Strategic and Technical Considerations in Manufacturing Viral Vector Vaccines for the Biomedical Advanced Research and Development Authority Threats
Abstract
:1. Introduction
2. BARDA’s Portfolio of Viral Vector Vaccines
2.1. Filovirus Viral Vector Vaccines
2.2. Project NextGen and COVID-19 Viral Vector Vaccines
3. Challenges with Viral Vector Vaccine Manufacturing
3.1. Analytical Testing and Product Quality
3.2. Strategies to Optimize and Maintain a Portfolio of Viral Vector Vaccines
4. Limited Available U.S. CMOs with Capability for Live Virus or Viral Vector Manufacturing and Fill Finish
5. Biopharmaceutical Manufacturing Preparedness (BioMaP)
6. Discussion and Future Directions
- Investments in higher-quality production of viral vector vaccines, reproducibility and scalability, maximizing facility output, and increasing overall process efficiency thereby enabling faster time from sequence to available doses and more doses per batch are important strategic drivers to improve preparedness and reduce the cost of goods;
- Collective sustainment of the manufacturing of a specific viral vector platform (or several different platforms if pre-existing vector immunity is a concern) across multiple different vaccine candidates; for example, sustaining VSV vector capacity collectively through filovirus vaccines and other high-consequence threats, like Lassa or Nipah viruses;
- Collective sustainment of the manufacturing for a specific manufacturing platform or cell line that is used across multiple types of viral vector or other vaccines; e.g., Vero cells are used for VSV vector vaccines and the FDA approved Chikungunya virus vaccine, Ixchiq [66];
- Collective sustainment of general BSL-2 manufacturing and fill/finish capacity across multiple viral vector vaccines for infectious diseases, with the potential to leverage other therapeutic areas (e.g., cancer vaccines and gene therapies);
- Reserving a fill line with a CMO with the experience and facilities necessary for live virus manufacturing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- BARDA. Available online: https://medicalcountermeasures.gov/barda/cbrn/vaccines (accessed on 10 December 2024).
- US Department of Health and Human Services. Available online: https://www.hhs.gov/immunization/basics/types/index.html (accessed on 25 April 2024).
- Robert-Guroff, M. Replicating and non-replicating viral vectors for vaccine development. Curr. Opin. Biotechnol. 2007, 18, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Travieso, T.; Li, J.; Mahesh, S.; Mello, J.D.F.R.E.; Blasi, M. The use of viral vectors in vaccine development. NPJ Vaccines 2022, 7, 75. [Google Scholar] [CrossRef] [PubMed]
- Coller, B.G.; Blue, J.; Das, R.; Dubey, S.; Finelli, L.; Gupta, S.; Helmond, F.; Grant-Klein, R.J.; Liu, K.; Simon, J.; et al. Clinical development of a recombinant Ebola vaccine in the midst of an unprecedented epidemic. Vaccine 2017, 35 Pt A, 4465–4469. [Google Scholar] [CrossRef]
- Hofmeyer, K.A.; Bianchi, K.M.; Wolfe, D.N. Utilization of Viral Vector Vaccines in Preparing for Future Pandemics. Vaccines 2022, 10, 436. [Google Scholar] [CrossRef]
- BARDA Target Product Profiles (TPPs). Available online: https://medicalcountermeasures.gov/barda/tpp (accessed on 11 December 2024).
- Sasso, E.; D’Alise, A.M.; Zambrano, N.; Scarselli, E.; Folgori, A.; Nicosia, A. New viral vectors for infectious diseases and cancer. Semin. Immunol. 2020, 50, 101430. [Google Scholar] [CrossRef]
- Clarke, D.K.; Cooper, D.; Egan, M.A.; Hendry, R.M.; Parks, C.L.; Udem, S.A. Recombinant vesicular stomatitis virus as an HIV-1 vaccine vector. Springer Semin. Immunopathol. 2006, 28, 239–253. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT06265012 (accessed on 12 December 2024).
