Self-Reported COVID-19 Vaccines’ Side Effects among Patients Treated with Biological Therapies in Saudi Arabia: A Multicenter Cross-Sectional Study
Abstract
:1. Introduction
2. Methods
2.1. Design and Settings
2.2. Questionnaire and Data Collection
2.3. Ethical Considerations
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- Gender
- ○
- Male
- ○
- Female
- Age: __________
- City: __________
- Hospital: _____________
- Body Mass Index (BMI):
- ○
- Underweight (≤18.5)
- ○
- Normal weight (18.5–24.9)
- ○
- Overweight (25–29.9)
- ○
- Obesity (≥30)
- Marital Status:
- ○
- Single
- ○
- Married
- ○
- Divorced
- ○
- Widowed
- Educational Level:
- ○
- No formal education
- ○
- Elementary school
- ○
- Intermediate school
- ○
- Secondary school
- ○
- College or associate degree
- ○
- Postgraduate degree
- Employment Status:
- ○
- Employed
- ○
- Unemployed
- Smoking Status:
- ○
- Non–smoker.
- ○
- Smoker.
- The indication that biological therapy is prescribed for:
- ○
- Inflammatory Bowel Disease (IBD)
- ○
- Multiple Sclerosis (MS)
- ○
- Rheumatoid arthritis (RA)
- ○
- Psoriasis
- ○
- Familial Hypercholesterolemia.
- ○
- Asthma
- ○
- Other: _____________
- Other Medical Conditions
- ○
- Diabetes
- ○
- Hypertension
- ○
- Asthma/COPD
- ○
- Dyslipidemia
- ○
- Other: ___________________
- Biological Therapy:
- ○
- Infliximab
- ○
- Natalizumab
- ○
- Vedolizumab
- ○
- Belimumab
- ○
- Ustekinumab
- ○
- Rituximab
- ○
- Tocilizumab
- ○
- Other: ________________
- Date of the last biological therapy administration: ____________
- Other Prescription Medications: _____________________________
- Vaccinated against COVID–19:
- ○
- Yes
- ○
- No
- Vaccinated 1st dose
- ○
- Date of Vaccination: _______________
- Type of Vaccine:
- ○
- Pfizer–BioNTech
- ○
- Oxford–AstraZeneca
- Vaccinated 2nd dose
- ○
- Date of Vaccination: _______________
- Type of Vaccine:
- ○
- Pfizer–BioNTech
- ○
- Oxford–AstraZeneca
- Any side effects from the vaccine:
- ○
- Tiredness
- ○
- Headache
- ○
- Muscle pain
- ○
- Chills
- ○
- Diarrhea
- ○
- Abdominal pain
- ○
- Constipation
- ○
- Oral hypoesthesia
- ○
- Mouth ulceration
- ○
- Lip/tongue swelling
- ○
- Fever
- ○
- Nausea
- ○
- Fainting/hypotension
- ○
- Fever
- ○
- Severe allergic reactions
- ○
- Bleeding
- ○
- Coagulopathy disorders
- ○
- Palpitations
- ○
- Ear Pain
- ○
- Eye Pain/photophobia/blurred vision
- ○
- Injection site pain
- ○
- Influenza-like symptoms
- ○
- Other: ________________________
- Any previous allergy to vaccines?
- ○
- Yes
- ○
- No
- Have you been infected by COVID-19 before vaccination?
- ○
- Yes
- ○
- No
- Have you been infected by COVID-19 after vaccination?
- ○
- Yes
- ○
- No
- Did you experience any worsening of your disease symptoms after vaccination?
- ○
- Yes
- ○
- No
- Have you been hospitalized after vaccination?
- ○
- Yes
- ○
- No
- Did you visit any public or private clinic because of the vaccine’s side effects?
- ○
- Yes
- ○
- No
References
- Cucinotta, D.; Vanelli, M. WHO declares COVID-19 a pandemic. Acta Biomed. 2020, 91, 157–160. [Google Scholar] [CrossRef]
- Viner, R.M.; Ward, J.L.; Hudson, L.D.; Ashe, M.; Patel, S.V.; Hargreaves, D.; Whittaker, E. Systematic review of reviews of symptoms and signs of COVID-19 in children and adolescents. Arch. Dis. Child. 2020, 106, 802–807. [Google Scholar] [CrossRef]
- Worl Health Organization. WHO Coronavirus (COVID-19) Dashboard. Worl Health Organization. Available online: https://covid19.who.int/ (accessed on 4 March 2022).
