10% | |
Hispanic | 62 | 9% | 14 | 1% | - | - | 76 | 4% | |
Two or more/Other/Prefer not to say | 93 | 13% | 114 | 12% | - | - | 207 | 12% | |
Education Category | |||||||||
Less than high school | 49 | 7% | 49 | 5% | 83 | 8% | 181 | 7% | <0.001 |
High school or equivalent | 162 | 22% | 238 | 24% | 440 | 45% | 840 | 31% | |
Some college | 140 | 19% | 276 | 28% | 133 | 13% | 549 | 20% | |
Bachelor’s degree | 132 | 18% | 296 | 30% | 277 | 28% | 705 | 26% | |
Post-graduate degree | 221 | 30% | 118 | 12% | 51 | 5% | 390 | 14% | |
Other | 22 | 3% | 8 | 1% | 2 | 0% | 32 | 1% | |
Employment status | |||||||||
Not employed (includes students and retired individuals) | 290 | 40% | 370 | 38% | 353 | 36% | 1013 | 38% | 0.216 |
Employed | 436 | 60% | 615 | 62% | 633 | 64% | 1684 | 62% | |
COVID-19 Risk Perception | |||||||||
Low COVID-19 Risk Perception (<25th percentile) | 178 | 25% | 215 | 22% | 94 | 10% | 487 | 18% | <0.001 |
Medium COVID-19 Risk Perception (≥25th percentile; <75th percentile) | 294 | 40% | 508 | 52% | 548 | 56% | 1350 | 50% | |
High COVID-19 Risk Perception (≤75th percentile) | 254 | 35% | 262 | 27% | 344 | 35% | 860 | 32% | |
Perception of government response measures | |||||||||
Government measures just right | 239 | 33% | 469 | 48% | 469 | 48% | 1177 | 44% | <0.001 |
Government measures not right | 487 | 67% | 516 | 52% | 517 | 52% | 1520 | 56% | |
Request for government aid | |||||||||
No requests for government aid rejected or requested | 482 | 66% | 858 | 87% | 877 | 89% | 2217 | 82% | <0.001 |
At least one request rejected | 244 | 34% | 127 | 13% | 109 | 11% | 480 | 18% | |
Perception of government transparency | |||||||||
Government has been transparent | 441 | 61% | 653 | 66% | 743 | 75% | 1837 | 68% | <0.001 |
Government has not been transparent | 285 | 39% | 332 | 34% | 243 | 25% | 860 | 32% | |
Misinformation Endorsement Scale Quartile | |||||||||
Low Misinformation Endorsement (<25th percentile) | 155 | 21% | 283 | 29% | 226 | 23% | 664 | 25% | <0.001 |
Medium-Low (≥25th percentile; <50th percentile) | 116 | 16% | 233 | 24% | 308 | 31% | 657 | 24% | |
Medium-High (≥50th percentile; <75th percentile) | 198 | 27% | 242 | 25% | 251 | 25% | 691 | 26% | |
High Misinformation Endorsement (≥75th percentile) | 257 | 35% | 227 | 23% | 201 | 20% | 685 | 25% |
Model 1—Socio-Demographics & Risk Perception | Model 2—Model 1 + Government Perceptions | Model 3—Model 2 + Misinformation Endorsement | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | 2697 | N | 2697 | N | 2697 | |||||||
Pseudo R2 | 0.0929 | Pseudo R2 | 0.162 | Pseudo R2 | 0.268 | |||||||
VARIABLES | OR | SE | 95% CI | Wald Test p-value | OR | SE | 95% CI | Wald Test p-value | OR | SE | 95% CI | Wald Test p-value |
Age group | <0.001 | 0.004 | 0.018 | |||||||||
18–24 | ref | ref | ref | |||||||||
25–34 | 0.88 | 0.12 | (0.68–1.13) | 0.94 | 0.13 | (0.71–1.23) | 0.9 | 0.14 | (0.67–1.21) | |||
