Sustainable Crop Protection, Global Climate Change, Food Security and Safety—Plant Immunity at the Crossroads
Abstract
:Author Contributions
Funding
Conflicts of Interest
References
- IPCC. Climate Change 2014: Mitigation of Climate Change. In Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O.R., Pichs-Madruga, Y., Sokona, E., Farahani, S., Kadner, K., Seyboth, A., Adler, I., Baum, S., Brunner, P., Eickemeier, B., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; Available online: https://www.ipcc.ch/report/ar5/wg3/ (accessed on 3 January 2020).
- Global Invasive Species Database. Available online: http://www.iucngisd.org/gisd/100_worst.php (accessed on 4 January 2020).
- European Alien Species Information Network - EASIN. Available online: https://easin.jrc.ec.europa.eu/easin (accessed on 4 January 2020).
- EPPO Global Database. Bursaphelenchus xylophilus (BURSXY). Available online: https://gd.eppo.int/taxon/BURSXY (accessed on 4 January 2020).
- EPPO Global Database. Xylella fastidiosa (XYLEFA). Available online: https://gd.eppo.int/taxon/XYLEFA (accessed on 4 January 2020).
- World Health Organization and Secretariat of the Convention on Biological Diversity. Connecting Global Priorities: Biodiversity and Human Health. A State of Knowledge Review. 2015. Available online: https://www.who.int/globalchange/publications/biodiversity-human-health/en/ (accessed on 5 January 2020).
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Moretti, A.; Pascale, M.; Logrieco, A.F. Mycotoxin risks under climate change scenario in Europe. Trends Food Sci. Technol. 2019, 84, 38–40. [Google Scholar] [CrossRef]
- RASFF - Food and Feed Safety Alerts. Available online: https://ec.europa.eu/food/safety/rasff_en (accessed on 5 January 2020).
- Iriti, M.; Faoro, F. Review of innate and specific immunity in plants and animals. Mycopathologia 2007, 164, 57–64. [Google Scholar] [CrossRef]
- Sato, K.; Kadota, Y.; Shirasu, K. Plant immune responses to plant parasitic nematodes. Front. Plant Sci. 2019, 10, 1165. [Google Scholar] [CrossRef] [Green Version]
- Bektas, y.; Eulgem, t. Synthetic plant defense elicitors. Front. Plant. Sci. 2015, 5, 804. [Google Scholar]
- EU - Pesticides database. Available online: http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database (accessed on 5 January 2020).
- Iriti, M.; Varoni, E.M. Moving to the field: Plant innate immunity in crop protection. Int. J. Mol. Sci. 2017, 18, 640. [Google Scholar] [CrossRef] [Green Version]
- Iriti, M.; Varoni, E.M. Chitosan-induced antiviral activity and innate immunity in plants. Environ. Sci. Pollut. Res. 2015, 22, 2935–2944. [Google Scholar] [CrossRef]
- Iriti, M.; Faoro, F. Abscisic acid is involved in chitosan-induced resistance to tobacco necrosis virus (TNV). Plant Physiol. Biochem. 2008, 46, 1106–1111. [Google Scholar] [CrossRef]
- Iriti, M.; Picchi, V.; Rossoni, M.; Gomarasca, S.; Ludwig, N.; Gargano, M.; Faoro, F. Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure. Environ. Exp. Bot. 2009, 66, 493–500. [Google Scholar] [CrossRef]
- Khan, M.R.; Doohan, F.M. Comparison of the efficacy of chitosan with that of a fluorescent pseudomonad for the control of Fusarium head blight disease of cereals and associated mycotoxin contamination of grain. Biol. Control 2009, 48, 48–54. [Google Scholar] [CrossRef]
- Doares, S.H.; Syrovets, T.; Weiler, E.W.; Ryan, C.A. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad. Sci. USA 1995, 92, 4095–4098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, F.; Yang, X.; Shi, Z.; Miao, X. Novel crosstalk between ethylene-and jasmonic acid-pathway responses to a piercing–sucking insect in rice. New Phytol. 2020, 225, 474–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pospieszny, H.; Atabekov, J.G. Effect of chitosan on the hypersensitive reaction of bean to alfalfa mosaic virus. Plant Sci. 1989, 62, 29–31. [Google Scholar] [CrossRef]
