Chronic Inflammation Mediates the Association between Cortisol and Hyperglycemia: Findings from the Cross-Sectional Population-Based KORA Age Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting and Population
2.2. Biomarker Measurements
2.3. Covariate Measurements
2.4. Statistical Analysis
3. Results
3.1. Description of the Study Population
3.2. Association of Cortisol and IL-6 in Individuals with Normoglycemia and Hyperglycemia
3.3. Mediation Analysis
3.4. Sensitivity Analyses
4. Discussion
4.1. Association between Flatter Diurnal Cortisol Slopes and Hyperglycemia
4.2. Association of Flatter Diurnal Cortisol Slopes and Subclinical Inflammation
4.3. Association of Subclinical Inflammation and Hyperglycemia
4.4. Association of Flatter Diurnal Cortisol Slopes and Hyperglycemia Is Partially Mediated by Subclinical Inflammation
4.5. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1
Direct Effects (IL-6 → HbA1c) | Indirect Effects (Mediation Effect) (IL-6 → DCS → HbA1c) | Total Effects | Proportion Mediated | ||||
---|---|---|---|---|---|---|---|
β (95% CI) | p | β (95% CI) | p | β (95% CI) | p | β (95% CI) | p |
−0.001 (−0.01–0.01) | 0.79 | 0.001 (−0.0001–0.001) | 0.10 | −0.0001 (−0.01–0.01) | 0.99 | −0.01 (−0.6–3.96) | 0.98 |
Appendix A.2. Association of Serum Cortisol, Interleukin-6 (IL-6) and HbA1c
Direct Effects (Serum Cortisol → HbA1c) | Indirect Effects (Mediation Effect) (Serum Cortisol → IL-6 → HbA1c) | Total Effects | Proportion Mediated | |||||
---|---|---|---|---|---|---|---|---|
β (95% CI) | p | β (95% CI) | p | β (95% CI) | p | β (95% CI) | p | |
Model 1 | −0.002 (−0.08–0.06) | 0.66 | 0.001 (0.002–0.02) | 0.01 | −0.10 (−0.07–0.07) | 0.88 | −0.10 (−5.10–−5.04) | 0.88 |
Model 2 | −0.004 (−0.02–0.01) | 0.53 | 0.002 (−0.0003–0.001) | 0.12 | −0.002 (−0.02–0.01) | 0.72 | −0.14 (−4.08–4.04) | 0.72 |
Model 3 | 0.0001 (−0.002–0.001) | 0.93 | −0.008 (−0.002–0.01) | 0.93 | 0.0003 (−0.001–0.01) | 0.97 | −0.0005 (−0.20–1.31) | 0.97 |
Appendix A.3. Association of Late-Night Salivary Cortisol (LNSC), Interleukin-6 (IL-6) and HbA1c
Direct Effects (LNSC → HbA1c) | Indirect (Mediation Effect (LNSC→IL-6 → HbA1c) | Total Effects | Proportion Mediated | |||||
---|---|---|---|---|---|---|---|---|
β (95% CI) | p | β (95% CI) | p | β (95% CI) | p | β (95% CI) | p | |
Model 1 | 0.07 (−0.03–0.14) | 0.06 | 0.02 (0.01–0.03) | <0.001 | 0.08 (0.013–0.15) | 0.01 | 0.20 (0.04–1.06) | 0.01 |
Model 2 | 0.01 (−0.001–0.02) | 0.09 | 0.02 (0.0001–0.001) | 0.04 | 0.01 (0.004–0.02) | 0.04 | 0.20 (-0.03–1.11) | 0.07 |
Model 3 | 0.01 (0.001–0.02) | 0.03 | −0.0003 (−0.002–0.001) | 0.67 | 0.01 (0.001–0.02) | 0.04 | -0.03 (-0.32–0.20) | 0.68 |
References
- Hackett, R.A.; Steptoe, A. Psychosocial Factors in Diabetes and Cardiovascular Risk. Curr. Cardiol. Rep. 2016, 18, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamer, M.; Stamatakis, E.; Kivimäki, M.; Pascal Kengne, A.; Batty, G.D. Psychological Distress, Glycated Hemoglobin, and Mortality in Adults With and Without Diabetes. Psychosom. Med. 2010, 72, 882–886. [Google Scholar] [CrossRef] [PubMed]