35–44 | 0.84 | 0.11 | (0.64–1.09) | 0.92 | 0.13 | (0.7–1.21) | 0.8 | 0.12 | (0.6–1.08) | |||
45–54 | 0.79 | 0.11 | (0.61–1.03) | 0.97 | 0.14 | (0.74–1.28) | 0.88 | 0.13 | (0.65–1.18) | |||
55+ | 0.48 ** | 0.06 | (0.37–0.63) | 0.62 ** | 0.09 | (0.47–0.81) | 0.61 ** | 0.09 | (0.45–0.82) | |||
Sex | 0.020 | 0.122 | 0.544 | |||||||||
Male | ref | ref | ref | |||||||||
Female | 1.22 * | 0.1 | (1.03–1.44) | 1.15 | 0.1 | (0.96–1.37) | 1.06 | 0.1 | (0.88–1.28) | |||
Educational attainment | <0.001 | <0.001 | 0.027 | |||||||||
Less than high school | ref | ref | ref | |||||||||
High school or equivalent | 0.96 | 0.17 | (0.68–1.35) | 1.04 | 0.19 | (0.72–1.49) | 1.22 | 0.24 | (0.83–1.78) | |||
Some college | 0.7 | 0.13 | (0.49–1) | 0.82 | 0.16 | (0.56–1.2) | 1.13 | 0.24 | (0.76–1.7) | |||
Bachelor’s degree | 0.67 * | 0.12 | (0.47–0.95) | 0.79 | 0.15 | (0.54–1.14) | 1.15 | 0.23 | (0.78–1.71) | |||
Post-Bachelor’s degree | 0.34 ** | 0.07 | (0.23–0.5) | 0.40 ** | 0.09 | (0.26–0.61) | 0.73 | 0.17 | (0.47–1.14) | |||
Other | 2.41 | 1.28 | (0.85–6.82) | 2.14 | 1.16 | (0.74–6.22) | 2.42 | 1.37 | (0.8–7.33) | |||
Employment status | 0.410 | 0.632 | 0.744 | |||||||||
Not employed (includes students and retired) | ref | ref | ref | |||||||||
Employed | 0.93 | 0.09 | (0.77–1.11) | 0.95 | 0.09 | (0.79–1.16) | 0.97 | 0.1 | (0.79–1.19) | |||
Country of residence and language | <0.001 | <0.001 | <0.001 | |||||||||
Residents in US | ref | ref | ref | |||||||||
Residents in Canada-English speaking | 0.35 ** | 0.05 | (0.27–0.45) | 0.38 ** | 0.05 | (0.29–0.49) | 0.41 ** | 0.06 | (0.31–0.55) | |||
Residents in Canada-French speaking | 0.31 ** | 0.04 | (0.24–0.4) | 0.43 ** | 0.06 | (0.33–0.57) | 0.48 ** | 0.07 | (0.35–0.65) | |||
Residents in Italy | 0.36 ** | 0.04 | (0.29–0.45) | 0.47 ** | 0.06 | (0.37–0.6) | 0.52 ** | 0.07 | (0.4–0.67) | |||
COVID-19 risk perception | <0.001 | <0.001 | <0.001 | |||||||||
Low COVID-19 risk perception (<25th percentile) | ref | ref | ref | |||||||||
Medium COVID-19 risk perception (≥25th percentile; <75th percentile) | 0.44 ** | 0.05 | (0.35–0.56) | 0.59 ** | 0.08 | (0.46–0.76) | 0.66 ** | 0.09 | (0.5–0.87) | |||
High COVID-19 risk perception (≤75th percentile) | 0.25 ** | 0.03 | (0.19–0.32) | 0.35 ** | 0.05 | (0.26–0.46) | 0.37 ** | 0.06 | (0.27–0.5) | |||
Perception of government measures to respond to the pandemic | <0.001 | <0.001 | ||||||||||
Government measures just right | ref | ref | ||||||||||
Government measures have not been right | 3.04 ** | 0.28 | (2.54–3.64) | 2.44 ** | 0.24 | (2.01–2.96) | ||||||
Request for government aid | 0.001 | 0.076 | ||||||||||
No requests rejected or applied for | ref | ref | ||||||||||
At least one request was rejected | 1.51 ** | 0.19 | (1.19–1.93) | 1.27 | 0.17 | (0.98–1.64) | ||||||
Perception of government transparency | <0.001 | 0.005 | ||||||||||
Government has been transparent | ref | ref | ||||||||||
Government has not been transparent | 1.88 ** | 0.19 | (1.55–2.28) | 1.35 ** | 0.15 | (1.09–1.67) | ||||||
