Real-World Effectiveness of a Booster Dose of the COVID-19 Vaccines among Japanese University Students
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enrollment
2.2. Definition of a Close Contact
2.3. COVID-19 Vaccination
2.4. Statistical Analysis
3. Results
3.1. Cohort 1: Vaccine Doses and Infection Rates among Close Contacts
3.2. Cohort 2: Vaccine Doses and Symptoms among COVID-19-Infected Students
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Classification of Omicron (B.1.1.529): SARS-CoV-2 Variant of Concern. Available online: https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern (accessed on 23 December 2021).
- Feikin, D.R.; Higdon, M.M.; Abu-Raddad, L.J.; Andrews, N.; Araos, R.; Goldberg, Y.; Groome, M.J.; Huppert, A.; O’Brien, K.L.; Smith, P.G.; et al. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: Results of a systematic review and meta-regression. Lancet 2022, 399, 924–944. [Google Scholar] [CrossRef]
- Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O’Connell, A.M.; et al. COVID-19 vaccine effectiveness against the Omicron (B.1.1.529) variant. N. Engl. J. Med. 2021, 386, 1532–1546. [Google Scholar] [CrossRef] [PubMed]
- Belik, M.; Jalkanen, P.; Lundberg, R.; Reinholm, A.; Laine, L.; Väisänen, E.; Skön, M.; Tähtinen, P.A.; Ivaska, L.; Pakkanen, S.H.; et al. Comparative analysis of COVID-19 vaccine responses and third booster dose-induced neutralizing antibodies against Delta and Omicron variants. Nat. Commun. 2022, 13, 2476. [Google Scholar] [CrossRef]
- Attia, S.; Mausbach, K.; Klugar, M.; Howaldt, H.P.; Riad, A. Prevalence and drivers of COVID-19 vaccine booster hesitancy among German university students and employees. Front. Public Health 2022, 10, 846861. [Google Scholar] [CrossRef]
- Holzmann-Littig, C.; Braunisch, M.C.; Kranke, P.; Popp, M.; Seeber, C.; Fichtner, F.; Littig, B.; Carbajo-Lozoya, J.; Allwang, C.; Frank, T.; et al. COVID-19 Vaccination acceptance and hesitancy among healthcare workers in Germany. Vaccines 2021, 9, 777. [Google Scholar] [CrossRef]
- Barello, S.; Nania, T.; Dellafiore, F.; Graffigna, G.; Caruso, R. ‘Vaccine hesitancy’ among university students in Italy during the COVID-19 pandemic. Eur. J. Epidemiol 2020, 35, 781–783. [Google Scholar] [CrossRef]
- Lucia, V.C.; Kelekar, A.; Afonso, N.M. COVID-19 vaccine hesitancy among medical students. J. Public Health 2021, 43, 445–449. [Google Scholar] [CrossRef]
- Akaishi, T.; Kushimoto, S.; Katori, Y.; Kure, S.; Igarashi, K.; Takayama, S.; Abe, M.; Tanaka, J.; Kikuchi, A.; Onodera, K.; et al. COVID-19 transmission in group living environments and households. Sci. Rep. 2021, 11, 11616. [Google Scholar] [CrossRef]
- COVID-19 Vaccine Booster Shots (3rd Dose). Available online: https://www.mhlw.go.jp/stf/covid-19/booster.html (accessed on 1 May 2022).
- Bar-On, Y.M.; Goldberg, Y.; Mandel, M.; Bodenheimer, O.; Freedman, L.; Kalkstein, N.; Mizrahi, B.; Alroy-Preis, S.; Ash, N.; Milo, R.; et al. Protection of BNT162b2 vaccine booster against COVID-19 in Israel. N. Engl. J. Med. 2021, 385, 1393–1400. [Google Scholar] [CrossRef]
- Bar-On, Y.M.; Goldberg, Y.; Mandel, M.; Bodenheimer, O.; Freedman, L.; Alroy-Preis, S.; Ash, N.; Huppert, A.; Milo, R. Protection against COVID-19 by BNT162b2 booster across age groups. N. Engl. J. Med. 2021, 385, 2421–2430. [Google Scholar] [CrossRef] [PubMed]
- Barda, N.; Dagan, N.; Cohen, C.; Hernan, M.A.; Lipsitch, M.; Kohane, I.S.; Reis, B.Y.; Balicer, R.D. Effectiveness of a thrd dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israle: An observational study. Lancet 2021, 398, 2093–2100. [Google Scholar] [CrossRef]
- Ren, Z.; Nishimura, M.; Tjan, L.H.; Furukawa, K.; Kurahashi, Y.; Sutandhio, S.; Aoki, K.; Hasegawa, N.; Arii, J.; Uto, K.; et al. Large-scale serosurveillance of COVID-19 in Japan: Acquisition of neutralizing antibodies for Delta but not for Omicron and requirement of booster vaccination to overcome the Omicron’s outbreak. PLoS ONE 2022, 17, e0266270. [Google Scholar] [CrossRef] [PubMed]
- Long, B.; Carius, B.M.; Chavez, S.; Liang, S.Y.; Brady, W.J.; Koyfman, A.; Gottlieb, M. Clinical update on COVID-19 for the emergency clinician: Presentation and evaluation. Am. J. Emerg. Med. 2022, 54, 46–57. [Google Scholar] [CrossRef]