- Uchoa, E.T.; Aguilera, G.; Herman, J.P.; Fiedler, J.L.; Deak, T.; Cordeiro de Sousa, M.B. Novel aspects of hypothalamic-pituitary-adrenal axis regulation and glucocorticoid actions. J. Neuroendocrinol. 2014, 26, 557–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, L.A.; Urbanova, L.; Hamer, M.; Hackett, R.A.; Lazzarino, A.I.; Steptoe, A. Blunted glucocorticoid and mineralocorticoid sensitivity to stress in people with diabetes. Psychoneuroendocrinology 2015, 51, 209–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adam, E.K.; Kumari, M. Assessing salivary cortisol in large-scale, epidemiological research. Psychoneuroendocrinology 2009, 34, 1423–1436. [Google Scholar] [CrossRef] [PubMed]
- Adam, E.K.; Quinn, M.E.; Tavernier, R.; McQuillan, M.T.; Dahlke, K.A.; Gilbert, K.E. Diurnal cortisol slopes and mental and physical health outcomes: A systematic review and meta-analysis. Psychoneuroendocrinology 2017, 83, 25–41. [Google Scholar] [CrossRef] [PubMed]
- Kunz-Ebrecht, S.R.; Mohamed-Ali, V.; Feldman, P.J.; Kirschbaum, C.; Steptoe, A. Cortisol responses to mild psychological stress are inversely associated with proinflammatory cytokines. Brain Behav. Immun. 2003, 17, 373–383. [Google Scholar] [CrossRef]
- DeSantis, A.S.; DiezRoux, A.V.; Hajat, A.; Aiello, A.E.; Golden, S.H.; Jenny, N.S.; Seeman, T.E.; Shea, S. Associations of salivary cortisol levels with inflammatory markers: The Multi-Ethnic Study of Atherosclerosis. Psychoneuroendocrinology 2012, 37, 1009–1018. [Google Scholar] [CrossRef] [Green Version]
- Pariante, C.M. The glucocorticoid receptor: Part of the solution or part of the problem? J. Psychopharmacol. 2006, 20, 79–84. [Google Scholar] [CrossRef]
- Wang, X.; Bao, W.; Liu, J.; OuYang, Y.-Y.; Wang, D.; Rong, S.; Xiao, X.; Shan, Z.-L.; Zhang, Y.; Yao, P.; et al. Inflammatory Markers and Risk of Type 2 Diabetes: A systematic review and meta-analysis. Diabetes Care 2013, 36, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Johar, H.; Emeny, R.T.; Bidlingmaier, M.; Kruse, J.; Ladwig, K.-H. Sex-related differences in the association of salivary cortisol levels and type 2 diabetes. Findings from the cross-sectional population based KORA-age study. Psychoneuroendocrinology 2016, 69, 133–141. [Google Scholar] [CrossRef]
- Joseph, J.J.; Wang, X.; Spanakis, E.; Seeman, T.; Wand, G.; Needham, B.; Golden, S.H. Diurnal salivary cortisol, glycemia and insulin resistance: The multi-ethnic study of atherosclerosis. Psychoneuroendocrinology 2015, 62, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Pickup, J.C.; Chusney, G.D.; Thomas, S.M.; Burt, D. Plasma interleukin-6, tumour necrosis factor α and blood cytokine production in type 2 diabetes. Life Sci. 2000, 67, 291–300. [Google Scholar] [CrossRef]
- Peters, A.; Döring, A.; Ladwig, K.-H.; Meisinger, C.; Linkohr, B.; Autenrieth, C.; Baumeister, S.E.; Behr, J.; Bergner, A.; Bickel, H.; et al. Multimorbidität und erfolgreiches Altern. Z. Gerontol. Geriatr. 2011, 44, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Glycemic Targets: Standards of Medical Care in Diabetes 2020. Diabetes Care 2020, 43, S66–S76. [CrossRef]
- Lacruz, M.E.; Emeny, R.T.; Bickel, H.; Cramer, B.; Kurz, A.; Bidlingmaier, M.; Huber, D.; Klug, G.; Peters, A.; Ladwig, K.H. Mental health in the aged: Prevalence, covariates and related neuroendocrine, cardiovascular and inflammatory factors of successful aging. BMC Med. Res. Methodol. 2010, 10, 36. [Google Scholar] [CrossRef] [Green Version]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Preacher, K.J.; Leonardelli, G.J. Calculation for the Sobel Test: An Interactive Calculation Tool for Mediation Tests. Available online: http://quantpsy.org/sobel/sobel.htm (accessed on 10 January 2020).
