Serosurveillance for Measles and Rubella
Abstract
:1. Introduction
1.1. Measles and Rubella: Epidemiology, Disease Burden, and Elimination Efforts
1.2. Antibody Response and Immune Memory to Measles and Rubella
1.3. Serosurveillance
2. Literature Review of Measles and Rubella Serosurveys (January 2014–January 2024)
2.1. Measles and Rubella Serosurvey Study Selection and Characteristics
2.2. Serosurvey Methodology
2.3. Serosurvey Demographics
2.4. Overall Seroprevalence and Antibody Titers
2.5. Age and Seroprevalence
2.6. Seroprevalence and Vaccination
3. Discussion
Future Considerations for Measles and Rubella Serosurveillance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hubschen, J.M.; Gouandjika-Vasilache, I.; Dina, J. Measles. Lancet 2022, 399, 678–690. [Google Scholar] [CrossRef] [PubMed]
- Winter, A.K.; Moss, W.J. Rubella. Lancet 2022, 399, 1336–1346. [Google Scholar] [CrossRef] [PubMed]
- Griffin, D.E. Measles Vaccine. Viral Immunol. 2018, 31, 86–95. [Google Scholar] [CrossRef]
- Lambert, N.; Strebel, P.; Orenstein, W.; Icenogle, J.; Poland, G.A. Rubella. Lancet 2015, 385, 2297–2307. [Google Scholar] [CrossRef]
- WHO. Rubella vaccines: WHO position paper—July 2020. Wkly. Epidemiol. Rec. 2020, 95, 306–324. [Google Scholar]
- Gastanaduy, P.A.; Goodson, J.L.; Panagiotakopoulos, L.; Rota, P.A.; Orenstein, W.A.; Patel, M. Measles in the 21st Century: Progress Toward Achieving and Sustaining Elimination. J. Infect. Dis. 2021, 224 (Suppl. 2), S420–S428. [Google Scholar] [CrossRef] [PubMed]
- Minta, A.A.; Ferrari, M.; Antoni, S.; Portnoy, A.; Sbarra, A.; Lambert, B.; Hatcher, C.; Hsu, C.H.; Ho, L.L.; Steulet, C.; et al. Progress Toward Measles Elimination—Worldwide, 2000–2022. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- Ou, A.C.; Zimmerman, L.A.; Alexander, J.P., Jr.; Crowcroft, N.S.; O’Connor, P.M.; Knapp, J.K. Progress Toward Rubella and Congenital Rubella Syndrome Elimination—Worldwide, 2012–2022. MMWR Morb. Mortal. Wkly. Rep. 2024, 73, 162–167. [Google Scholar] [CrossRef]
- Vynnycky, E.; Knapp, J.K.; Papadopoulos, T.; Cutts, F.T.; Hachiya, M.; Miyano, S.; Reef, S.E. Estimates of the global burden of Congenital Rubella Syndrome, 1996–2019. Int. J. Infect. Dis. 2023, 137, 149–156. [Google Scholar] [CrossRef]
- Reef, S.E.; Icenogle, J.P.; Plotkin, S.A. The path to eradication of rubella. Vaccine 2023, 41, 7525–7531. [Google Scholar] [CrossRef]
- Otani, N.; Shima, M.; Ueda, T.; Nakajima, K.; Takesue, Y.; Yamamoto, T.; Okuno, T. Changes in the Epidemiology of Rubella: The Influence of Vaccine-Introducing Methods and COVID-19. Vaccines 2023, 11, 1358. [Google Scholar] [CrossRef]
- WHO. Global Measles and Rubella Strategic Plan: 2012–2020. Available online: http://apps.who.int/iris/bitstream/10665/44855/1/9789241503396_eng.pdf (accessed on 5 January 2024).
- Orenstein, W.A.; Cairns, L.; Hinman, A.; Nkowane, B.; Olive, J.M.; Reingold, A.L. Measles and Rubella Global Strategic Plan 2012-2020 midterm review report: Background and summary. Vaccine 2018, 36 (Suppl. 1), A35–A42. [Google Scholar] [CrossRef]
- MacDonald, N.; Mohsni, E.; Al-Mazrou, Y.; Kim Andrus, J.; Arora, N.; Elden, S.; Madrid, M.Y.; Martin, R.; Mahmoud Mustafa, A.; Rees, H.; et al. Global vaccine action plan lessons learned I: Recommendations for the next decade. Vaccine 2020, 38, 5364–5371. [Google Scholar] [CrossRef]
- WHO. National Immunization Coverage Scorecards Estimates for 2019. Available online: https://iris.who.int/bitstream/handle/10665/337665/9789240014398-eng.pdf (accessed on 5 January 2024).
- Guglielmi, G. Pandemic drives largest drop in childhood vaccinations in 30 years. Nature 2022, 608, 253. [Google Scholar] [CrossRef]
- WHO. Global Progress against Measles Threatened Amidst COVID-19 Pandemic. 2021. Available online: https://www.who.int/news/item/10-11-2021-global-progress-against-measles-threatened-amidst-covid-19-pandemic (accessed on 5 January 2024).