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT05724472 (accessed on 12 December 2024).
- Patterson, L.J.; Peng, B.; Nan, X.; Robert-Guroff, M. Live Adenovirus Recombinants as Vaccine Vectors. In New Generation Vaccines, 3rd ed.; Levin, M., Dougan, G., Kaper, J., Good, M., Liu, M., Nabel, G., Rappuoli, R., Nataro, J., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 325–335. [Google Scholar]
- Bliss, C.M.; Hulin-Curtis, S.L.; Williams, M.; Marušková, M.; Davies, J.A.; Statkute, E.; Baker, A.T.; Stack, L.; Kerstetter, L.; Kerr-Jones, L.E.; et al. A pseudotyped adenovirus serotype 5 vector with serotype 49 fiber knob is an effective vector for vaccine and gene therapy applications. Mol. Ther. Methods Clin. Dev. 2024, 32, 101308. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Samal, S.K. Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines. Viruses 2016, 8, 183. [Google Scholar] [CrossRef] [PubMed]
- Biospace. Available online: www.biospace.com/press-releases/first-subject-dosed-in-initial-cohort-of-phase-2b-clinical-study-of-cyanvacs-intranasal-covid-19-vaccine-candidate (accessed on 12 December 2024).
- Pérez, P.; QMarín, M.; Lázaro-Frías, A.; Jiménez de Oya, N.; Blázquez, A.B.; Escribano-Romero, E.; SSorzano, C.Ó.; Ortego, J.; Saiz, J.C.; Esteban, M.; et al. A Vaccine Based on a Modified Vaccinia Virus Ankara Vector Expressing Zika Virus Structural Proteins Controls Zika Virus Replication in Mice. Sci Rep. 2018, 8, 17385. [Google Scholar] [CrossRef] [PubMed]
- Henao-Restrepo, A.M.; Camacho, A.; Longini, I.M.; Watson, C.H.; Edmunds, W.J.; Egger, M.; Carroll, M.W.; Dean, N.E.; Diatta, I.; Doumbia MDraguez, B.; et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: Final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet 2017, 389, 505–518. [Google Scholar] [CrossRef] [PubMed]
- ERVEBO Package Insert. Available online: https://www.fda.gov/media/133748/download (accessed on 25 April 2024).
- PREVAC Study Team; Kieh, M.; Richert, L.; Beavogui, A.H.; Grund, B.; Leigh, B.; D’Ortenzio, E.; Doumbia, S.; Lhomme, E.; Sow, S.; et al. Randomized Trial of Vaccines for Zaire Ebola Virus Disease. N. Engl. J. Med. 2022, 387, 2411–2424. [Google Scholar] [CrossRef] [PubMed]
- Parish, L.A.; Stavale, E.J.; Houchens, C.R.; Wolfe, D.N. Developing Vaccines to Improve Preparedness for Filovirus Outbreaks: The Perspective of the USA Biomedical Advanced Research and Development Authority (BARDA). Vaccines 2023, 11, 1120. [Google Scholar] [CrossRef] [PubMed]
- EMA ZABDENO. Available online: https://www.ema.europa.eu/en/documents/product-information/zabdeno-epar-product-information_en.pdf (accessed on 25 April 2024).
- Milligan, I.D.; Gibani, M.M.; Sewell, R.; Clutterbuck, E.A.; Campbell, D.; Plested, E.; Nuthall, E.; Voysey, M.; Silva-Reyes, L.; McElrath, M.J.; et al. Safety and Immunogenicity of Novel Adenovirus Type 26- and Modified Vaccinia Ankara-Vectored Ebola Vaccines: A Randomized Clinical Trial. JAMA. 2016, 315, 1610–1623. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, S.B.; Bolay, F.; Kieh, M.; Grandits, G.; Badio, M.; Ballou, R.; Eckes, R.; Feinberg, M.; Follmann, D.; Grund, B.; et al. Phase 2 Placebo-Controlled Trial of Two Vaccines to Prevent Ebola in Liberia. N. Engl. J. Med. 2017, 377, 1438–1447. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sabin Vaccine Institute Begins Phase 2 Clinical Trial for Sudan Ebolavirus Vaccine. Available online: https://www.sabin.org/resources/sabin-vaccine-institute-begins-phase-2-clinical-trial-for-sudan-ebolavirus-vaccine/ (accessed on 18 July 2024).
