The Influence of the Associated Inactivated Vaccine Against Infectious Rhinotracheitis and Bovine Viral Diarrhea on the Formation and Duration of Colostral Immunity in Kazakh Whiteheaded Calves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vaccine and Strains
2.2. Animals
2.3. Vaccination of Pregnant Cows
2.4. Colostral Immunity in Calves
2.5. Serum Preparation for Serological Assays
2.6. Serological Studies
2.7. Challenge Experiment in Calves
2.8. Statistical Analysis
3. Results
3.1. Antibodies to the IBR and BVD Viruses in Pregnant Cows
3.2. Antibodies to the IBR and BVD Viruses in Calves with Maternal Antibodies
3.3. Biochemical Blood Analysis of Calves After Challenge with the IBR and BVD Viruses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IBR | Infectious bovine rhinotracheitis |
BVD | Bovine viral diarrhea |
RK | Republic of Kazakhstan |
VNA | Virus-neutralizing antibodies |
AST | Aspartate aminotransferase |
ALT | Alanine aminotransferase |
References
- Rimayanti, R.; Khairullah, A.R.; Lestari, T.D.; Moses, I.B.; Utama, S.; Damayanti, R.; Mulyati, S.; Raharjo, H.M.; Kusala, M.K.J.; Raissa, R.; et al. Infectious bovine rhinotracheitis: Unveiling the hidden threat to livestock productivity and global trade. Open Vet. J. 2024, 14, 2525–2538. [Google Scholar] [CrossRef]
- Walz, P.H.; Chamorro, M.F.; M Falkenberg, S.; Passler, T.; van der Meer, F.; R Woolums, A. Bovine viral diarrhea virus: An updated American College of Veterinary Internal Medicine consensus statement with focus on virus biology, hosts, immunosuppression, and vaccination. J. Vet. Intern. Med. 2020, 34, 1690–1706. [Google Scholar] [CrossRef] [PubMed]
- Omarova, G.; Baikadamiva, G.; Assauova, Z.; Akanova, Z. Seroprevalence of infectious bovine rhinotracheitis in Kazakhstan: Propagation dynamics in 2021–2022. 3i Intellect. Idea Innov. 2024, 4, 16–23. [Google Scholar] [CrossRef]
- Bashenova, E.; Nissanova, R.; Zharmukhametova, A.; Akshalova, P.; Serikov, M.; Mamanova, S.; Kirpichenko, V. Selection of strong positive serum samples from cattle infected with bovine viral diarrhea. Euras J. Appl. Biotech. 2024, 3, 66–72. [Google Scholar] [CrossRef]
- State Register of Veterinary Drugs and Feed Additives (In Rus). Available online: https://www.gov.kz/memleket/entities/moa/documents/details/471966?lang=ru (accessed on 13 March 2025).
- Patent Database of Kazakhstan (In Rus). Available online: https://surl.li/rkxzdw (accessed on 13 March 2025).
- National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/nuccore/AF091605.1?report=genbank (accessed on 13 March 2025).
- American Type Culture Collection. Available online: https://www.atcc.org/products/ccl-22 (accessed on 9 April 2025).
- Chervyakova, O.; Issabek, A.; Sultankulova, K.; Bopi, A.; Kozhabergenov, N.; Omarova, Z.; Tulendibayev, A.; Aubakir, N.; Orynbayev, M. Lumpy skin disease virus with four knocked out genes was attenuated in vivo and protects cattle from infection. Vaccines 2022, 10, 1705. [Google Scholar] [CrossRef]
- Nassambaev, E.; Akhmetalieva, A.B.; Nugmanova, A.E.; Zhumaeva, A.K. Pure breeding of the Kazakh white-headed cattle by lines as the main method of improving the hereditary qualities. J. Pharm. Sci. Res. 2018, 10, 3254–3256. [Google Scholar]
- World Organization for Animal Health. Available online: https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-manual-online-access/ (accessed on 13 March 2025).