- WHO. Measles and Rubella Strategic Framework: 2021–2030. Available online: https://iris.who.int/bitstream/handle/10665/339801/9789240015616-eng.pdf?sequence=1 (accessed on 5 January 2024).
- WHO. Immunization Agenda 2030 (IA2030); WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Lindstrand, A.; Cherian, T.; Chang-Blanc, D.; Feikin, D.; O’Brien, K.L. The World of Immunization: Achievements, Challenges, and Strategic Vision for the Next Decade. J. Infect. Dis. 2021, 224 (Suppl. 2), S452–S467. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Genetic diversity of wild-type measles viruses and the global measles nucleotide surveillance database (MeaNS). Wkly. Epidemiol. Rec. 2015, 90, 373–380. [Google Scholar]
- World Health Organization. Standardization of the nomenclature for genetic characteristics of wild-type rubella viruses. Wkly. Epidemiol. Rec. 2005, 80, 126–132. [Google Scholar]
- Arnold, B.F.; Scobie, H.M.; Priest, J.W.; Lammie, P.J. Integrated serologic surveillance of population immunity and disease transmission. Emerg. Infect. Dis. 2018, 24, 1188–1194. [Google Scholar] [CrossRef]
- El Mubarak, H.S.; Ibrahim, S.A.; Vos, H.W.; Mukhtar, M.M.; Mustafa, O.A.; Wild, T.F.; Osterhaus, A.D.; de Swart, R.L. Measles virus protein-specific IgM, IgA, and IgG subclass responses during the acute and convalescent phase of infection. J. Med. Virol. 2004, 72, 290–298. [Google Scholar] [CrossRef]
- Dimech, W.; Grangeot-Keros, L.; Vauloup-Fellous, C. Standardization of Assays That Detect Anti-Rubella Virus IgG Antibodies. Clin. Microbiol. Rev. 2016, 29, 163–174. [Google Scholar] [CrossRef]
- den Hartog, G.; van Binnendijk, R.; Buisman, A.M.; Berbers, G.A.M.; van der Klis, F.R.M. Immune surveillance for vaccine-preventable diseases. Expert. Rev. Vaccines 2020, 19, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Young, M.K. The indications and safety of polyvalent immunoglobulin for post-exposure prophylaxis of hepatitis A, rubella and measles. Hum. Vaccin. Immunother. 2019, 15, 2060–2065. [Google Scholar] [CrossRef]
- Maldonado, Y.A.; Lawrence, E.C.; DeHovitz, R.; Hartzell, H.; Albrecht, P. Early loss of passive measles antibody in infants of mothers with vaccine-induced immunity. Pediatrics 1995, 96, 447–450. [Google Scholar] [PubMed]
- Leuridan, E.; Van Damme, P. Passive transmission and persistence of naturally acquired or vaccine-induced maternal antibodies against measles in newborns. Vaccine 2007, 25, 6296–6304. [Google Scholar] [CrossRef] [PubMed]
- Waaijenborg, S.; Hahne, S.J.; Mollema, L.; Smits, G.P.; Berbers, G.A.; van der Klis, F.R.; de Melker, H.E.; Wallinga, J. Waning of maternal antibodies against measles, mumps, rubella, and varicella in communities with contrasting vaccination coverage. J. Infect. Dis. 2013, 208, 10–16. [Google Scholar] [CrossRef]
- Caceres, V.M.; Strebel, P.M.; Sutter, R.W. Factors determining prevalence of maternal antibody to measles virus throughout infancy: A review. Clin. Infect. Dis. 2000, 31, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Kilic, A.; Altinkaynak, S.; Ertekin, V.; Inandi, T. The duration of maternal measles antibodies in children. J. Trop. Pediatr. 2003, 49, 302–305. [Google Scholar] [CrossRef]
- Oyedele, O.O.; Odemuyiwa, S.O.; Ammerlaan, W.; Muller, C.P.; Adu, F.D. Passive immunity to measles in the breastmilk and cord blood of some nigerian subjects. J. Trop. Pediatr. 2005, 51, 45–48. [Google Scholar] [CrossRef]
- Shilpi, T.; Sattar, H.; Miah, M.R. Determining infants’ age for measles vaccination based on persistence of protective level of maternal measles antibody. Bangladesh Med. Res. Counc. Bull. 2009, 35, 101–104. [Google Scholar] [CrossRef]
- Devecioglu, E.; Gokcay, G.; Boran, P.; Eren, T.; Yilmaz, G.; Badur, S. Prevalence of maternal measles, rubella, mumps and varicella antibodies in the first six months of life. Mikrobiyoloji Bul. 2018, 52, 324–327. [Google Scholar] [CrossRef]
- Leuridan, E.; Sabbe, M.; Van Damme, P. Measles outbreak in Europe: Susceptibility of infants too young to be immunized. Vaccine 2012, 30, 5905–5913. [Google Scholar] [CrossRef] [PubMed]
- Galipeau, Y.; Greig, M.; Liu, G.; Driedger, M.; Langlois, M.A. Humoral Responses and Serological Assays in SARS-CoV-2 Infections. Front. Immunol. 2020, 11, 610688. [Google Scholar] [CrossRef] [PubMed]