- Pospieszny, H. Antiviroid activity of chitosan. Crop Prot. 1997, 16, 105–106. [Google Scholar] [CrossRef]
- Chirkov, S.N.; Il’ina, A.V.; Surgucheva, N.A.; Letunova, E.V.; Varitsev, Y.A.; Tatarinova, N.Y.; Varlamov, V.P. Effect of chitosan on systemic viral infection and some defense responses in potato plants. Russ. J. Plant Physiol. 2001, 48, 774–779. [Google Scholar] [CrossRef]
- Iriti, M.; Sironi, M.; Gomarasca, S.; Casazza, A.P.; Soave, C.; Faoro, F. Cell death-mediated antiviral effect of chitosan in tobacco. Plant Physiol. Biochem. 2006, 44, 893–900. [Google Scholar] [CrossRef]
- Xue, H.; Bi, Y.; Zong, Y.; Alejandro, C.-U.; Wang, H.; Pu, L.; Wang, Y.; Li, Y. Effects of elicitors on trichothecene accumulation and Tri genes expression in potato tubers inoculated with Fusarium sulphureum. Eur. J. Plant Pathol. 2017, 148, 673–685. [Google Scholar]
- Ludwig, N.; Cabrini, R.; Faoro, F.; Gargano, M.; Gomarasca, S.; Iriti, M.; Picchi, V.; Soave, C. Reduction of evaporative flux in bean leaves due to chitosan treatment assessed by infrared thermography. Infrared Phys. Technol. 2010, 53, 65–70. [Google Scholar] [CrossRef]
- Iriti, M.; Rossoni, M.; Borgo, M.; Faoro, F. Benzothiadiazole enhances resveratrol and anthocyanin biosynthesis in grapevine, meanwhile improving resistance to Botrytis cinerea. J. Agric. Food Chem. 2004, 52, 4406–4413. [Google Scholar] [CrossRef]
- Iriti, M.; Rossoni, M.; Borgo, M.; Ferrara, L.; Faoro, F. Induction of resistance to gray mold with benzothiadiazole modifies amino acid profile and increases proanthocyanidins in grape: Primary versus secondary metabolism. J. Agric. Food Chem. 2005, 53, 9133–9139. [Google Scholar] [CrossRef]
- Iriti, M.; Rossoni, M.; Faoro, F. Melatonin content in grape: Myth or panacea? J. Sci. Food Agric. 2006, 86, 1432–1438. [Google Scholar] [CrossRef]
- Iriti, M.; Mapelli, S.; Faoro, F. Chemical-induced resistance against post-harvest infection enhances tomato nutritional traits. Food Chem. 2007, 105, 1040–1046. [Google Scholar] [CrossRef]
- Iriti, M.; Vitalini, S.; Di Tommaso, G.; D’AMICO, S.; Borgo, M.; Faoro, F. New chitosan formulation prevents grapevine powdery mildew infection and improves polyphenol content and free radical scavenging activity of grape and wine. Aust. J. Grape Wine Res. 2011, 17, 263–269. [Google Scholar] [CrossRef]
- Vitalini, S.; Gardana, C.; Zanzotto, A.; Fico, G.; Faoro, F.; Simonetti, P.; Iriti, M. From vineyard to glass: Agrochemicals enhance the melatonin and total polyphenol contents and antiradical activity of red wines. J. Pineal Res. 2011, 51, 278–285. [Google Scholar] [CrossRef]
- Fumagalli, F.; Rossoni, M.; Iriti, M.; Di Gennaro, A.; Faoro, F.; Borroni, E.; Borgo, M.; Scienza, A.; Sala, A.; Folco, G. From field to health: A simple way to increase the nutraceutical content of grape as shown by NO-dependent vascular relaxation. J. Agric. Food Chem. 2006, 54, 5344–5349. [Google Scholar] [CrossRef]
- Marković, J.M.D.; Pejin, B.; Milenković, D.; Amić, D.; Begović, N.; Mojović, M.; Marković, Z.S. Antiradical activity of delphinidin, pelargonidin and malvin towards hydroxyl and nitric oxide radicals: The energy requirements calculations as a prediction of the possible antiradical mechanisms. Food Chem. 2017, 218, 440–446. [Google Scholar] [CrossRef]
- Dorđević, N.; Todorović, N.; Novaković, I.; Pezo, L.; Pejin, B.; Maraš, V.; Tešević, V.V.; Pajović, S. Antioxidant activity of selected polyphenolics in yeast cells: The case study of Montenegrin Merlot wine. Molecules 2018, 23, 1971. [Google Scholar] [CrossRef] [Green Version]
Type of Notification | Number of Notifications | |
---|---|---|
Type of hazard | Pathogenic microorganisms | 979 |
Mycotoxins | 655 | |