- Sabin Vaccine Institute Begins Phase 2 Clinical Trial for Marburg Vaccine in Uganda. Available online: https://www.sabin.org/resources/sabin-vaccine-institute-begins-phase-2-clinical-trial-for-marburg-vaccine-in-uganda/ (accessed on 7 May 2024).
- Finch, C.L.; King, T.H.; Alfson, K.J.; Albanese, K.A.; Smith, J.N.P.; Smock, P.; Jakubik, J.; Goez-Gazi, Y.; Gazi, M.; Dutton JW 3rd Clemmons, E.A.; et al. Single-Shot ChAd3-MARV Vaccine in Modified Formulation Buffer Shows 100% Protection of NHPs. Vaccines 2022, 10, 1935. [Google Scholar] [CrossRef] [PubMed]
- Janssen COVID-19 Vaccine. Available online: https://www.fda.gov/vaccines-blood-biologics/coronavirus-covid-19-cber-regulated-biologics/janssen-covid-19-vaccine (accessed on 25 April 2024).
- The Advisory Committee on Immunization Practices’ Interim Recommendation for Use of Janssen COVID-19 Vaccine—United States, February 2021. Available online: https://www.cdc.gov/mmwr/volumes/70/wr/mm7009e4.htm (accessed on 25 April 2024).
- Falsey, A.R.; Sobieszczyk, M.E.; Hirsch, I.; Sproule, S.; Robb, M.L.; Corey, L.; Neuzil, K.M.; Hahn, W.; Hunt, J.; Mulligan, M.J.; et al. Phase 3 Safety and Efficacy of AZD1222 (ChAdOx1 nCoV-19) COVID-19 Vaccine. N. Engl. J. Med. 2021, 385, 2348–2360. [Google Scholar] [CrossRef] [PubMed]
- AstraZeneca. Two Billion Doses of AstraZeneca’s COVID-19 Vaccine Supplied to Countries Across the World less than 12 Months After First Approval. Available online: https://www.astrazeneca.com/media-centre/press-releases/2021/two-billion-doses-of-astrazenecas-covid-19-vaccine-supplied-to-countries-across-the-world-less-than-12-months-after-first-approval.html (accessed on 30 September 2024).
- Vaxzevria (Previously COVID-19 Vaccine AstraZeneca). Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/vaxzevria-previously-covid-19-vaccine-astrazeneca (accessed on 22 August 2024).
- Meissner, H.C.; Kapogiannis, B.G.; Wolfe, D.N. Anticipating the Next Pandemic. N. Engl. J. Med. 2024, 391, 196–199. [Google Scholar] [CrossRef] [PubMed]
- Kirtane, A.R.; Tang, C.; Freitas, D.; Bernstock, J.D.; Traverso, G. Challenges and opportunities in the development of mucosal mRNA vaccines. Curr. Opin. Immunol. 2023, 85, 102388. [Google Scholar] [CrossRef] [PubMed]
- BARDA Awards Up to $500 Million in Project Next Gen Funding for Vaccine Clinical Trials. Available online: https://www.hhs.gov/about/news/2024/06/13/barda-awards-500-million-project-nextgen-funding-vaccine-clinical-trials.html (accessed on 22 August 2024).
- BARDA Provides $24 Million Under Project NextGen for Clinical Trial of Novel COVID-19 Vaccine Candidate That May Provide Broader, Longer Protection. Available online: https://aspr.hhs.gov/newsroom/Pages/COVIDvaccine-June2024.aspx (accessed on 22 August 2024).