- MacMillan, A. Conventional serological tests. In Animal Brucellosis; Nielsen, K., Duncan, J.R., Eds.; CRC Press: Boca Raton, FL, USA, 1990; p. 155. [Google Scholar]
- Raizman, E.A.; Pogranichniy, R.; Negron, M.; Schnur, M.; Tobar-Lopez, D.E. Seroprevalence of infectious bovine rhinotracheitis and bovine viral diarrhea virus type 1 and type 2 in non-vaccinated cattle herds in the Pacific Region of Central Costa Rica. Trop. Anim. Health Prod. 2010, 43, 773–778. [Google Scholar] [CrossRef]
- American Type Culture Collection. Available online: https://www.atcc.org/products/vr-864 (accessed on 9 April 2025).
- Frey, M.L. One year antibody responses of four inactivated infectious bovine rhinotracheitis-bovine viral diarrhea vaccines. Bov. Pract. 1989, 24, 18–24. [Google Scholar] [CrossRef]
- Kononskyi, A.I. Animal Biochemistry, 3rd ed.; Kolos: Moscow, Russia, 1992; pp. 56–59. [Google Scholar]
- Jacob, S.D.; Ramnath, V.; Philomina, P.T.; Raghunandhanan, K.V.; Kannan, A. Assessment of physiological stress in periparturient cows and neonatal calves. Ind. J. Physiol. Pharmacol. 2001, 45, 233–238. [Google Scholar] [PubMed]
- Coria, M.F.; McClurkin, A.W. Duration of active and colostrum-derived passive antibodies to bovine viral diarrhea virus in calves. Can. J. Comp. Med. 1978, 42, 239–243. [Google Scholar] [PubMed] [PubMed Central]
- Grooms, D.L. Reproductive consequences of infection with bovine viral diarrhea virus. Vet. Clin. N. Am. Food A 2004, 20, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Barrington, G.M.; Parish, S.M. Bovine neonatal immunology. Vet. Clin. N. Am. Food A 2001, 17, 463–476. [Google Scholar] [CrossRef] [PubMed]
- Petrini, S.; Righi, C.; Iscaro, C.; Viola, G.; Gobbi, P.; Scoccia, E.; Rossi, E.; Pellegrini, C.; De Mia, G.M. Evaluation of Passive Immunity Induced by Immunization Using Two Inactivated gE-deleted Marker Vaccines against Infectious Bovine Rhinotracheitis (IBR) in Calves. Vaccines 2020, 8, 14. [Google Scholar] [CrossRef]
- Baintner, K. Transmission of antibodies from mother to young: Evolutionary strategies in a proteolytic environment. Vet. Immun. Immunopathol. 2007, 117, 153–161. [Google Scholar] [CrossRef]
- Donovan, D.C.; Reber, A.J.; Gabbard, J.D.; Aceves-Avila, M.; Galland, K.L.; Holbert, K.A.; Ely, L.O.; Hurley, D.J. Effect of maternal cells transferred with colostrum on cellular responses to pathogen antigens in neonatal calves. Am. J. Ver. Res. 2006, 68, 778–782. [Google Scholar] [CrossRef] [PubMed]
- Petrini, S.; Iscaro, C.; Righi, C. Antibody Responses to Bovine Alphaherpesvirus 1 (BoHV-1) in Passively Immunized Calves. Viruses 2019, 11, 23. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Zanzi, C.A.; Thurmond, M.C.; Johnson, W.O.; Hietala, S.K. Predicted ages of dairy calves when colostrum-derived bovine viral diarrhea virus antibodies would no longer offer protection against disease or interfere with vaccination. J. Am. Vet. Med. Assoc. 2002, 221, 678–685. [Google Scholar] [CrossRef]