- Ministry of Health. Saudi Ministry of Health COVID-19 Dashboard. Available online: https://covid19.moh.gov.sa/ (accessed on 5 March 2022).
- AlRuthia, Y.; Al-Salloum, H.F.; Almohammed, O.A.; Alqahtani, A.S.; Al-Abdulkarim, H.A.; Alsofayan, Y.M.; Almudarra, S.S.; AlQahtani, S.H.; Almutlaq, A.; Alabdulkareem, K.; et al. Demographic Characteristics and Status of Vaccinated Individuals with a History of COVID-19 Infection Pre- or Post-Vaccination: A Descriptive Study of a Nationally Representative Sample in Saudi Arabia. Vaccines 2022, 10, 323. [Google Scholar] [CrossRef]
- Fiolet, T.; Kherabi, Y.; MacDonald, C.J.; Ghosn, J.; Peiffer-Smadja, N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: A narrative review. Clin. Microbiol. Infect. 2022, 28, 202–221. [Google Scholar] [CrossRef]
- Ndwandwe, D.; Wiysonge, C.S. COVID-19 vaccines. Curr. Opin. Immunol. 2021, 71, 111–116. [Google Scholar] [CrossRef]
- Self, W.H.; Tenforde, M.W.; Rhoads, J.P.; Gaglani, M.; Ginde, A.A.; Douin, D.J.; Olson, S.M.; Talbot, H.K.; Casey, J.D.; Mohr, N.M.; et al. Comparative Effectiveness of Moderna, Pfizer-BioNTech, and Janssen (Johnson & Johnson) Vaccines in Preventing COVID-19 Hospitalizations among Adults without Immunocompromising Conditions; United States, March–August Morbidity and Mortality Weekly Report; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2021; Volume 70, p. 1337.
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef]
- Mahase, E. COVID-19: Novavax vaccine efficacy is 86% against UK variant and 60% against South African variant. BMJ 2021, 372, n296. [Google Scholar] [CrossRef]
- Ranzani, O.T.; Hitchings, M.D.T.; Dorion, M.; D’Agostini, T.L.; de Paula, R.C.; de Paula, O.F.P.; Villela, E.F.D.M.; Torres, M.S.S.; de Oliveira, S.B.; Schulz, W.; et al. Effectiveness of the CoronaVac vaccine in older adults during a gamma variant associated epidemic of COVID-19 in Brazil: Test negative case-control study. BMJ 2021, 374, n2015. [Google Scholar] [CrossRef]
- Tregoning, J.S.; Flight, K.E.; Higham, S.L.; Wang, Z.; Pierce, B.F. Progress of the COVID-19 vaccine effort: Viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat. Rev. Immunol. 2021, 21, 626–636. [Google Scholar] [CrossRef]
- Bin Lee, A.R.Y.; Wong, S.Y.; Chai, L.Y.A.; Lee, S.C.; Lee, M.X.; Muthiah, M.D.; Tay, S.H.; Teo, C.B.; Tan, B.K.J.; Chan, Y.H.; et al. Efficacy of COVID-19 vaccines in immunocompromised patients: Systematic review and meta-analysis. BMJ 2022, 376, e068632. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Selected Adverse Events Reported after COVID-19 Vaccination. Google Scholar. 2021. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/adverse-events.html (accessed on 13 April 2022).