- Chiuppesi, F.; Ortega-Francisco, S.; Gutierrez, M.A.; Li, J.; Ly, M.; Faircloth, K.; Mack-Onyeike, J.; La Rosa, C.; Thomas, S.; Zhou, Q.; et al. Stimulation of Potent Humoral and Cellular Immunity via Synthetic Dual-Antigen MVA-Based COVID-19 Vaccine COH04S1 in Cancer Patients Post Hematopoietic Cell Transplantation and Cellular Therapy. Vaccines 2023, 11, 1492. [Google Scholar] [CrossRef] [PubMed]
- A Vaccine Booster (GEO-CM04S1) For the Prevention of COVID-19 In Patients with Chronic Lymphocytic Leukemia. Available online: https://clinicaltrials.gov/study/NCT05672355 (accessed on 22 August 2024).
- Rauch, S.; Jasny, E.; Schmidt, K.E.; Petsch, B. New Vaccine Technologies to Combat Outbreak Situations. Front. Immunol. 2018, 9, 1963. [Google Scholar] [CrossRef] [PubMed]
- Gorman, M.J.; Heffernan, E. Viral Vector Platforms: Intersection of Facility and Program. Pharm. Eng. 2022, 42, 14–19. [Google Scholar]
- Sun, W.; Leist, S.R.; McCroskery, S.; Liu, Y.; Slamanig, S.; Oliva, J.; Amanat, F.; Schäfer, A.; Dinnon KH 3rd García-Sastre, A.; Krammer, F.; et al. Newcastle disease virus (NDV) expressing the spike protein of SARS-CoV-2 as a live virus vaccine candidate. eBioMedicine 2020, 62, 103132. [Google Scholar] [CrossRef] [PubMed]
- Charlton Hume, H.K.; Lua, L.H.L. Platform technologies for modern vaccine manufacturing. Vaccine 2017, 35 Pt A, 4480–4485. [Google Scholar] [CrossRef]
- Demirden, S.F.; Kimiz-Gebologlu, I.; Oncel, S.S. Animal Cell Lines as Expression Platforms in Viral Vaccine Production: A Post COVID-19 Perspective. ACS Omega 2024, 9, 16904–16926. [Google Scholar] [CrossRef]
- Srivastava, A.; Mallela, K.M.G.; Deorkar, N.; Brophy, G. Manufacturing Challenges and Rational Formulation Development for AAV Viral Vectors. J. Pharm. Sci. 2021, 110, 2609–2624. [Google Scholar] [CrossRef] [PubMed]
- Pettit, S.; Glover, C.; Hitchcock, T.; Legmann, R.; Shofield, M. Downstream Manufacturing of Gene Therapy Vectors. Downstream Column. Available online: https://downstreamcolumn.com/downstream-manufacturing-gene-therapy-vectors-2/ (accessed on 7 May 2024).
- Sanyal, G. Development of functionally relevant potency assays for monovalent and multivalent vaccines delivered by evolving technologies. NPJ Vaccines 2022, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Vaccine Development: Capabilities and Challenges for Addressing Infectious Diseases. Available online: https://www.gao.gov/products/gao-22-104371 (accessed on 27 June 2024).