Misinformation endorsement | <0.001 | |||||||||||
Low misinformation endorsement (<25th percentile) | ref | |||||||||||
Medium-Low (≥25th percentile; <50th percentile) | 3.76 ** | 0.57 | (2.79–5.05) | |||||||||
Medium-High (≥50th percentile; <75th percentile) | 9.82 ** | 1.49 | (7.3–13.23) | |||||||||
High misinformation endorsement (≥75th percentile) | 13.68 ** | 2.18 | (10.01–18.7) |
United States | Canada | Italy | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | 726 | N | 985 | N | 984 | |||||||
Pseudo R2 | 0.398 | Pseudo R2 | 0.326 | Pseudo R2 | 0.167 | |||||||
VARIABLES | OR | SE | 95% CI | Wald Test p-value | OR | SE | 95% CI | Wald Test p-value | OR | SE | 95% CI | Wald Test p-value |
Age group | 0.008 | <0.001 | 0.182 | |||||||||
18–24 | ref | ref | ref | |||||||||
25–34 | 0.66 | 0.23 | (0.33–1.32) | 1.08 | 0.28 | (0.65–1.78) | 0.97 | 0.23 | (0.6–1.55) | |||
35–44 | 0.30 ** | 0.11 | (0.15–0.61) | 1.11 | 0.29 | (0.67–1.85) | 1.21 | 0.29 | (0.76–1.94) | |||
45–54 | 0.76 | 0.27 | (0.38–1.51) | 0.74 | 0.2 | (0.43–1.26) | 1.31 | 0.32 | (0.81–2.12) | |||
55+ | 0.96 | 0.36 | (0.46–2) | 0.31 ** | 0.09 | (0.17–0.56) | 0.77 | 0.19 | (0.48–1.25) | |||
Sex | 0.253 | 0.687 | 0.313 | |||||||||
Male | ref | ref | ref | |||||||||
Female | 1.3 | 0.3 | (0.83–2.05) | 0.93 | 0.16 | (0.67–1.3) | 0.85 | 0.13 | (0.63–1.16) | |||
Race | 0.198 | 0.016 | ||||||||||
White, Non-Hispanic | ref | ref | ||||||||||
Black, Non-Hispanic | 2.06 | 0.79 | (0.97–4.37) | 1.31 | 0.47 | (0.65–2.65) | ||||||
Asian | 1.81 | 0.85 | (0.73–4.53) | 0.48 ** | 0.13 | (0.29–0.81) | a | |||||
Hispanic | 1.88 | 0.72 | (0.88–4) | 0.97 | 0.64 | (0.26–3.56) | ||||||
Two or more/Other/Prefer not to say | 1.62 | 0.57 | (0.81–3.23) | 1.36 | 0.37 | (0.8–2.32) | ||||||
Educational attainment | 0.100 | 0.954 | 0.866 | |||||||||
Less than high school | ref | ref | ref | |||||||||
High school or equivalent | 2.81 * | 1.25 | (1.18–6.71) | 0.97 | 0.39 | (0.44–2.14) | 1.12 | 0.3 | (0.66–1.9) | |||
Some college | 1.95 | 0.87 | (0.82–4.66) | 1.03 | 0.41 | (0.47–2.26) | 0.98 | 0.32 | (0.52–1.85) | |||
Bachelor’s degree | 1.88 | 0.84 | (0.79–4.51) | 1.04 | 0.42 | (0.47–2.28) | 1.11 | 0.32 | (0.63–1.96) | |||
Post-Bachelor’s degree | 1.16 | 0.53 | (0.48–2.82) | 0.86 | 0.38 | (0.36–2.02) | 1.47 | 0.6 | (0.66–3.28) | |||
Other | 2.23 | 1.6 | (0.55–9.11) | 2.35 | 2.74 | (0.24–23.21) | b | |||||
Employment status | 0.686 | 0.596 | 0.896 | |||||||||
Not employed (includes students and retired) | ref | ref | ref | |||||||||
Employed | 1.11 | 0.28 | (0.67–1.82) | 0.9 | 0.17 | (0.62–1.31) | 0.98 | 0.16 | (0.71–1.35) | |||
COVID-19 risk perception | <0.001 | 0.040 | 0.014 | |||||||||
Low COVID-19 risk perception (<25th percentile) | ref | ref | ref | |||||||||
Medium COVID-19 risk perception (≥25th percentile; <75th percentile) | 0.47 * | 0.15 | (0.24–0.89) | 0.74 | 0.16 | (0.48–1.14) | 0.79 | 0.21 | (0.47–1.33) | |||