- Shavit, R.; Maoz-Segal, R.; Iancovici-Kidon, M.; Offengenden, I.; Yahia, S.H.; Maayan, D.M.; Lifshitz-Tunitsky, Y.; Niznik, S.; Frizinsky, S.; Deutch, M.; et al. Prevalence of allergic reactions after Pfizer-BioNTech COVID-19 vaccination among adults with high allergy risk. JAMA Netw. Open 2021, 4, e2122255. [Google Scholar] [CrossRef]
- Pottegård, A.; Lund, L.C.; Karlstad, Ø.; Dahl, J.; Andersen, M.; Hallas, J.; Lidegaard, Ø.; Tapia, G.; Gulseth, H.L.; Ruiz, P.L.D.; et al. Arterial events, venous thromboembolism, thrombocytopenia, and bleeding after vaccination with Oxford-AstraZeneca ChAdOx1-S in Denmark and Norway: Population based cohort study. BMJ 2021, 373, n1114. [Google Scholar] [CrossRef]
- Husby, A.; Hansen, J.V.; Fosbøl, E.; Thiesson, E.M.; Madsen, M.; Thomsen, R.W.; Sørensen, H.T.; Andersen, M.; Wohlfahrt, J.; Gislason, G.; et al. SARS-CoV-2 vaccination and myocarditis or myopericarditis: Population based cohort study. BMJ 2021, 375, e068665. [Google Scholar] [CrossRef]
- Woo, E.J.; Mba-Jonas, A.; Dimova, R.B.; Alimchandani, M.; Zinderman, C.E.; Nair, N. Association of Receipt of the Ad26.COV2.S COVID-19 Vaccine With Presumptive Guillain-Barré Syndrome, February–July 2021. JAMA 2021, 326, 1606–1613. [Google Scholar] [CrossRef]
- Oh, H.-K.; Kim, E.K.; Hwang, I.; Kim, T.E.; Lee, Y.-K.; Lee, E. COVID-19 vaccine safety monitoring in the Republic of Korea: 26 February 2021 to 30 April 2021. Osong Public Health Res. Perspect. 2021, 12, 264–268. [Google Scholar] [CrossRef]
- Alghamdi, A.A.; Alkazemi, A.; Alissa, A.; Alghamdi, I.; Alwarafi, G.; Waggas, H.A. Adverse Events following AstraZeneca COVID-19 Vaccine in Saudi Arabia: A Cross-Sectional Study among Healthcare and Nonhealthcare Workers. Intervirology 2021, 65, 104–109. [Google Scholar] [CrossRef]
- Alhazmi, A.; Alamer, E.; Daws, D.; Hakami, M.; Darraj, M.; Abdelwahab, S.; Maghfuri, A.; Algaissi, A. Evaluation of Side Effects Associated with COVID-19 Vaccines in Saudi Arabia. Vaccines 2021, 9, 674. [Google Scholar] [CrossRef]
- Riad, A.; Pokorná, A.; Attia, S.; Klugarová, J.; Koščík, M.; Klugar, M. Prevalence of COVID-19 Vaccine Side Effects among Healthcare Workers in the Czech Republic. J. Clin. Med. 2021, 10, 1428. [Google Scholar] [CrossRef]
- Melmed, G.Y.; Ippoliti, A.F.; Papadakis, K.A.; Tran, T.T.; Birt, J.L.; Lee, S.K.; Frenck, R.W.; Targan, S.R.; Vasiliauskas, E.A. Patients with Inflammatory Bowel Disease Are at Risk for Vaccine-Preventable Illnesses. Am. J. Gastroenterol. 2006, 101, 1834–1840. [Google Scholar] [CrossRef]
- Subesinghe, S.; Bechman, K.; Rutherford, A.I.; Goldblatt, D.; Galloway, J.B. A Systematic Review and Metaanalysis of Antirheumatic Drugs and Vaccine Immunogenicity in Rheumatoid Arthritis. J. Rheumatol. 2018, 45, 733–744. [Google Scholar] [CrossRef]
- Ciotti, J.R.; Valtcheva, M.V.; Cross, A.H. Effects of MS disease-modifying therapies on responses to vaccinations: A review. Mult. Scler. Relat. Disord. 2020, 45, 102439. [Google Scholar] [CrossRef]