- Cheedarla, N.; Hanna, L.E. Chapter 7—Functional and Protective Role of Neutralizing Antibodies (NAbs) against Viral Infections. In Recent Developments in Applied Microbiology and Biochemistry; Buddolla, V., Ed.; Academic Press: San Diego, CA, USA, 2019; pp. 83–93. [Google Scholar] [CrossRef]
- Bolotin, S.; Hughes, S.L.; Gul, N.; Khan, S.; Rota, P.A.; Severini, A.; Hahne, S.; Tricco, A.; Moss, W.J.; Orenstein, W.; et al. What Is the Evidence to Support a Correlate of Protection for Measles? A Systematic Review. J. Infect. Dis. 2020, 221, 1576–1583. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, S.A. Correlates of protection induced by vaccination. Clin. Vaccine Immunol. 2010, 17, 1055–1065. [Google Scholar] [CrossRef] [PubMed]
- Griffin, D.E. The Immune Response in Measles: Virus Control, Clearance and Protective Immunity. Viruses 2016, 8, 282. [Google Scholar] [CrossRef]
- Haralambieva, I.H.; Kennedy, R.B.; Ovsyannikova, I.G.; Schaid, D.J.; Poland, G.A. Current perspectives in assessing humoral immunity after measles vaccination. Expert. Rev. Vaccines 2019, 18, 75–87. [Google Scholar] [CrossRef] [PubMed]
- de Vries, R.D.; de Swart, R.L. Evaluating measles vaccines: Can we assess cellular immunity? Expert Rev. Vaccines 2012, 11, 779–782. [Google Scholar] [CrossRef] [PubMed]
- Tosh, P.K.; Kennedy, R.B.; Vierkant, R.A.; Jacobson, R.M.; Poland, G.A. Correlation between rubella antibody levels and cytokine measures of cell-mediated immunity. Viral Immunol. 2009, 22, 451–456. [Google Scholar] [CrossRef]
- Cutts, F.T.; Hanson, M. Seroepidemiology: An underused tool for designing and monitoring vaccination programmes in low- and middle-income countries. Trop. Med. Int. Health 2016, 21, 1086–1098. [Google Scholar] [CrossRef]
- Patel, M.K.; Goodson, J.L.; Alexander, J.P., Jr.; Kretsinger, K.; Sodha, S.V.; Steulet, C.; Gacic-Dobo, M.; Rota, P.A.; McFarland, J.; Menning, L.; et al. Progress Toward Regional Measles Elimination—Worldwide, 2000–2019. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1700–1705. [Google Scholar] [CrossRef]
- Shanmugasundaram, D.; Awasthi, S.; Dwibedi, B.; Geetha, S.; Jain, M.; Malik, S.; Patel, B.; Singh, H.; Tripathi, S.; Viswanathan, R.; et al. Burden of congenital rubella syndrome (CRS) in India based on data from cross-sectional serosurveys, 2017 and 2019-20. PLoS Negl. Trop. Dis. 2021, 15, e0009608. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Immunological Basis for Immunization Series, Module 7: Measles Update 2020. Available online: https://iris.who.int/bitstream/handle/10665/331533/9789241516655-eng.pdf?sequence=1 (accessed on 5 January 2024).
- Bouthry, E.; Furione, M.; Huzly, D.; Ogee-Nwankwo, A.; Hao, L.; Adebayo, A.; Icenogle, J.; Sarasini, A.; Revello, M.G.; Grangeot-Keros, L.; et al. Assessing Immunity to Rubella Virus: A Plea for Standardization of IgG (Immuno)assays. J. Clin. Microbiol. 2016, 54, 1720–1725. [Google Scholar] [CrossRef] [PubMed]
- Dimech, W.; Panagiotopoulos, L.; Francis, B.; Laven, N.; Marler, J.; Dickeson, D.; Panayotou, T.; Wilson, K.; Wootten, R.; Dax, E.M. Evaluation of eight anti-rubella virus immunoglobulin g immunoassays that report results in international units per milliliter. J. Clin. Microbiol. 2008, 46, 1955–1960. [Google Scholar] [CrossRef] [PubMed]
- Dimech, W.; Arachchi, N.; Cai, J.; Sahin, T.; Wilson, K. Investigation into low-level anti-rubella virus IgG results reported by commercial immunoassays. Clin. Vaccine Immunol. 2013, 20, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Enders, M.; Bartelt, U.; Knotek, F.; Bunn, K.; Strobel, S.; Dietz, K.; Enders, G. Performance of the Elecsys Rubella IgG assay in the diagnostic laboratory setting for assessment of immune status. Clin. Vaccine Immunol. 2013, 20, 420–426. [Google Scholar] [CrossRef] [PubMed]
- WHO. Chapter 9: Manual for the Laboratory-Based Surveillance of Measles, Rubella, and Congenital Rubella Syndrome. 9 June 2018. Available online: https://www.who.int/publications/m/item/chapter-9-manual-for-the-laboratory-based-surveillance-of-measles-rubella-and-congenital-rubella-syndrome (accessed on 5 January 2024).