High COVID-19 risk perception (≤75th percentile) | 0.17 ** | 0.06 | (0.09–0.34) | 0.53 * | 0.13 | (0.32–0.87) | 0.53 * | 0.15 | (0.3–0.91) | |||
Perception of government measures to respond to the pandemic | <0.001 | <0.001 | <0.001 | |||||||||
Government measures just right | ref | ref | ref | |||||||||
Government measures have not been right | 2.22 ** | 0.51 | (1.42–3.47) | 3.05 ** | 0.54 | (2.16–4.31) | 2.28 ** | 0.35 | (1.68–3.08) | |||
Request for government aid | 0.155 | 0.074 | 0.019 | |||||||||
No requests rejected or applied for | ref | ref | ref | |||||||||
At least one request was rejected | 0.71 | 0.17 | (0.44–1.14) | 1.61 | 0.43 | (0.95–2.72) | 1.73 * | 0.4 | (1.1–2.73) | |||
Perception of government transparency | 0.243 | 0.146 | 0.480 | |||||||||
Government has been transparent | ref | ref | ref | |||||||||
Government has not been transparent | 1.34 | 0.33 | (0.82–2.17) | 1.3 | 0.24 | (0.91–1.86) | 1.13 | 0.2 | (0.8–1.6) | |||
Misinformation endorsement | <0.001 | <0.001 | <0.001 | |||||||||
Low misinformation endorsement (<25th percentile) | ref | ref | ref | |||||||||
Medium-Low (≥25th percentile; <50th percentile) | 2.21 * | 0.76 | (1.13–4.33) | 5.08 ** | 1.45 | (2.91–8.88) | 3.16 ** | 0.73 | (2.01–4.98) | |||
Medium-High (≥50th percentile; <75th percentile) | 6.23 ** | 2.1 | (3.22–12.07) | 14.98 ** | 4.25 | (8.59–26.12) | 6.02 ** | 1.44 | (3.77–9.63) | |||
High misinformation endorsement (≥75th percentile) | 7.42 ** | 2.49 | (3.85–14.32) | 22.01 ** | 6.53 | (12.31–39.38) | 10.20 ** | 2.64 | (6.14–16.95) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savoia, E.; Harriman, N.W.; Piltch-Loeb, R.; Bonetti, M.; Toffolutti, V.; Testa, M.A. Exploring the Association between Misinformation Endorsement, Opinions on the Government Response, Risk Perception, and COVID-19 Vaccine Hesitancy in the US, Canada, and Italy. Vaccines 2022, 10, 671. https://doi.org/10.3390/vaccines10050671
Savoia E, Harriman NW, Piltch-Loeb R, Bonetti M, Toffolutti V, Testa MA. Exploring the Association between Misinformation Endorsement, Opinions on the Government Response, Risk Perception, and COVID-19 Vaccine Hesitancy in the US, Canada, and Italy. Vaccines. 2022; 10(5):671. https://doi.org/10.3390/vaccines10050671
Chicago/Turabian StyleSavoia, Elena, Nigel Walsh Harriman, Rachael Piltch-Loeb, Marco Bonetti, Veronica Toffolutti, and Marcia A. Testa. 2022. "Exploring the Association between Misinformation Endorsement, Opinions on the Government Response, Risk Perception, and COVID-19 Vaccine Hesitancy in the US, Canada, and Italy" Vaccines 10, no. 5: 671. https://doi.org/10.3390/vaccines10050671
APA StyleSavoia, E., Harriman, N. W., Piltch-Loeb, R., Bonetti, M., Toffolutti, V., & Testa, M. A. (2022). Exploring the Association between Misinformation Endorsement, Opinions on the Government Response, Risk Perception, and COVID-19 Vaccine Hesitancy in the US, Canada, and Italy. Vaccines, 10(5), 671. https://doi.org/10.3390/vaccines10050671