- Arnold, J.; Winthrop, K.; Emery, P. COVID-19 vaccination and antirheumatic therapy. Rheumatology 2021, 60, 3496–3502. [Google Scholar] [CrossRef]
- Van Assen, S.; Holvast, A.; Benne, C.A.; Posthumus, M.D.; Van Leeuwen, M.A.; Voskuyl, A.E.; Blom, M.; Risselada, A.P.; de Haan, A.; Westra, J.; et al. Humoral responses after influenza vaccination are severely reduced in patients with rheumatoid arthritis treated with rituximab. Arthritis Rheum. 2010, 62, 75–81. [Google Scholar] [CrossRef]
- Arad, U.; Tzadok, S.; Amir, S.; Mandelboim, M.; Mendelson, E.; Wigler, I.; Sarbagil-Maman, H.; Paran, D.; Caspi, D.; Elkayam, O. The cellular immune response to influenza vaccination is preserved in rheumatoid arthritis patients treated with rituximab. Vaccine 2011, 29, 1643–1648. [Google Scholar] [CrossRef]
- deBruyn, J.; Fonseca, K.; Ghosh, S.; Panaccione, R.; Gasia, M.F.; Ueno, A.; Kaplan, G.G.; Seow, C.H.; Wrobel, I. Immunogenicity of influenza vaccine for patients with inflammatory bowel disease on maintenance infliximab therapy: A randomized trial. Inflamm. Bowel Dis. 2016, 22, 638–647. [Google Scholar] [CrossRef]
- Gabay, C.; Bel, M.; Combescure, C.; Ribi, C.; Meier, S.; Posfay-Barbe, K.; Grillet, S.; Seebach, J.D.; Kaiser, L.; Wunderli, W.; et al. Impact of synthetic and biologic disease-modifying antirheumatic drugs on antibody responses to the AS03-adjuvanted pandemic influenza vaccine: A prospective, open-label, parallel-cohort, single-center study. Arthritis Rheum. 2011, 63, 1486–1496. [Google Scholar] [CrossRef]
- Tang, W.; Askanase, A.D.; Khalili, L.; Merrill, J.T. SARS-CoV-2 vaccines in patients with SLE. Lupus Sci. Med. 2021, 8, e000479. [Google Scholar] [CrossRef]
- Bijlsma, J.W. EULAR December 2020 viewpoints on SARS-CoV-2 vaccination in patients with RMDs. Ann. Rheum. Dis. 2021, 80, 411–412. [Google Scholar] [CrossRef]
- Al Khames Aga, Q.A.; Alkhaffaf, W.H.; Hatem, T.H.; Nassir, K.F.; Batineh, Y.; Dahham, A.T.; Shaban, D.; Aga, L.A.; Agha, M.Y.R.; Traqchi, M. Safety of COVID-19 vaccines. J. Med. Virol. 2021, 93, 6588–6594. [Google Scholar] [CrossRef]
- Esquivel-Valerio, J.A.; Skinner-Taylor, C.M.; Moreno-Arquieta, I.A.; la Garza, J.A.C.-D.; Garcia-Arellano, G.; Gonzalez-Garcia, P.L.; Almaraz-Juarez, F.d.R.; Galarza-Delgado, D.A. Adverse events of six COVID-19 vaccines in patients with autoimmune rheumatic diseases: A cross-sectional study. Rheumatol. Int. 2021, 41, 2105–2108. [Google Scholar] [CrossRef]
- Xiong, X.; Yuan, J.; Li, M.; Jiang, B.; Lu, Z.K. Age and Gender Disparities in Adverse Events Following COVID-19 Vaccination: Real-World Evidence Based on Big Data for Risk Management. Front. Med. 2021, 8, 700014. [Google Scholar] [CrossRef]
- Green, M.S.; Peer, V.; Magid, A.; Hagani, N.; Anis, E.; Nitzan, D. Gender Differences in Adverse Events Following the Pfizer-BioNTech COVID-19 Vaccine. Vaccines 2022, 10, 233. [Google Scholar] [CrossRef]
- Beatty, A.L.; Peyser, N.D.; Butcher, X.E.; Cocohoba, J.M.; Lin, F.; Olgin, J.E.; Pletcher, M.J.; Marcus, G.M. Analysis of COVID-19 Vaccine Type and Adverse Effects Following Vaccination. JAMA Netw. Open 2021, 4, e2140364. [Google Scholar] [CrossRef]