- Tingley, D.; Yamamoto, T.; Hirose, K.; Keele, L.; Imai, K. Mediation: R Package for Causal Mediation Analysis. J. Stat. Softw. 2014, 59. [Google Scholar] [CrossRef] [Green Version]
- Hackett, R.A.; Steptoe, A.; Kumari, M. Association of diurnal patterns in salivary cortisol with type 2 diabetes in the Whitehall II study. J. Clin. Endocrinol. Metab. 2014, 99, 4625–4631. [Google Scholar] [CrossRef] [Green Version]
- Lederbogen, F.; Hummel, J.; Fademrecht, C.; Krumm, B.; Kühner, C.; Deuschle, M.; Ladwig, K.H.; Meisinger, C.; Wichmann, H.E.; Lutz, H.; et al. Flattened circadian cortisol rhythm in type 2 diabetes. Exp. Clin. Endocrinol. Diabetes 2011, 119, 573–575. [Google Scholar] [CrossRef]
- Champaneri, S.; Xu, X.; Carnethon, M.R.; Bertoni, A.G.; Seeman, T.; Diez Roux, A.; Golden, S.H. Diurnal salivary cortisol and urinary catecholamines are associated with diabetes mellitus: The Multi-Ethnic Study of Atherosclerosis. Metab. Clin. Exp. 2012, 61, 986–995. [Google Scholar] [CrossRef] [Green Version]
- Dmitrieva, N.O.; Almeida, D.M.; Dmitrieva, J.; Loken, E.; Pieper, C.F. A day-centered approach to modeling cortisol: Diurnal cortisol profiles and their associations among U.S. adults. Psychoneuroendocrinology 2013, 38, 2354–2365. [Google Scholar] [CrossRef] [Green Version]
- Bruehl, H.; Wolf, O.T.; Convit, A. A blunted cortisol awakening response and hippocampal atrophy in type 2 diabetes mellitus. Psychoneuroendocrinology 2009, 34, 815–821. [Google Scholar] [CrossRef] [Green Version]
- Champaneri, S.; Xu, X.; Carnethon, M.R.; Bertoni, A.G.; Seeman, T.; DeSantis, A.S.; Diez Roux, A.; Shrager, S.; Golden, S.H. Diurnal salivary cortisol is associated with body mass index and waist circumference: The Multiethnic Study of Atherosclerosis. Obesity 2013, 21, E56–E63. [Google Scholar] [CrossRef]
- Piazza, J.R.; Dmitrieva, N.O.; Charles, S.T.; Almeida, D.M.; Orona, G.A. Diurnal cortisol profiles, inflammation, and functional limitations in aging: Findings from the MIDUS study. Health Psychol. 2018, 37, 839–849. [Google Scholar] [CrossRef] [PubMed]
- O’Donovan, A.; Hughes, B.M.; Slavich, G.M.; Lynch, L.; Cronin, M.-T.; O’Farrelly, C.; Malone, K.M. Clinical anxiety, cortisol and interleukin-6: Evidence for specificity in emotion–biology relationships. Brain Behav. Immun. 2010, 24, 1074–1077. [Google Scholar] [CrossRef] [Green Version]
- Rohleder, N.; Joksimovic, L.; Wolf, J.M.; Kirschbaum, C. Hypocortisolism and increased glucocorticoid sensitivity of pro-Inflammatory cytokine production in Bosnian war refugees with posttraumatic stress disorder. Biol. Psychiatry 2004, 55, 745–751. [Google Scholar] [CrossRef]