- Fathi, A.; Dahlke, C.; Addo, M.M. Recombinant vesicular stomatitis virus vector vaccines for WHO blueprint priority pathogens. Hum. Vaccin. Immunother. 2019, 15, 2269–2285. [Google Scholar] [CrossRef] [PubMed]
- Elkashif, A.; Alhashimi, M.; Sayedahmed, E.E.; Sambhara, S.; Mittal, S.K. Adenoviral vector-based platforms for developing effective vaccines to combat respiratory viral infections. Clin. Transl. Immunol. 2021, 10, e1345. [Google Scholar] [CrossRef]
- Zak, D.E.; Andersen-Nissen, E.; Peterson, E.R.; Sato, A.; Hamilton, M.K.; Borgerding, J.; Krishnamurty, A.T.; Chang, J.T.; Adams, D.J.; Hensley, T.R.; et al. Merck Ad5/HIV induces broad innate immune activation that predicts CD8⁺ T-cell responses but is attenuated by preexisting Ad5 immunity. Proc. Natl. Acad. Sci. USA 2012, 109, E3503–E3512. [Google Scholar] [CrossRef] [PubMed]
- Altenburg, A.F.; van Trierum, S.E.; de Bruin, E.; de Meulder, D.; van de Sandt, C.E.; van der Klis, F.R.M.; Fouchier, R.A.M.; Koopmans, M.P.G.; Rimmelzwaan, G.F.; de Vries, R.D. Effects of pre-existing orthopoxvirus-specific immunity on the performance of Modified Vaccinia virus Ankara-based influenza vaccines. Sci. Rep. 2018, 8, 6474. [Google Scholar] [CrossRef]
- COVID-19 Vaccine Tracker and Landscape. Available online: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines (accessed on 10 May 2024).
- King, M.L. How manufacturing won or lost the COVID-19 vaccine race. Vaccine 2024, 42, 1004–1012. [Google Scholar] [CrossRef] [PubMed]
- Kolata, G. Gene Therapy Hits a Peculiar Roadblock: A Virus Shortage. New York Times, 27 November 2017. Available online: https://www.nytimes.com/2017/11/27/health/gene-therapy-virus-shortage.html#:~:text=And%20the%20firms%20are%20itching,viruses%2C%20there%20is%20no%20treatment (accessed on 18 July 2024).
- Ellen Lambrix and Hugo Kent-Egan. Bristows. Viral Vectors: Shortages and Innovation. Available online: https://www.bristows.com/news/viral-vectors-shortages-and-innovation (accessed on 18 July 2024).
- National Biodefense Strategy and Implementation Plan. Available online: https://www.whitehouse.gov/wp-content/uploads/2022/10/National-Biodefense-Strategy-and-Implementation-Plan-Final.pdf (accessed on 30 September 2024).
- Biopharmaceutical Manufacturing Preparedness Consortium (BioMap Consortium). Available online: https://www.biomap-consortium.org (accessed on 7 June 2024).
- BARDA Seeks Consortium Management Firm to Establish New Biopharmaceutical Manufacturing Preparedneess Consortium Aimed at Expanding Domestic Vaccine and Drug Manufacturing Capability. Available online: https://medicalcountermeasures.gov/newroom/2023/biomap (accessed on 7 June 2024).
- Barbier, A.J.; Jiang, A.Y.; Zhang, P.; Wooster, R.; Anderson, D.G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 2022, 40, 840–854. [Google Scholar] [CrossRef] [PubMed]
- Wayne, C.J.; Blakney, A.K. Self-amplifying RNA COVID-19 vaccine. Cell 2024, 187, 1822–1822.e1. [Google Scholar] [CrossRef]
- Krähling, V.; Erbar, S.; Kupke, A.; Nogueira, S.S.; Walzer, K.C.; Berger, H.; Dietzel, E.; Halwe, S.; Rohde, C.; Sauerhering, L.; et al. Self-amplifying RNA vaccine protects mice against lethal Ebola virus infection. Mol. Ther. 2023, 31, 374–386. [Google Scholar] [CrossRef]
- MRNA Based Vaccines. Available online: https://gennova.bio/gemcovac-19-2/ (accessed on 11 December 2024).