- Castineiras, A.C.P.; Sales, A.C.; Picone, C.M.; Diogo, C.L.; Rossi, A.D.; Galliez, R.M.; Ferreira, O.D.C., Jr.; Castineiras, T.; Lopes, M.H.; Sartori, A.M.C. The decline of measles antibody titers in previously vaccinated adults: A cross-sectional analysis. Rev. Inst. Med. Trop. Sao Paulo 2024, 66, e4. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, Y.; Zhang, X.; Zhang, X.; Du, J.; Che, X.; Gu, W.; Wang, J.; Jiang, W.; Liu, Y. Do adolescents need a rubella vaccination campaign? Rubella serosurvey among healthy children in Hangzhou, China. Hum. Vaccines Immunother. 2023, 19, 2254536. [Google Scholar] [CrossRef] [PubMed]
- Lutz, C.S.; Hasan, A.Z.; Bolotin, S.; Crowcroft, N.S.; Cutts, F.T.; Joh, E.; Loisate, S.; Moss, W.J.; Osman, S.; Hayford, K. Comparison of measles IgG enzyme immunoassays (EIA) versus plaque reduction neutralization test (PRNT) for measuring measles serostatus: A systematic review of head-to-head analyses of measles IgG EIA and PRNT. BMC Infect. Dis. 2023, 23, 367. [Google Scholar] [CrossRef] [PubMed]
- Cohen, B.J.; Doblas, D.; Andrews, N. Comparison of plaque reduction neutralisation test (PRNT) and measles virus-specific IgG ELISA for assessing immunogenicity of measles vaccination. Vaccine 2008, 26, 6392–6397. [Google Scholar] [CrossRef]
- Tischer, A.; Gassner, M.; Richard, J.L.; Suter-Riniker, F.; Mankertz, A.; Heininger, U. Vaccinated students with negative enzyme immunoassay results show positive measles virus-specific antibody levels by immunofluorescence and plaque neutralisation tests. J. Clin. Virol. 2007, 38, 204–209. [Google Scholar] [CrossRef]
- Ratnam, S.; Gadag, V.; West, R.; Burris, J.; Oates, E.; Stead, F.; Bouilianne, N. Comparison of commercial enzyme immunoassay kits with plaque reduction neutralization test for detection of measles virus antibody. J. Clin. Microbiol. 1995, 33, 811–815. [Google Scholar] [CrossRef] [PubMed]
- Lambert, N.D.; Pankratz, V.S.; Larrabee, B.R.; Ogee-Nwankwo, A.; Chen, M.H.; Icenogle, J.P.; Poland, G.A. High-throughput assay optimization and statistical interpolation of rubella-specific neutralizing antibody titers. Clin. Vaccine Immunol. 2014, 21, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Reslova, N.; Michna, V.; Kasny, M.; Mikel, P.; Kralik, P. xMAP Technology: Applications in Detection of Pathogens. Front. Microbiol. 2017, 8, 55. [Google Scholar] [CrossRef]
- Chan, Y.; Fornace, K.; Wu, L.; Arnold, B.F.; Priest, J.W.; Martin, D.L.; Chang, M.A.; Cook, J.; Stresman, G.; Drakeley, C. Determining seropositivity-A review of approaches to define population seroprevalence when using multiplex bead assays to assess burden of tropical diseases. PLoS Negl. Trop. Dis. 2021, 15, e0009457. [Google Scholar] [CrossRef]
- Smits, G.P.; van Gageldonk, P.G.; Schouls, L.M.; van der Klis, F.R.; Berbers, G.A. Development of a bead-based multiplex immunoassay for simultaneous quantitative detection of IgG serum antibodies against measles, mumps, rubella, and varicella-zoster virus. Clin. Vaccine Immunol. 2012, 19, 396–400. [Google Scholar] [CrossRef]
- Coughlin, M.M.; Matson, Z.; Sowers, S.B.; Priest, J.W.; Smits, G.P.; van der Klis, F.R.M.; Mitchell, A.; Hickman, C.J.; Scobie, H.M.; Goodson, J.L.; et al. Development of a Measles and Rubella Multiplex Bead Serological Assay for Assessing Population Immunity. J. Clin. Microbiol. 2021, 59, e02716-20. [Google Scholar] [CrossRef] [PubMed]
- Dimech, W.; Mulders, M.N. A 16-year review of seroprevalence studies on measles and rubella. Vaccine 2016, 34, 4110–4118. [Google Scholar] [CrossRef]
- Viswanathan, R.; George, S.; Murhekar, M.V.; Abraham, A.M.; Singh, M.P.; Jadhav, S.M.; Nag, V.; Naik, S.; Raut, C.; Munivenkatappa, A.; et al. Comparison of two commercial ELISA kits for detection of rubella specific IgM in suspected congenital rubella syndrome cases and rubella IgG antibodies in a serosurvey of pregnant women. Diagn. Microbiol. Infect. Dis. 2019, 94, 243–247. [Google Scholar] [CrossRef]