- Gazette, S. MoH: Six COVID-19 Vaccines Approved in Saudi Arabia; Saudi Gazette: Jeddah, Saudi Arabia, 2021. [Google Scholar]
- Chapin-Bardales, J.; Gee, J.; Myers, T. Reactogenicity Following Receipt of mRNA-Based COVID-19 Vaccines. JAMA 2021, 325, 2201–2202. [Google Scholar] [CrossRef]
- Darraj, M.A.; Al-Mekhlafi, H.M. Prospective Evaluation of Side-Effects Following the First Dose of Oxford/AstraZeneca COVID-19 Vaccine among Healthcare Workers in Saudi Arabia. Vaccines 2022, 10, 223. [Google Scholar] [CrossRef]
- Efrati, S.; Catalogna, M.; Abu Hamad, R.; Hadanny, A.; Bar-Chaim, A.; Benveniste-Levkovitz, P.; Levtzion-Korach, O. Safety and humoral responses to BNT162b2 mRNA vaccination of SARS-CoV-2 previously infected and naive populations. Sci. Rep. 2021, 11, 16543. [Google Scholar] [CrossRef]
- Male, V. Menstrual changes after COVID-19 vaccination. BMJ 2021, 374, n2211. [Google Scholar] [CrossRef]
- Edelman, A.; Boniface, E.R.; Benhar, E.; Han, L.; Matteson, K.A.; Favaro, C. Association Between Menstrual Cycle Length and Coronavirus Disease 2019 (COVID-19) Vaccination: A U.S. Cohort. Obstet. Gynecol. 2022, 139, 481–489. [Google Scholar] [CrossRef]
- El-Shitany, N.A.; Harakeh, S.; Badr-Eldin, S.M.; Bagher, A.M.; Eid, B.; Almukadi, H. Minor to Moderate Side Effects of Pfizer-BioNTech COVID-19 Vaccine Among Saudi Residents: A Retrospective Cross-Sectional Study. Int. J. Gen. Med. 2021, 14, 1389–1401. [Google Scholar] [CrossRef]
- Alamer, E.; Alhazmi, A.; Qasir, N.A.; Alamer, R.; Areeshi, H.; Gohal, G. Side Effects of COVID-19 Pfizer-BioNTech mRNA Vaccine in Children Aged 12–18 Years in Saudi Arabia. Vaccines 2021, 9, 1297. [Google Scholar] [CrossRef]
- Andrzejczak-Grządko, S.; Czudy, Z.; Donderska, M. Side effects after COVID-19 vaccinations among residents of Poland. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 4418–4421. [Google Scholar] [CrossRef]
Characteristics | Patients |
---|---|
n = 417 | |
Age (Years), Mean ± (SD) | 38.5 ± 13.57 |
Gender | |
Female (%) | 215 (51.56) |
Male (%) | 202 (48.44) |
Body mass index (BMI) | |
Underweight ≤ 18.5 (%) | 17 (4.08) |
Normal weight = 18.5–24.9 (%) | 95 (22.78) |
Overweight = 25–29.9 (%) | 136 (32.61) |
Obesity = BMI of 30 or greater (%) | 169 (40.53) |
Educational level | |
No formal education (%) | 8 (2.86) |
Elementary school (%) | 20 (4.80) |
Intermediate school (%) | 23 (5.52) |
Secondary school (%) | 116 (27.82) |
College or Associate degree (%) | 224 (53.72) |
Postgraduate degree (%) | 26 (6.24) |
Marital status | |
Single (%) | 135 (32.37) |
Married (%) | 253 (60.67) |
Widowed (%) | 12 (2.88) |
Divorced (%) | 17 (4.08) |
Employment status | |
Employed (%) | 250 (59.95) |
Unemployed (%) | 167 (40.05) |
Smoker | |
Yes (%) | 108 (25.9) |
No (%) | 309 (74.10) |
Main Disease | |
Dermatological disorders (e.g., Psoriasis) (%) | 57 (13.67) |
Inflammatory bowel disease (IBD) (%) | 147 (35.25) |
Multiple sclerosis (MS) (%) | 40 (9.59) |
Rheumatoid arthritis (RA) (%) | 109 (26.14) |
Asthma (%) | 14 (3.36) |
Dyslipidemia (%) | 18 (4.32) |