- Schmidt, C.; Schnierle, B.S. Self-Amplifying RNA Vaccine Candidates: Alternative Platforms for mRNA Vaccine Development. Pathogens 2023, 12, 138. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, S.E.; Cross, R.W.; Fenton, K.A.; Bente, D.A.; Mire, C.E.; Geisbert, T.W. Vesicular Stomatitis Virus-Based Vaccine Protects Mice against Crimean-Congo Hemorrhagic Fever. Sci. Rep. 2019, 9, 7755. [Google Scholar] [CrossRef] [PubMed]
- Marzi, A.; Feldmann, F.; Geisbert, T.W.; Feldmann, H.; Safronetz, D. Vesicular stomatitis virus-based vaccines against Lassa and Ebola viruses. Emerg. Infect. Dis. 2015, 21, 305–307. [Google Scholar] [CrossRef] [PubMed]
- Jenkin, D.; Wright, D.; Folegatti, P.M.; Platt, A.; Poulton, I.; Lawrie, A.; Tran, N.; Boyd, A.; Turner, C.; Gitonga, J.N.; et al. Safety and immunogenicity of a ChAdOx1 vaccine against Rift Valley fever in UK adults: An open-label, non-randomised, first-in-human phase 1 clinical trial. Lancet Infect. Dis. 2023, 23, 956–964. [Google Scholar] [CrossRef] [PubMed]
- IXHIQ. Available online: www.fda.gov/vaccines-blood-biologics/ixchiq (accessed on 22 August 2024).
Target | Viral Vector | Enveloped/Non-Enveloped | Genome | Payload Kilobases (kb) | Particle Size (nm) | Development Status |
---|---|---|---|---|---|---|
EBOV | VSV [9] | Enveloped | ss(-)RNA | ~6–11 kb | bullet-shaped, 65 × 180 nm | Licensed; procurement |
MARV | VSV | Phase 1 [10] | ||||
Preclinical/ | ||||||
SUDV | VSV | Phase 1 [11] | ||||
MARV | ChAd3 [12,13] | Non-enveloped | dsDNA | ~8–36 kb | 85–100 nm | Phase 2 |
SUDV | ChAd3 | Phase 2 | ||||
COVID-19 | NDV [14] | Enveloped | ss(-)RNA | ~4 kb | ~100 nm | Phase 2 |
COVID-19 | PIV5 | Enveloped | ss(-)RNA | ~10 kb | 100 to 200 nm | Phase 2b [15] |
COVID-19 | MVA [16] | Enveloped | dsDNA | ~25–30 kb | ~50 nm | Phase 2 |
Ad5 | Ad5 [12,13] | Non-enveloped | dsDNA | 8 kb (replication defective) 30 kb (helper dependent) | 85–100 nm | Phase 2b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parish, L.A.; Rele, S.; Hofmeyer, K.A.; Luck, B.B.; Wolfe, D.N. Strategic and Technical Considerations in Manufacturing Viral Vector Vaccines for the Biomedical Advanced Research and Development Authority Threats. Vaccines 2025, 13, 73. https://doi.org/10.3390/vaccines13010073
Parish LA, Rele S, Hofmeyer KA, Luck BB, Wolfe DN. Strategic and Technical Considerations in Manufacturing Viral Vector Vaccines for the Biomedical Advanced Research and Development Authority Threats. Vaccines. 2025; 13(1):73. https://doi.org/10.3390/vaccines13010073
Chicago/Turabian StyleParish, Lindsay A., Shyam Rele, Kimberly A. Hofmeyer, Brooke B. Luck, and Daniel N. Wolfe. 2025. "Strategic and Technical Considerations in Manufacturing Viral Vector Vaccines for the Biomedical Advanced Research and Development Authority Threats" Vaccines 13, no. 1: 73. https://doi.org/10.3390/vaccines13010073
APA StyleParish, L. A., Rele, S., Hofmeyer, K. A., Luck, B. B., & Wolfe, D. N. (2025). Strategic and Technical Considerations in Manufacturing Viral Vector Vaccines for the Biomedical Advanced Research and Development Authority Threats. Vaccines, 13(1), 73. https://doi.org/10.3390/vaccines13010073