- Ng, Y.; Chua, L.A.V.; Cui, L.; Ang, L.W.; Tee, N.W.S.; Lin, R.T.P.; Ma, S.; Lee, V.J.M. Seroprevalence of vaccine-preventable diseases among children and adolescents in Singapore: Results from the National Paediatric Seroprevalence Survey 2018. Int. J. Infect. Dis. 2020, 92, 234–240. [Google Scholar] [CrossRef]
- Cho, H.K.; Lee, H.; Kim, H.W.; Kim, S.S.; Kang, H.J.; Kim, I.T.; Kim, K.H. Seroprevalences of Specific IgG Antibodies to Measles, Mumps, and Rubella in Korean Infants. J. Korean Med. Sci. 2016, 31, 1957–1962. [Google Scholar] [CrossRef]
- Muthiah, N.; Galagoda, G.; Handunnetti, S.; Peiris, S.; Pathirana, S. Dynamics of maternally transferred antibodies against measles, mumps, and rubella in infants in Sri Lanka. Int. J. Infect. Dis. 2021, 107, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Khampanisong, P.; Pauly, M.; Nouanthong, P.; Vickers, M.A.; Virachith, S.; Xaydalasouk, K.; Black, A.P.; Muller, C.P.; Hubschen, J.M. Waning of maternal antibodies against measles suggests a large window of susceptibility in infants in lao people’s Democratic republic. Pathogens 2021, 10, 1316. [Google Scholar] [CrossRef] [PubMed]
- Gioula, G.; Exindari, M.; Melidou, A.; Minti, F.; Sidiropoulou, E.; Dionisopoulou, S.; Kiriazi, M.; Tsintarakis, E.; Malisiovas, N. Seroprevalence of measles in Northern Greece. Acta Microbiol. Hell. 2017, 62, 145–150. [Google Scholar]
- Bassal, R.; Shohat, T.; Levin, T.; Pando, R.; Shinar, E.; Amichay, D.; Barak, M.; Ben-Dor, A.; Bar-Haim, A.; Mendelson, E.; et al. The Concordance between Mumps and Rubella Sero-Positivity among the Israeli Population in 2015. Vaccines 2022, 10, 996. [Google Scholar] [CrossRef] [PubMed]
- Carazo, S.; Billard, M.N.; Boutin, A.; De Serres, G. Effect of age at vaccination on the measles vaccine effectiveness and immunogenicity: Systematic review and meta-analysis. BMC Infect. Dis. 2020, 20, 251. [Google Scholar] [CrossRef] [PubMed]
- Kader, C.; Kara, M.; Gocmen, A.Y.; Erbay, A.; Polat, M.F. Antibodies against vaccine preventable diseases in pregnant women measles, mumps, rubella, varicella and tetanus in Yozgat, Turkey. Konuralp Tip. Derg. 2017, 9, 29–34. [Google Scholar] [CrossRef]
- Rasheed, M.A.U.; Hickman, C.J.; McGrew, M.; Sowers, S.B.; Mercader, S.; Hopkins, A.; Grimes, V.; Yu, T.; Wrammert, J.; Mulligan, M.J.; et al. Decreased humoral immunity to mumps in young adults immunized with MMR vaccine in childhood. Proc. Natl. Acad. Sci. USA 2019, 116, 19071–19076. [Google Scholar] [CrossRef]
- Yang, X.; Tang, T.; Yang, Z.; Liu, L.; Yuan, S.; Zhang, T. Evaluation of measles vaccination coverage in Lincang City, Yunnan Province, China. Hum. Vaccines Immunother. 2021, 17, 3145–3152. [Google Scholar] [CrossRef] [PubMed]
- Freidl, G.S.; Tostmann, A.; Curvers, M.; Ruijs, W.L.M.; Smits, G.; Schepp, R.; Duizer, E.; Boland, G.; de Melker, H.; van der Klis, F.R.M.; et al. Immunity against measles, mumps, rubella, varicella, diphtheria, tetanus, polio, hepatitis A and hepatitis B among adult asylum seekers in the Netherlands, 2016. Vaccine 2018, 36, 1664–1672. [Google Scholar] [CrossRef]
- Adam, O.; Musa, A.; Kamer, A.; Sausy, A.; Tisserand, E.; Hubschen, J.M. Seroprevalence of measles, mumps, and rubella and genetic characterization of mumps virus in Khartoum, Sudan. Int. J. Infect. Dis. 2020, 91, 87–93. [Google Scholar] [CrossRef]
- Takemoto, K.; Nishimura, N.; Kozawa, K.; Hibino, H.; Kawaguchi, M.; Takeuchi, S.; Fujishiro, N.; Arai, S.; Gotoh, K.; Hosono, H.; et al. Time-Series Analysis Comparing the Prevalence of Antibodies against Nine Viral Species Found in Umbilical Cord Blood in Japan. Jpn. J. Infect. Dis. 2016, 69, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Vos, R.A.; Mollema, L.; van Binnendijk, R.; Veldhuijzen, I.K.; Smits, G.; Janga-Jansen, A.V.A.; Baboe-Kalpoe, S.; Hulshof, K.; van der Klis, F.R.M.; Melker, H.E. Seroepidemiology of Measles, Mumps and Rubella on Bonaire, St. Eustatius and Saba: The First Population-Based Serosurveillance Study in Caribbean Netherlands. Vaccines 2019, 7, 137. [Google Scholar] [CrossRef] [PubMed]