Others ⊥ (%) | 32 (7.68) |
Biological medications | |
Abatacept (%) | 6 (1.44) |
Adalimumab (%) | 92 (22.06) |
Infliximab (%) | 102 (24.46) |
Natalizumab (%) | 28 (6.71) |
Ocrelizumab (%) | 3 (0.72) |
Rituximab (%) | 18 (4.32) |
Risankizumab (%) | 20 (7.14) |
Tocilizumab (%) | 29 (6.95) |
Vedolizumab (%) | 19 (4.56) |
Belimumab (%) | 3 (0.72) |
Certolizumab (%) | 12 (2.88) |
Etanercept (%) | 21 (5.04) |
Ustekinumab (%) | 24 (5.76) |
Mepolizumab (%) | 18 (4.32) |
Dupilumab (%) | 10 (2.40) |
Evolocumab (%) | 2 (0.48) |
Omalizumab (%) | 10 (2.40) |
Comorbid conditions | |
Hypertension (%) | 68 (16.31) |
Diabetes mellitus (%) | 49 (11.75) |
Dyslipidemia (%) | 40 (9.59) |
Renal disorders (%) | 5 (1.20) |
Type of vaccine | |
Oxford–AstraZeneca (%) | (17.99)75 |
Pfizer–BioNTech (%) | 342 (82.01) |
Number of vaccine doses | |
Partially immunized (first dose) | 121(29.02) |
Fully immunized (second dose) | 296(70.98) |
Side Effect | First Dose n (%) | Second Dose n (%) | p-Value |
---|---|---|---|
Flu-like symptoms | 1 (0.83) | 3 (1.01) | 0.858 |
Nausea and vomiting | 3 (2.48) | 2 (0.68) | 0.1246 |
Loss of taste or smell | 9 (7.44) | 13 (4.39) | 0.229 |
Musculoskeletal pain | 9 (7.44) | 19 (6.42) | 0.705 |
Palpitation | 12 (9.92) | 26 (8.78) | 0.715 |
Diarrhea | 11 (9.09) | 29 (9.80) | 0.824 |
Hypotension | 20 (16.53) | 37 (12.50) | 0.277 |
Headache | 33 (27.27) | 101 (34.12) | 0.174 |
Fever | 68 (56.20) | 146 (49.32) | 0.202 |
Irregular menstrual periods among females | 43 (67.19) | 76 (50.33) | 0.0230 * |
Autoimmune Disease | Fever | Flu-like Symptoms | Musculoskeletal Pain | Nausea and Vomiting | Loss of Taste or Smell | Palpitation | Hypotension | Irregular Menstrual Periods | Headache |
---|---|---|---|---|---|---|---|---|---|
MS | 0.10545 * | 0.0515 | 0.043 | −0.035 | −0.07687 | −0.103 * | 0.012 | −0.208 * | 0.142 * |
IBD | −0.095 | −0.016 | 0.138 * | 0.063 | 0.017 | −0.186 * | −0.204 * | −0.212 * | −0.011 |
Dermatological disorders | 0.118 * | −0.028 | −0.041 | −0.031 | −0.068 | −0.028 | −0.088 | 0.059 | 0.110 * |
RA | 0.001 | 0.053 | −0.094 | 0.034 | −0.067 | 0.171 * | 0.065 | 0.279 * | −0.047 |
Asthma | −0.004 | −0.018 | −0.050 | −0.020 | 0.194 * | 0.079 | 0.080 | −0.023 | −0.128 * |
Dyslipidemia | −0.005 | −0.020 | −0.056 | −0.023 | −0.050 | 0.055 | 0.293 * | −0.107 | −0.019 |
Fever | ||||
---|---|---|---|---|
Variable | Odds Ratio (OR) | 95% Confidence Interval (CI) | p-Value | |
Pfizer–BioNTech vs. Oxford–AstraZeneca | 1.634 | 0.985 | 2.710 | 0.0575 |
Age | 1.003 | 0.989 | 1.018 | 0.658 |
Male vs. Female | 0.903 | 0.615 | 1.326 | 0.6016 |
Second dose vs. First dose | 1.318 | 0.862 | 2.017 | 0.2030 |
Headache | ||||
Variable | Odds Ratio (OR) | 95% Confidence Interval (CI) | p-Value | |
Pfizer–BioNTech vs. Oxford–AstraZeneca | 1.173 | 0.680 | 2.025 | 0.5665 |
Age | 1.003 | 0.988 | 1.018 | 0.7421 |
Male vs. Female | 1.049 | 0.695 | 1.583 | 0.8193 |
Second dose vs. First dose | 0.724 | 0.454 | 1.155 | 0.1750 |
Palpitation | ||||
Variable | Odds Ratio (OR) | 95% Confidence Interval (CI) | p-Value | |