Pesticide residues | 276 | |
Composition | 224 | |
Allergens | 207 | |
Poor and insufficient controls | 179 | |
Foreign bodies | 168 | |
Food additives and flavourings | 142 | |
Product category | Nuts, nut products and seeds | 667 |
Fruits and vegetables | 475 | |
Fish and fish products | 330 | |
Feed | 313 | |
Poultry and poultry products | 265 | |
Dietetic foods, food supplements and fortified foods | 255 |
Active Substance | Classification GHS ‡ | MRLs ** | Toxicological Information | ||
---|---|---|---|---|---|
ADI # (mg/kg bw/d) § | ARfD # (mg/kg bw) | AOE # (mg/kg bw/d) | |||
Elicitors | |||||
Chitosan hydrochloride | No classification | No MRL required | NA † | NA | NA |
Fructose | No classification | No MRL required | NA | NA | NA |
Heptamaloxylglucan | No classification | No MRL required | NA | NA | NA |
Laminarin | No classification | No MRL required | NA | NA | NA |
Mild Pepino Mosaic Virus isolate VC 1 | No classification | No MRL required | NA | NA | NA |
Mild Pepino Mosaic Virus isolate VX 1 | No classification | No MRL required | NA | NA | NA |
Pepino Mosaic Virus strain CH2 isolate 1906 | No classification | No MRL required | NA | NA | NA |
Sucrose | No classification | No MRL required | NA | NA | NA |
Zucchini Yellow Mosaic Virus weak strain | No classification | No MRL required | NA | NA | NA |
Plant activators | |||||
Acibenzolar-S-methyl (benzothiadiazole) | Skin corrosion/irritation Category 2 (H315) Skin sensitisation Category 1 (H317) Serious eye damage/irritation Category 2 (H319) Specific target organ toxicity single exposure Category 3 (H335) Hazardous to aquatic environment short term/acute Category 1 (H400) Hazardous to aquatic environment long term/chronic Category 1 (H410) | MRLs required ¥ | 0.03 | 0.03 | 0.03 |
Cerevisane | No classification | No MRL required | NA | NA | NA |
Active Substance | Biological Activities | References |
---|---|---|
Resistance Against Viruses | ||
Chitosan | Alfalfa Mosaic Virus/Bean (Phaseolus vulgaris) | [21] |
Chitosan | Potato Spindle Tuber Viroid/Tomato (Solanum lycopersicum) | [22] |
Chitosan | Potato Virus X/Potato (Solanum tuberosum) | [23] |
Chitosan | Tobacco Mosaic Virus/Tobacco (Nicotiana tabacum) | [24] |
Chitosan | Tobacco Necrosis Virus/Bean | [16] |
Mycotoxin Contamination | ||
Chitosan | Decrease of deoxynivalenol contamination of cereals | [18] |
Chitosan | Decreased trichothecene accumulation in potato tubers | [25] |
Abiotic Stress Tolerance | ||
Chitosan | Anti-transpirant activity | [17] |
Chitosan | Reduction of stomatal conductance | [26] |
Secondary Metabolite Biosynthesis | ||
Benzothiadiazole | Resveratrol, anthocyanins/Grape (Vitis vinifera) | [27] |
Benzothiadiazole | Proanthocyanidins/Grape | [28] |
Benzothiadiazole | Melatonin/Grape | [29] |
Benzothiadiazole | Lycopene/Tomato | [30] |
Chitosan | Polyphenols/Grape | [31] |
Chitosan | Melatonin/Grape | [32] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iriti, M.; Vitalini, S. Sustainable Crop Protection, Global Climate Change, Food Security and Safety—Plant Immunity at the Crossroads. Vaccines 2020, 8, 42. https://doi.org/10.3390/vaccines8010042
Iriti M, Vitalini S. Sustainable Crop Protection, Global Climate Change, Food Security and Safety—Plant Immunity at the Crossroads. Vaccines. 2020; 8(1):42. https://doi.org/10.3390/vaccines8010042
Chicago/Turabian StyleIriti, Marcello, and Sara Vitalini. 2020. "Sustainable Crop Protection, Global Climate Change, Food Security and Safety—Plant Immunity at the Crossroads" Vaccines 8, no. 1: 42. https://doi.org/10.3390/vaccines8010042
APA StyleIriti, M., & Vitalini, S. (2020). Sustainable Crop Protection, Global Climate Change, Food Security and Safety—Plant Immunity at the Crossroads. Vaccines, 8(1), 42. https://doi.org/10.3390/vaccines8010042