- Kim, U.H.; Kang, S.S.; Jang, S.S.; Kim, S.W.; Chung, K.Y.; Kang, D.H.; Park, B.H.; Ha, S. Bovine viral diarrhea virus antibody level variation in newborn calves after vaccination of late-gestational cows. Vet. Sci. 2023, 10, 562. [Google Scholar] [CrossRef]
- Ridpath, J.F.; Neill, J.D.; Endsley, J.; Roth, J.A. Effect of passive immunity on the development of a protective immune response against bovine viral diarrhea virus in calves. Am. J. Vet. Res. 2003, 64, 65–69. [Google Scholar] [CrossRef]
- Chamorro, M.F.; Walz, P.H.; Passler, T.; Palomares, R.; Newcomer, B.W.; Riddell, K.P.; Gard, J.; Zhang, Y.; Galik, P. Efficacy of four commercially available multivalent modified-live virus vaccines against clinical disease, viremia, and viral shedding in early-weaned beef calves exposed simultaneously to cattle persistently infected with bovine viral diarrhea virus and cattle acutely infected with bovine herpesvirus 1. Am. J. Ver. Res. 2016, 77, 88–97. [Google Scholar] [CrossRef]
- Blaske, S.; Ketchum, J.N.; Quail, L.K.; Mattos, A.C.; Snider, A.P.; Carson, C.P.; Long, C.R.; Perry, G.A. 102 Combination and individual vaccines for bovine viral diarrhea virus and infectious bovine rhinotracheitis effects on reproductive cyclicity and immune response. J. Anim. Sci. 2024, 102, 269–270. [Google Scholar] [CrossRef]
- Smith, B.I.; Rieger, R.H.; Dickens, C.M.; Schultz, R.D.; Aceto, H. Anti-bovine herpesvirus and anti-bovine viral diarrhea virus antibody responses in pregnant Holstein dairy cattle following administration of a multivalent killed virus vaccine. Am. J. Ver. Res. 2015, 76, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Shemelkov, E.V.; Shemelkova, G.O.; Ivanov, E.V.; Bulgakov, A.D.; Verkhovsky, O.A.; Aliper, T.I. The influence of adjuvants ISA 61 and ISA 50 on the antigenic activity, the ability to form colostral immunity and the effectiveness of experimental samples of the vaccine KOMBOVAC-A (In rus). Agrar. Sci. 2024, 6, 44–49. [Google Scholar] [CrossRef]
- Blaske, S.; Epperson, K.M.; Quail, L.K.; Ketchum, J.N.; Guy, C.P.; Long, C.R.; Perry, G.A. 155 impact of ambient temperature on bovine viral diarrhea virus and infectious bovine rhinotracheitis vaccination response. J. Anim. Sci. 2023, 101, 57–58. [Google Scholar] [CrossRef]
- Ahmad, I.; Tang, D.; Wang, T.; Wang, M.; Wagan, B. Precipitation trends over time using mann-kendall and spearman’s rho tests in Swat River Basin, Pakistan. Adv. Meteorol. 2015, 2015, 431860. [Google Scholar] [CrossRef]
- Salnikov, V.; Talanov, Y.; Polyakova, S.; Assylbekova, A.; Kauazov, A.; Bultekov, N.; Musralinova, G.; Kissebayev, D.; Beldeubayev, Y. An assessment of the present trends in temperature and precipitation extremes in Kazakhstan. Climate 2023, 11, 33. [Google Scholar] [CrossRef]