- Okada, H.; Sato, T.A.; Katayama, A.; Higuchi, K.; Shichijo, K.; Tsuchiya, T.; Takayama, N.; Takeuchi, Y.; Abe, T.; Okabe, N.; et al. Comparative analysis of host responses related to immunosuppression between measles patients and vaccine recipients with live attenuated measles vaccines. Arch. Virol. 2001, 146, 859–874. [Google Scholar] [CrossRef] [PubMed]
- Gadallah, M.; El Sayed, N.; Kandeel, A.; Moussa, I.; Mohsen, A.; Dewedar, S. Seroprevalence of rubella antibodies among adult Egyptian females aged 20–30 years. Is there a need for rubella vaccination? Cent. Eur. J. Public Health 2014, 22, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Kader, C.; Erbay, A.; Akca, N.K.; Polat, M.F.; Polat, S. Immunity of nursing students to measles, mumps, rubella, and varicella in Yozgat, Turkey. Am. J. Infect. Control 2016, 44, e5–e7. [Google Scholar] [CrossRef] [PubMed]
- Zanella, B.; Boccalini, S.; Bonito, B.; Del Riccio, M.; Tiscione, E.; Bonanni, P.; Working Group DHS; Working Group AOUMeyer; Working Group AUSLTC; Bechini, A. Increasing Measles Seroprevalence in a Sample of Pediatric and Adolescent Population of Tuscany (Italy): A Vaccination Campaign Success. Vaccines 2020, 8, 512. [Google Scholar] [CrossRef] [PubMed]
- Izadi, S.; Mokhtari-Azad, T.; Zahraei, S.M. Measles vaccination coverage and seroprevalence of anti-measles antibody in south-east Islamic Republic of Iran. East. Mediterr. Health J. 2015, 21, 396–402. [Google Scholar] [CrossRef]
- Estofolete, C.F.; Milhim, B.H.G.d.A.; Franca, C.C.G.d.; Silva, G.C.D.d.; Augusto, M.T.; Terzian, A.C.B.; Zini, N.; Durigon, E.L.; Oliveira, D.B.L.; Massad, E.; et al. Prevalence of measles antibodies in Sao Jose do Rio Preto, Sao Paulo, Brazil: A serological survey model. Sci. Rep. 2020, 10, 5179. [Google Scholar] [CrossRef] [PubMed]
- Karadeniz, A.; Akduman Alasehir, E. Seroepidemiology of hepatitis viruses, measles, mumps, rubella and varicella among healthcare workers and students: Should we screen before vaccination? J. Infect. Public Health 2020, 13, 480–484. [Google Scholar] [CrossRef]
- Odemis, I.; Kose, S.; Akbulut, I.; Albayrak, H. Seroprevalence of measles, mumps, rubella, and varicella zoster virus antibodies among healthcare students: Analysis of vaccine efficacy and cost-effectiveness. Rev. Esp. Quimioter. 2019, 32, 525–531. [Google Scholar]
- Chung, H.; Cho, S.K.; Joo, J.; Kim, S.K.; Kim, E.O.; Kim, M.J.; Chong, Y.P.; Choi, S.H.; Lee, S.O.; Kim, Y.S.; et al. Causes of a Low Measles Seroprevalence among Young Healthcare Workers in Korea. Infect. Chemother. 2023, 55, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Maltezou, H.C.; Karantoni, H.; Petrikkos, P.; Georgota, P.; Katerelos, P.; Liona, A.; Tsagarakis, S.; Theodoridou, M.; Hatzigeorgiou, D. Vaccination coverage and immunity levels against vaccine-preventable diseases in male Air Force recruits in Greece. Vaccine 2020, 38, 1181–1185. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Kim, S.K.; Kwak, S.H.; Hong, M.J.; Kim, S.H. Seroprevalence of Measles in Healthcare Workers in South Korea. Infect. Chemother. 2019, 51, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Gorun, F.; Malita, D.; Ciohat, I.; Vilibic-Cavlek, T.; Feier, H.; Tabain, I.; Craina, M.; Cretu, O.; Navolan, D. Prevalence of Rubella Antibodies among Fertile Women in the West of Romania, 18 Years after the Implementation of Immunization. Vaccines 2021, 9, 104. [Google Scholar] [CrossRef] [PubMed]
- Holka, J.; Pawlak, K.; Ciepiela, O. Seroprevalence of IgG antibodies against measles in a selected Polish population—Do we need to be re-vaccinated? Cent. Eur. J. Immunol. 2019, 44, 380–383. [Google Scholar] [CrossRef] [PubMed]