- Nikkheslat, N.; Zunszain, P.A.; Horowitz, M.A.; Barbosa, I.G.; Parker, J.A.; Myint, A.-M.; Schwarz, M.J.; Tylee, A.T.; Carvalho, L.A.; Pariante, C.M. Insufficient glucocorticoid signaling and elevated inflammation in coronary heart disease patients with comorbid depression. Brain Behav. Immun. 2015, 48, 8–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klüppelholz, B.; Thorand, B.; Koenig, W.; de las Heras Gala, T.; Meisinger, C.; Huth, C.; Giani, G.; Franks, P.W.; Roden, M.; Rathmann, W.; et al. Association of subclinical inflammation with deterioration of glycaemia before the diagnosis of type 2 diabetes: The KORA S4/F4 study. Diabetologia 2015, 58, 2269–2277. [Google Scholar] [CrossRef] [Green Version]
- Magnusson Hanson, L.L.; Virtanen, M.; Rod, N.H.; Steptoe, A.; Head, J.; Batty, G.D.; Kivimäki, M.; Westerlund, H. Does inflammation provide a link between psychosocial work characteristics and diabetes? Analysis of the role of interleukin-6 and C-reactive protein in the Whitehall II cohort study. Brain Behav. Immun. 2019, 78, 153–160. [Google Scholar] [CrossRef] [PubMed]
- McCurley, J.L.; Mills, P.J.; Roesch, S.C.; Carnethon, M.; Giacinto, R.E.; Isasi, C.R.; Teng, Y.; Sotres-Alvarez, D.; Llabre, M.M.; Penedo, F.J.; et al. Chronic stress, inflammation, and glucose regulation in U.S. Hispanics from the HCHS/SOL Sociocultural Ancillary Study. Psychophysiology 2015, 52, 1071–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehrke, M.; Broedl, U.C.; Biller-Friedmann, I.M.; Vogeser, M.; Henschel, V.; Nassau, K.; Göke, B.; Kilger, E.; Parhofer, K.G. Serum concentrations of cortisol, interleukin 6, leptin and adiponectin predict stress induced insulin resistance in acute inflammatory reactions. Crit. Care 2008, 12, R157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Reeth, O.; Weibel, L.; Spiegel, K.; Leproult, R.; Dugovic, C.; Maccari, S. Interactions between stress and sleep: From basic research to clinical situations. Sleep Med. Rev. 2000, 4, 201–219. [Google Scholar] [CrossRef]
- Miller, G.E.; Cohen, S.; Ritchey, A.K. Chronic psychological stress and the regulation of pro-inflammatory cytokines: A glucocorticoid-resistance model. Health Psychol. 2002, 21, 531–541. [Google Scholar] [CrossRef]
- Björntorp, P. Visceral obesity: A “civilization syndrome”. Obes. Res. 1993, 1, 206–222. [Google Scholar] [CrossRef]
Hyperglycemia (n = 82, 10.8%) | Normoglycemia (n = 676, 89.2%) | Overall * | Men * | Women * | |
---|---|---|---|---|---|
Biomarkers ° | |||||
HbA1c (mmol/mol) | 53.2 (±6.0) | 37.4 (±3.6) | <0.0001 | <0.0001 | <0.0001 |
DCS | 1.5 (±0.8) | 1.7 (±0.8) | 0.04 | 0.19 | 0.10 |
CortisolAUC (n = 734) | 23.4 (±14.3) | 22.7 (±12.5) | 0.78 | 0.14 | 0.32 |