Pfizer–BioNTech vs. Oxford–AstraZeneca | 2.735 | 0.818 | 9.140 | 0.1021 |
Age | 1.033 | 1.009 | 1.058 | 0.0063 * |
Male vs. Female | 0.254 | 0.114 | 0.569 | 0.0009 * |
Second dose vs. First dose | 1.143 | 0.557 | 2.347 | 0.7152 |
Hypotension | ||||
Variable | Odds Ratio (OR) | 95% Confidence Interval (CI) | p-Value | |
Pfizer–BioNTech vs. Oxford–AstraZeneca | 2.015 | 0.831 | 4.887 | 0.1209 |
Age | 1.023 | 1.003 | 1.044 | 0.0226 * |
Male vs. Female | 0.808 | 0.460 | 1.418 | 0.4569 |
Second dose vs. First dose | 1.386 | 0.768 | 2.502 | 0.2783 |
Diarrhea | ||||
Variable | Odds Ratio (OR) | 95% Confidence Interval (CI) | p-Value | |
Pfizer–BioNTech vs. Oxford–AstraZeneca | 1.596 | 0.604 | 4.220 | 0.3460 |
Age | 1.034 | 1.011 | 1.058 | 0.0043 * |
Male vs. Female | 0.321 | 0.153 | 0.676 | 0.0028 * |
Second dose vs. First dose | 0.921 | 0.444 | 1.908 | 0.8241 |
Loss of smell or taste | ||||
Variable | Odds Ratio (OR) | 95% Confidence Interval (CI) | p-Value | |
Pfizer–BioNTech vs. Oxford–AstraZeneca | 4.841 | 0.641 | 36.561 | 0.1263 |
Age | 0.986 | 0.953 | 1.019 | 0.3959 |
Male vs. Female | 1.574 | 0.658 | 3.767 | 0.3080 |
Second dose vs. First dose | 1.749 | 0.727 | 4.207 | 0.2117 |
Musculoskeletal pain | ||||
Variable | Odds Ratio (OR) | 95% Confidence Interval (CI) | p-Value | |
Pfizer–BioNTech vs. Oxford–AstraZeneca | 1.009 | 1.009 | 2.747 | 0.9854 |
Age | 0.982 | 0.952 | 1.012 | 0.2380 |
Male vs. Female | 0.917 | 0.425 | 1.978 | 0.8254 |
Second dose vs. First dose | 1.172 | 0.514 | 2.668 | 0.7061 |
Irregular menstrual periods among females | ||||
Variable | Odds Ratio (OR) | 95% Confidence Interval (CI) | p-Value | |
Pfizer–BioNTech vs. Oxford–AstraZeneca | 0.718 | 0.320 | 1.612 | 0.4223 |
Age | 0.923 | 0.900 | 0.947 | <0.0001 * |
Second dose vs. First dose | 0.495 | 0.268 | 0.912 | 0.0242 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlMutairi, L.T.; Alalayet, W.Y.; Ata, S.I.; Alenzi, K.A.; AlRuthia, Y. Self-Reported COVID-19 Vaccines’ Side Effects among Patients Treated with Biological Therapies in Saudi Arabia: A Multicenter Cross-Sectional Study. Vaccines 2022, 10, 977. https://doi.org/10.3390/vaccines10060977
AlMutairi LT, Alalayet WY, Ata SI, Alenzi KA, AlRuthia Y. Self-Reported COVID-19 Vaccines’ Side Effects among Patients Treated with Biological Therapies in Saudi Arabia: A Multicenter Cross-Sectional Study. Vaccines. 2022; 10(6):977. https://doi.org/10.3390/vaccines10060977
Chicago/Turabian StyleAlMutairi, Lama T, Wesal Y Alalayet, Sondus I Ata, Khalidah A Alenzi, and Yazed AlRuthia. 2022. "Self-Reported COVID-19 Vaccines’ Side Effects among Patients Treated with Biological Therapies in Saudi Arabia: A Multicenter Cross-Sectional Study" Vaccines 10, no. 6: 977. https://doi.org/10.3390/vaccines10060977
APA StyleAlMutairi, L. T., Alalayet, W. Y., Ata, S. I., Alenzi, K. A., & AlRuthia, Y. (2022). Self-Reported COVID-19 Vaccines’ Side Effects among Patients Treated with Biological Therapies in Saudi Arabia: A Multicenter Cross-Sectional Study. Vaccines, 10(6), 977. https://doi.org/10.3390/vaccines10060977