- Wanlapakorn, N.; Wasitthankasem, R.; Vichaiwattana, P.; Auphimai, C.; Yoocharoen, P.; Vongpunsawad, S.; Poovorawan, Y. Antibodies against measles and rubella virus among different age groups in Thailand: A population-based serological survey. PLoS ONE 2019, 14, e0225606. [Google Scholar] [CrossRef] [PubMed]
- Plans, P.; de Ory, F.; Campins, M.; Alvarez, E.; Paya, T.; Guisasola, E.; Compte, C.; Vellbe, K.; Sanchez, C.; Lozano, M.J.; et al. Prevalence of anti-rubella, anti-measles and anti-mumps IgG antibodies in neonates and pregnant women in Catalonia (Spain) in 2013: Susceptibility to measles increased from 2003 to 2013. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.A.; Mahallawi, W.H. Rubella Humoral Immunity Among the Saudi Population of Madinah in the Western Region of Saudi Arabia. Viral Immunol. 2022, 35, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Borocz, K.; Csizmadia, Z.; Markovics, A.; Farkas, N.; Najbauer, J.; Berki, T.; Nemeth, P. Application of a fast and cost-effective ‘three-in-one’ MMR ELISA as a tool for surveying anti-MMR humoral immunity: The Hungarian experience. Epidemiol. Infect. 2020, 148, e17. [Google Scholar] [CrossRef]
- Chua, Y.X.; Ang, L.W.; Low, C.; James, L.; Cutter, J.L.; Goh, K.T. An epidemiological assessment towards elimination of rubella and congenital rubella syndrome in Singapore. Vaccine 2015, 33, 3150–3157. [Google Scholar] [CrossRef]
- Nogareda, F.; Gunregjav, N.; Sarankhuu, A.; Munkhbat, E.; Ichinnorov, E.; Nymadawa, P.; Wannemuehler, K.; Mulders, M.N.; Hagan, J.; Patel, M.K. Measles and rubella IgG seroprevalence in persons 6 month-35 years of age, Mongolia, 2016. Vaccine 2020, 38, 4200–4208. [Google Scholar] [CrossRef] [PubMed]
- Coppeta, L.; Biondi, G.; Lieto, P.; Pietroiusti, A. Evaluation of immunity to measles in a cohort of Medical Students in Rome, Italy. Vaccines 2019, 7, 214. [Google Scholar] [CrossRef] [PubMed]
- Zahraei, S.M.; Mokhtari-Azad, T.; Izadi, S.; Mohammadi, M.; Sabouri, A. Seroprevalence of anti-rubella and anti-measles antibodies in women at the verge of marriage in Iran. Vaccine 2020, 38, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Murhekar, M.V.; Gupta, N.; Hasan, A.Z.; Kumar, M.S.; Kumar, V.S.; Prosperi, C.; Sapkal, G.N.; Thangaraj, J.W.V.; Kaduskar, O.; Bhatt, V.; et al. Evaluating the effect of measles and rubella mass vaccination campaigns on seroprevalence in India: A before-and-after cross-sectional household serosurvey in four districts, 2018–2020. Lancet Glob. Health 2022, 10, e1655–e1664. [Google Scholar] [CrossRef] [PubMed]
- Hachiya, M.; Miyano, S.; Mori, Y.; Vynnycky, E.; Keungsaneth, P.; Vongphrachanh, P.; Xeuatvongsa, A.; Sisouk, T.; Som-Oulay, V.; Khamphaphongphane, B.; et al. Evaluation of nationwide supplementary immunization in Lao People’s Democratic Republic: Population-based seroprevalence survey of anti-measles and anti-rubella IgG in children and adults, mathematical modelling and a stability testing of the vaccine. PLoS ONE 2018, 13, e0194931. [Google Scholar] [CrossRef]
- Carcelen, A.C.; Mutembo, S.; Matakala, K.H.; Chilumba, I.; Mulundu, G.; Monze, M.; Mwansa, F.D.; Moss, W.J.; Hayford, K. Impact of a Measles and Rubella Vaccination Campaign on Seroprevalence in Southern Province, Zambia. Am. J. Trop. Med. Hyg. 2021, 104, 2229–2232. [Google Scholar] [CrossRef]
- Miyano, S.; Vynnycky, E.; Pattamavone, C.; Ichimura, Y.; Mori, Y.; Nouanthong, P.; Phounphenghack, K.; Tengbriacheu, C.; Khamphaphongphane, B.; Franzel, L.; et al. Comparison of population-based measles-rubella immunoglobulin G antibody prevalence between 2014 and 2019 in Lao People’s Democratic Republic: Impacts of the national immunization program. Int. J. Infect. Dis. 2023, 129, 70–77. [Google Scholar] [CrossRef]
- Ichimura, Y.; Yamauchi, M.; Yoshida, N.; Miyano, S.; Komada, K.; Thandar, M.M.; Tiwara, S.; Mita, T.; Hombhanje, F.W.; Mori, Y.; et al. Effectiveness of immunization activities on measles and rubella immunity among individuals in East Sepik, Papua New Guinea: A cross-sectional study. IJID Reg. 2022, 3, 84–88. [Google Scholar] [CrossRef]