IL-6 (IU/mL) | 0.3 (±0.2) | 0.2 (±0.3) | 0.01 | 0.27 | 0.02 |
Serum cortisol (µg/dL) | 9.53 (±3.4) | 9.4 (±4.0) | 0.78 | 0.43 | 0.47 |
Sociodemographics * | |||||
Mean age (SD) | 75.8 (±5.7) | 75.0 (±6.3) | 0.19 | 0.85 | 0.07 |
Female | 33 (40.2) | 335 (49.6) | 0.11 | - | - |
Low education | 66 (80.5) | 482 (71.3) | 0.08 | 0.07 | 0.16 |
Living alone | 53 (65.4) | 440 (65.4) | 0.99 | 0.83 | 0.53 |
Cardiometabolic risk factors * | |||||
High alcohol intake | 61 (74.4) | 584 (90.5) | 0.20 | 0.32 | 0.12 |
Current smoker | 3 (0.4) | 28 (4.1) | 0.83 | 0.52 | 0.23 |
Physically inactive | 43 (52.4) | 282 (41.7) | 0.06 | 0.05 | 0.50 |
BMI, kg/m2 | 31.6 (±4.6) | 28.2 (±4.3) | <0.0001 | <0.0001 | <0.0001 |
Total/HDL cholesterol | 4.3 (±1.1) | 3.9 (±1.0) | 0.005 | 0.008 | 0.30 |
Hypertension | 70 (85.4) | 496 (65.5) | 0.02 | 0.26 | 0.03 |
Multimorbidity | 71 (86.6) | 401 (59.5) | <0.0001 | 0.004 | 0.001 |
Statin use | 34 (41.5) | 171 (25.3) | 0.002 | 0.03 | 0.02 |
Antidiabetic medications | 65 (79.3) | 17 (20.7) | <0.0001 | <0.0001 | <0.0001 |
Psychological factors * | |||||
Depressed mood | 1 (1.3) | 11 (1.6) | 0.80 | 0.41 | 0.63 |
Anxiety | 9 (11.4) | 45 (6.7) | 0.13 | 0.67 | 0.07 |
Sleep problems | 37 (45.1) | 328 (48.5) | 0.72 | 0.34 | 0.50 |
Flatter (32.9%, n = 247) | Medium (34.2%, n = 257) | Steeper (32.9%, n = 247) | Overall | Men | Women | |
---|---|---|---|---|---|---|
Biomarkers ° | ||||||
DCS | 0.80 (±0.5) | 2.36 (±2.1) | 2.55 (±0.4) | <0.0001 | <0.0001 | <0.0001 |
Cortisol AUC (n = 734) | 19.3 (±11.9) | 21.2 (±9.7) | 27.7 (±14.5) | <0.0001 | <0.0001 | <0.0001 |
Serum cortisol (µg/dL) | 9.6 (±4.1) | 9.4 (±4.1) | 9.3 (±3.7) | 0.49 | 0.92 | 0.46 |
IL-6 (IU/mL) | 0.3 (±0.3) | 0.2 (±0.2) | 0.2 (±0.2) | <0.0001 | <0.00001 | 0.002 |
HbA1c (mmol/mol) | 39.8 (±6.7) | 39.2 (±6.4) | 38.4 (±5.5) | 0.04 | 0.29 | 0.15 |
Sociodemographics * | ||||||
Mean age (SD) | 76.1 (±6.2) | 75.1 (±6.2) | 74.0 (±6.2) | 0.009 | 0.56 | <0.0001 |
Female | 120 (33.0) | 124 (34.1) | 120 (33.0) | 0.99 | - | - |
Low education | 177 (71.7) | 182 (70.8) | 183 (74.1) | 0.70 | 0.60 | 0.90 |
Living alone | 91 (36.8) | 89 (35.2) | 78 (31.6) | 0.45 | 0.98 | 0.18 |
Cardiometabolic risk factors * | ||||||
High Alcohol Intake | 75 (30.1) | 94 (36.7) | 70 (28.3) | 0.20 | 0.32 | 0.12 |
Current smoker | 13 (5.3) | 10 (3.9) | 8 (3.2) | 0.51 | 0.75 | 0.60 |
Physically inactive | 120 (49.6) | 107 (41.6) | 96 (38.9) | 0.08 | 0.81 | 0.04 |
BMI, kg/m2 | 28.9 (±4.7) | 28.7 (±4.3) | 28.1 (±4.1) | 0.27 | 0.98 | 0.10 |
Total/HDL cholesterol | 4.0 (±1.1) | 3.9 (±0.9) | 4.0 (±1.0) | 0.96 | 0.52 | 0.22 |
Type 2 diabetes | 44 (17.8) | 46 (17.9) | 43 (17.4) | 0.93 | 0.71 | 0.55 |