- Gomes, V.; Baccili, C.C.; da Costa e Silva, C.P.; da Cardoso Pinto, V.S.; Silva, B.T.; Pozzi, C.R.; Ribeiro, C.; Pituco, E.M. Humoral immunity assessment in calves born to cows immunized with inactivated vaccine for bovine herpesvirus 1 and bovine viral diarrhea virus. Act. Sci. Vet. 2014, 42, 1239. [Google Scholar]
- Chase, C.C.L.; Hurley, D.J.; Reber, A.J. Neonatal Immune Development in the calf and its impact on vaccine response. Vet. Clin. N. Am. Food A 2008, 24, 87–104. [Google Scholar] [CrossRef]
- Menanteau-Horta, A.M.; Ames, T.R.; Johnson, D.W.; Meiske, J.C. Effect of maternal antibody upon vaccination with infectious bovine rhinotracheitis and bovine virus diarrhea vaccines. Can. J. Comp. Med. 1985, 49, 10–14. [Google Scholar] [PubMed] [PubMed Central]
- Pospíšil, Z.; Krejcí, J.; Jínek, P.; Lány, P.; Zendulková, D.; Cíhal, P. Development of a disease control programme based on the use of an inactivated vaccine against infectious bovine rhinotracheitis. Vet. Microbiol. 1996, 53, 199–206. [Google Scholar] [CrossRef]
- Bolin, S.R.; Ridpath, J.F. Assessment of protection from systemic infection or disease afforded by low to intermediate titers of passively acquired neutralizing antibody against bovine viral diarrhea virus in calves. Am. J. Vet. Res. 1995, 56, 755–759. [Google Scholar] [CrossRef] [PubMed]
- Dzhaxybayeva, G.G.; Bekseitov, T.K.; Akhazhanov, E.K.; Koчнeв, H.H.; Syrovatsky, M.V.; Beketov, S.V. Biochemical and hematological characteristics of blood of red steppe breed cows in Pavlodar region of Kazakhstan. Vet. Anim. Sci. Biotechnol. 2024, 3, 52–63. [Google Scholar] [CrossRef]
- Kalavathi, S.; Swarna Latha, K.; Kumari, G.D. Haematological and serum biochemical profile of bovines infected with infectious bovine rhinotracheitis. Int. J. Vet. Sci. Anim. Husb. 2024, 9, 12–14. [Google Scholar] [CrossRef]
- Şimşek, H.; Gürçay, M.; Öztürk, M.; Kececi, H. Bovine viral diarrhea virus infection in cattle—Antioxidant status and some biochemical parameters. Act. Sci. Vet. 2023, 51, 132524. [Google Scholar] [CrossRef]
- Magnus, P.K.; Lali, F.A. Serum biochemical profile of post-partum metritic cow. Vet. World 2009, 2, 27–28. Available online: https://www.researchgate.net/publication/49607948_Serum_Biochemical_Profile_of_Post_Partum_Metritic_Cow (accessed on 13 March 2025).
- Jalali, S.M.; Rasooli, A.; Rasooli, A.; Shapuri, M.S.A.; Daneshi, M. Clinical, hematologic, and biochemical findings in cattle infected with lumpy skin disease during an outbreak in southwest Iran. Arch. Razi Inst. 2017, 72, 255–265. [Google Scholar] [CrossRef]
- Anderson, P.H.; Berrett, S.; Brush, P.J.; Hebert, C.N.; Parfitt, J.W.; Patterson, D.S. Biochemical indicators of liver injury in calves with experimental fascioliasis. Vet. Rec. 1977, 100, 43–45. [Google Scholar] [CrossRef]
№ | Calf Status | Biochemical Parameter | Permissible Concentration [16] | Concentration on Day 7 After Infection | Units of Measurement |
---|---|---|---|---|---|
1 | V, IBR | ALT | 1.3–60 | 26.6 | U/L |
AST | 11–160 | 30.6 | U/L | ||
Bilirubin direct | 0.19–17 | 0.25 | mg/dL | ||
Bilirubin total | 0.7–14 | 13.8 | mg/dL | ||