- Hayford, K.; Mutembo, S.; Carcelen, A.; Matakala, H.K.; Munachoonga, P.; Winter, A.; Wanyiri, J.W.; Searle, K.; Mwansa, F.D.; Mwiche, A.; et al. Measles and rubella serosurvey identifies rubella immunity gap in young adults of childbearing age in Zambia: The added value of nesting a serological survey within a post-campaign coverage evaluation survey. Vaccine 2019, 37, 2387–2393. [Google Scholar] [CrossRef]
- Cohen, B.J.; Audet, S.; Andrews, N.; Beeler, J.; on behalf of the WHO Working Group on Measles Plaque Reduction Neutralization Test. Plaque reduction neutralization test for measles antibodies: Description of a standardised laboratory method for use in immunogenicity studies of aerosol vaccination. Vaccine 2007, 26, 59–66. [Google Scholar] [CrossRef]
- Anichini, G.; Gandolfo, C.; Fabrizi, S.; Miceli, G.B.; Terrosi, C.; Gori Savellini, G.; Prathyumnan, S.; Orsi, D.; Battista, G.; Cusi, M.G. Seroprevalence to Measles Virus after Vaccination or Natural Infection in an Adult Population, in Italy. Vaccines 2020, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Bolotin, S.; Osman, S.; Hughes, S.L.; Ariyarajah, A.; Tricco, A.C.; Khan, S.; Li, L.; Johnson, C.; Friedman, L.; Gul, N.; et al. In Elimination Settings, Measles Antibodies Wane After Vaccination but Not After Infection: A Systematic Review and Meta-Analysis. J. Infect. Dis. 2022, 226, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- van Gageldonk, P.G.; van Schaijk, F.G.; van der Klis, F.R.; Berbers, G.A. Development and validation of a multiplex immunoassay for the simultaneous determination of serum antibodies to Bordetella pertussis, diphtheria and tetanus. J. Immunol. Methods 2008, 335, 79–89. [Google Scholar] [CrossRef]
- Arnold, B.F.; Martin, D.L.; Juma, J.; Mkocha, H.; Ochieng, J.B.; Cooley, G.M.; Omore, R.; Goodhew, E.B.; Morris, J.F.; Costantini, V.; et al. Enteropathogen antibody dynamics and force of infection among children in low-resource settings. eLife 2019, 8, e45594. [Google Scholar] [CrossRef] [PubMed]
- Crooke, S.N.; (Centers for Disease Control and Prevention, Atlanta, GA, USA). Personal communication, 2024.
- Pan American Health Organization. Multiplex Bead Assay for Integrated Serological Surveillance of Communicable Diseases in the Region of the Americas. Report of the Third Regional Meeting (Cuernavaca, 4–5 March 2020); Pan American Health Organization: Washington, DC, USA, 2020. [Google Scholar]
- Dimech, W.; Mulders, M.N. A review of testing used in seroprevalence studies on measles and rubella. Vaccine 2016, 34, 4119–4122. [Google Scholar] [CrossRef]
Region | Measles | Rubella |
---|---|---|
AFR | 92.5% | 78.9% |
AMR | 89.3% | 94% |
EMR | 93.5% | 89.7% |
EUR | 88% | 92.9% |
SEAR | 91% | 86.2% |
WPR | 91.5% | 86% |
Region | Measles | Rubella |
---|---|---|
AFR | 92.5% | 82.6% |
AMR | 86.8% | 94% |
EMR | 93.5% | 89.7% |
EUR | 88.3% | 92.8% |
SEAR | 91% | 87.1% |
WPR | 91.1% | 84% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brady, A.M.; El-Badry, E.; Padron-Regalado, E.; Escudero González, N.A.; Joo, D.L.; Rota, P.A.; Crooke, S.N. Serosurveillance for Measles and Rubella. Vaccines 2024, 12, 816. https://doi.org/10.3390/vaccines12070816
Brady AM, El-Badry E, Padron-Regalado E, Escudero González NA, Joo DL, Rota PA, Crooke SN. Serosurveillance for Measles and Rubella. Vaccines. 2024; 12(7):816. https://doi.org/10.3390/vaccines12070816
Chicago/Turabian StyleBrady, Allison M., Elina El-Badry, Eriko Padron-Regalado, Nicole A. Escudero González, Daniel L. Joo, Paul A. Rota, and Stephen N. Crooke. 2024. "Serosurveillance for Measles and Rubella" Vaccines 12, no. 7: 816. https://doi.org/10.3390/vaccines12070816
APA StyleBrady, A. M., El-Badry, E., Padron-Regalado, E., Escudero González, N. A., Joo, D. L., Rota, P. A., & Crooke, S. N. (2024). Serosurveillance for Measles and Rubella. Vaccines, 12(7), 816. https://doi.org/10.3390/vaccines12070816