- Furukawa, K.; Tjan, L.H.; Kurahashi, Y.; Sutandhio, S.; Nishimura, M.; Arii, J.; Mori, Y. Assessment of neutralizing antibody response against SARS-CoV-2 variants after 2 to 3 doses of the BNT162b2 mRNA COVID-19 vaccine. JAMA Netw. Open 2022, 5, e2210780. [Google Scholar] [CrossRef]
- Assawakosri, S.; Kanokudom, S.; Suntronwong, N.; Auphimai, C.; Nilyanimit, P.; Vichaiwattana, P.; Thongmee, T.; Duangchinda, T.; Chantima, W.; Pakchotanon, P.; et al. Neutralizing activities against the Omicron variant after a heterologous booster in healthy adults receiving two doses of CoronaVac vaccination. J. Infect. Dis. 2022, jiac092. [Google Scholar] [CrossRef] [PubMed]
- Dror, A.A.; Eisenbach, N.; Taiber, S.; Morozov, N.G.; Mizrachi, M.; Zigron, A.; Srouji, S.; Sela, E. Vaccine hesitancy: The next challenge in the fight against COVID-19. Eur. J. Epidemiol. 2020, 35, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Willis, D.E.; Presley, J.; Williams, M.; Zaller, N.; McElfish, P.A. COVID-19 vaccine hesitancy among youth. Hum. Vaccin. Immunother. 2021, 17, 5013–5015. [Google Scholar] [CrossRef] [PubMed]
- Denford, S.; Towler, L.; Ali, B.; Treneman-Evans, G.; Bloomer, R.; Peto, T.E.; Young, B.C.; Yardley, L. Feasibility and acceptability of daily testing at school as an alternative to self-isolation following close contact with a confirmed case of COVID-19: A qualitative analysis. BMC Public Health 2022, 22, 742. [Google Scholar] [CrossRef] [PubMed]
- Lorenc, A.; Kestern, J.M.; Kidger, J.; Langford, R.; Horwood, J. Reducing COVID-19 risk in schools: A qualitative examination of secondary school staff and family views and concerns in the South West of England. BMJ Paediatr. Open 2021, 5, e0000987. [Google Scholar] [CrossRef]
- Mahase, E. COVID-19: What do we know about “long covid”? BMJ 2020, 370, m2815. [Google Scholar] [CrossRef] [PubMed]
- Walsh-Messinger, J.; Manis, H.; Vrabec, A.; Sizemore, J.; Bishof, K.; Debidda, M.; Malaspina, D.; Greenspan, N. The kids are not alright: A preliminary report of post-COVID syndrome in university students. J. Am. Coll. Health 2021, 9, 1–7. [Google Scholar] [CrossRef] [PubMed]
Univariate | Multivariate * | |||
---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | |
Three doses vs. two doses and unvaccinated | 0.40 (0.23−0.70) | 0.001 | 0.44 (0.25−0.77) | 0.004 |
Three doses vs. two doses | 0.45 (0.26−0.79) | 0.006 | 0.49 (0.27−0.88) | 0.02 |
Three doses vs. unvaccinated | 0.18 (0.06−0.52) | 0.002 | 0.18 (0.06−0.54) | 0.002 |
Univariate | Multivariate * | |||
---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | |
Fever, 37.5 °C or higher | ||||
Three doses vs. two doses and unvaccinated | 0.16 (0.09−0.29) | <0.0001 | 0.16 (0.09−0.29) | <0.0001 |
Three doses vs. two doses | 0.17 (0.09−0.32) | <0.0001 | 0.17 (0.09−0.32) | <0.0001 |
Three doses vs. unvaccinated | 0.09 (0.03−0.26) | <0.0001 | 0.08 (0.03−0.25) | <0.0001 |
Fever, 38.5 °C or higher | ||||
Three doses vs. two doses and unvaccinated | 0.23 (0.11−0.47) | <0.0001 | 0.20 (0.10−0.43) | <0.0001 |
Three doses vs. two doses | 0.28 (0.13−0.58) | 0.0007 | 0.25 (0.12−0.53) | 0.0004 |
Three doses vs. unvaccinated | 0.06 (0.02−0.18) | <0.0001 | 0.06 (0.02−0.17) | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyauchi, S.; Hiyama, T.; Nakano, Y.; Yoshida, M.; Yoshino, A.; Miyake, Y.; Okamoto, Y. Real-World Effectiveness of a Booster Dose of the COVID-19 Vaccines among Japanese University Students. Vaccines 2022, 10, 1283. https://doi.org/10.3390/vaccines10081283
Miyauchi S, Hiyama T, Nakano Y, Yoshida M, Yoshino A, Miyake Y, Okamoto Y. Real-World Effectiveness of a Booster Dose of the COVID-19 Vaccines among Japanese University Students. Vaccines. 2022; 10(8):1283. https://doi.org/10.3390/vaccines10081283
Chicago/Turabian StyleMiyauchi, Shunsuke, Toru Hiyama, Yukiko Nakano, Mahoko Yoshida, Atsuo Yoshino, Yoshie Miyake, and Yuri Okamoto. 2022. "Real-World Effectiveness of a Booster Dose of the COVID-19 Vaccines among Japanese University Students" Vaccines 10, no. 8: 1283. https://doi.org/10.3390/vaccines10081283
APA StyleMiyauchi, S., Hiyama, T., Nakano, Y., Yoshida, M., Yoshino, A., Miyake, Y., & Okamoto, Y. (2022). Real-World Effectiveness of a Booster Dose of the COVID-19 Vaccines among Japanese University Students. Vaccines, 10(8), 1283. https://doi.org/10.3390/vaccines10081283