Glucose | 2.2–4.4 | 1.3 * | mmol/L | ||
Protein total | 72–90 | 72.2 | g/L | ||
2 | NV, IBR | ALT | 1.3–60 | 13.2 | U/L |
AST | 11–160 | 33.9 | U/L | ||
Bilirubin direct | 0.19–17 | 0.60 | mg/dL | ||
Bilirubin total | 0.7–14 | 20.5 * | mg/dL | ||
Glucose | 2.2–4.4 | 1.3 * | mmol/L | ||
Protein total | 72–90 | 68.2 * | g/L | ||
3 | V, BVD | ALT | 1.3–60 | 11.6 | U/L |
AST | 11–160 | 31.7 | U/L | ||
Bilirubin direct | 0.19–17 | 0.28 | mg/dL | ||
Bilirubin total | 0.7–14 | 8.1 | mg/dL | ||
Glucose | 2.2–4.4 | 1.2 * | mmol/L | ||
Protein total | 72–90 | 72.2 | g/L | ||
4 | NV, BVD | ALT | 1.3–60 | 19.9 | U/L |
AST | 11–160 | 38.9 | U/L | ||
Bilirubin direct | 0.19–17 | 0.31 | mg/dL | ||
Bilirubin total | 0.7–14 | 40 * | mg/dL | ||
Glucose | 2.2–4.4 | 1.2 * | mmol/L | ||
Protein total | 72–90 | 60.3 * | g/L | ||
5 | Control, NV, WI | ALT | 1.3–60 | 29.7 | U/L |
AST | 11–160 | 36.0 | U/L | ||
Bilirubin direct | 0.19–17 | 0.36 | mg/dL | ||
Bilirubin total | 0.7–14 | 2.2 | mg/dL | ||
Glucose | 2.2–4.4 | 3.3 | mmol/L | ||
Protein total | 72–90 | 76.6 | g/L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulatov, Y.; Kurmasheva, A.; Amanova, Z.; Abitaev, R.; Sametova, Z.; Kyrgyzbayeva, A.; Kondybaeva, Z.; Turyskeldi, S.; Ussembay, A.; Toktyrova, D.; et al. The Influence of the Associated Inactivated Vaccine Against Infectious Rhinotracheitis and Bovine Viral Diarrhea on the Formation and Duration of Colostral Immunity in Kazakh Whiteheaded Calves. Vaccines 2025, 13, 408. https://doi.org/10.3390/vaccines13040408
Bulatov Y, Kurmasheva A, Amanova Z, Abitaev R, Sametova Z, Kyrgyzbayeva A, Kondybaeva Z, Turyskeldi S, Ussembay A, Toktyrova D, et al. The Influence of the Associated Inactivated Vaccine Against Infectious Rhinotracheitis and Bovine Viral Diarrhea on the Formation and Duration of Colostral Immunity in Kazakh Whiteheaded Calves. Vaccines. 2025; 13(4):408. https://doi.org/10.3390/vaccines13040408
Chicago/Turabian StyleBulatov, Yerbol, Alina Kurmasheva, Zhanat Amanova, Ruslan Abitaev, Zhanna Sametova, Asselya Kyrgyzbayeva, Zhanat Kondybaeva, Sholpan Turyskeldi, Abdurakhman Ussembay, Dariya Toktyrova, and et al. 2025. "The Influence of the Associated Inactivated Vaccine Against Infectious Rhinotracheitis and Bovine Viral Diarrhea on the Formation and Duration of Colostral Immunity in Kazakh Whiteheaded Calves" Vaccines 13, no. 4: 408. https://doi.org/10.3390/vaccines13040408
APA StyleBulatov, Y., Kurmasheva, A., Amanova, Z., Abitaev, R., Sametova, Z., Kyrgyzbayeva, A., Kondybaeva, Z., Turyskeldi, S., Ussembay, A., Toktyrova, D., Mazbayeva, D., Shayakhmetov, Y., Kerimbayev, A., Khussainov, D., Wentao, M., Rsaliyev, A., & Abduraimov, Y. (2025). The Influence of the Associated Inactivated Vaccine Against Infectious Rhinotracheitis and Bovine Viral Diarrhea on the Formation and Duration of Colostral Immunity in Kazakh Whiteheaded Calves. Vaccines, 13(4), 408. https://doi.org/10.3390/vaccines13040408