Antidiabetic medication | 40 (37.7) | 36 (34.0) | 30 (28.3) | 0.48 | 0.90 | 0.43 |
Statin use | 79 (38.5) | 70 (34.2) | 56 (27.3) | 0.09 | 0.03 | 0.87 |
Hypertension | 181 (73.3) | 195 (75.9) | 183 (74.4) | 0.80 | 0.66 | 0.18 |
Multimorbidity | 170 (69.1) | 153 (59.5) | 143 (58.1) | 0.11 | 0.02 | 0.78 |
Psychological factors * | ||||||
Depressed mood | 4 (1.7) | 5 (2.0) | 3 (1.2) | 0.80 | 0.79 | 0.37 |
Anxiety | 19 (7.8) | 19 (7.5) | 15 (6.1) | 0.73 | 0.81 | 0.88 |
Sleep problems | 116 (47.5) | 123 (48.8) | 124 (50.4) | 0.82 | 0.45 | 0.87 |
Direct Effects (DCS → HbA1c) | Indirect Effects (Mediation Effect) DCS → IL−6 → HbA1c | Total Effects | Proportion Mediated | |||||
---|---|---|---|---|---|---|---|---|
β (95% CI) | p | β (95% CI) | p | β (95% CI) | p | β (95% CI) | p | |
Model 1 | −0.07 (−0.15; −0.001) | 0.05 | −0.02 (−0.03–−0.01) | 0.01 | −0.10 (−0.16–0.02) | 0.03 | 0.18 (0.04–0.82) | 0.03 |
Model 2 | −0.01 (−0.01–0.001) | 0.10 | −0.02 (−0.003–0.001) | 0.01 | −0.01 (−0.02–0.001) | 0.04 | 0.17 (−0.003–1.04) | 0.04 |
Model 3 | −0.01 (−0.01–0.001) | 0.09 | 0.0002 (−0.001–0.001) | 0.71 | −0.006 (−0.01–0.001) | 0.10 | −0.02 (−0.62–0.48) | 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johar, H.; Spieler, D.; Bidlingmaier, M.; Herder, C.; Rathmann, W.; Koenig, W.; Peters, A.; Kruse, J.; Ladwig, K.-H. Chronic Inflammation Mediates the Association between Cortisol and Hyperglycemia: Findings from the Cross-Sectional Population-Based KORA Age Study. J. Clin. Med. 2021, 10, 2751. https://doi.org/10.3390/jcm10132751
Johar H, Spieler D, Bidlingmaier M, Herder C, Rathmann W, Koenig W, Peters A, Kruse J, Ladwig K-H. Chronic Inflammation Mediates the Association between Cortisol and Hyperglycemia: Findings from the Cross-Sectional Population-Based KORA Age Study. Journal of Clinical Medicine. 2021; 10(13):2751. https://doi.org/10.3390/jcm10132751
Chicago/Turabian StyleJohar, Hamimatunnisa, Derek Spieler, Martin Bidlingmaier, Christian Herder, Wolfgang Rathmann, Wolfgang Koenig, Annette Peters, Johannes Kruse, and Karl-Heinz Ladwig. 2021. "Chronic Inflammation Mediates the Association between Cortisol and Hyperglycemia: Findings from the Cross-Sectional Population-Based KORA Age Study" Journal of Clinical Medicine 10, no. 13: 2751. https://doi.org/10.3390/jcm10132751
APA StyleJohar, H., Spieler, D., Bidlingmaier, M., Herder, C., Rathmann, W., Koenig, W., Peters, A., Kruse, J., & Ladwig, K. -H. (2021). Chronic Inflammation Mediates the Association between Cortisol and Hyperglycemia: Findings from the Cross-Sectional Population-Based KORA Age Study. Journal of Clinical Medicine, 10(13), 2751. https://doi.org/10.3390/jcm10132751