The Types and Proportions of Commensal Microbiota Have a Predictive Value in Coronary Heart Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Data Extraction
2.4. Data Synthesis and Analysis
3. Results
3.1. Study Selection
3.2. Characteristics of Included Studies
3.3. Overall Comparison of the Gut, Blood, and Atherosclerotic Plaque Microbiota
3.4. Comparisons of Atherosclerotic Plaque, Blood, and Gut Microbiotas between Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dalen, J.E.; Alpert, J.S.; Goldberg, R.J.; Weinstein, R.S. The epidemic of the 20(th) century: Coronary heart disease. Am. J. Med. 2014, 127, 807–812. [Google Scholar] [CrossRef]
- Finegold, J.A.; Asaria, P.; Francis, D.P. Mortality from ischaemic heart disease by country, region, and age: Statistics from World Health Organisation and United Nations. Int. J. Cardiol. 2013, 168, 934–945. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.M.; Hazen, S.L. The gut microbial endocrine organ: Bacterially derived signals driving cardiometabolic diseases. Annu. Rev. Med. 2015, 66, 343–359. [Google Scholar] [CrossRef] [Green Version]
- Fatkhullina, A.R.; Peshkova, I.O.; Dzutsev, A.; Aghayev, T.; McCulloch, J.A.; Thovarai, V.; Badger, J.H.; Vats, R.; Sundd, P.; Tang, H.-Y. An Interleukin-23-Interleukin-22 Axis Regulates intestinal microbial homeostasis to protect from diet-induced atherosclerosis. Immunity 2018, 49, 943–957. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, A.L.; Backhed, F. Role of gut microbiota in atherosclerosis. Nat. Rev. Cardiol. 2017, 14, 79–87. [Google Scholar] [CrossRef]
- Chen, L.; Ishigami, T.; Doi, H.; Arakawa, K.; Tamura, K. Gut microbiota and atherosclerosis: Role of B cell for atherosclerosis focusing on the gut-immune-B2 cell axis. J. Mol. Med. 2020, 98, 1235–1244. [Google Scholar] [CrossRef] [PubMed]
- Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science 2005, 308, 1635–1638. [Google Scholar] [CrossRef] [Green Version]
- Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones, W.J.; Roe, B.A.; Affourtit, J.P. A core gut microbiome in obese and lean twins. Nature 2009, 457, 480–484. [Google Scholar] [CrossRef] [Green Version]
- Costello, E.K.; Lauber, C.L.; Hamady, M.; Fierer, N.; Gordon, J.I.; Knight, R. Bacterial community variation in human body habitats across space and time. Science 2009, 326, 1694–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasidze, I.; Li, J.; Quinque, D.; Tang, K.; Stoneking, M. Global diversity in the human salivary microbiome. Genome Res. 2009, 19, 636–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koren, O.; Spor, A.; Felin, J.; Fåk, F.; Stombaugh, J.; Tremaroli, V.; Behre, C.J.; Knight, R.; Fagerberg, B.; Ley, R.E. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. 1), 4592–4598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuomisto, S.; Huhtala, H.; Martiskainen, M.; Goebeler, S.; Lehtimäki, T.; Karhunen, P.J. Age-dependent association of gut bacteria with coronary atherosclerosis: Tampere Sudden Death Study. PLoS ONE 2019, 14, e0221345. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.H.; Chen, X.; Hu, X.M.; Niu, H.T.; Tian, R.; Wang, H.; Pang, H.; Jiang, L.; Qiu, B.; Chen, X. Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome 2019, 7, 68. [Google Scholar] [CrossRef] [PubMed]
- Emoto, T.; Yamashita, T.; Sasaki, N.; Hirota, Y.; Hayashi, T.; So, A.; Kasahara, K.; Yodoi, K.; Matsumoto, T.; Mizoguchi, T. Analysis of Gut Microbiota in Coronary Artery Disease Patients: A Possible Link between Gut Microbiota and Coronary Artery Disease. J. Atheroscler. Thromb. 2016, 23, 908–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, L.; Zhao, T.; Hu, H.; Zhang, W.; Hua, X. Association Study of Gut Flora in Coronary Heart Disease through High-Throughput Sequencing. BioMed Res. Int. 2017, 2017, 3796359. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, N.; Emoto, T.; Yamashita, T.; Watanabe, H.; Hayashi, T.; Tabata, T.; Hoshi, N.; Hatano, N.; Ozawa, G.; Sasaki, N. Bacteroides vulgatus and Bacteroides dorei Reduce Gut Microbial Lipopolysaccharide Production and Inhibit Atherosclerosis. Circulation 2018, 138, 2486–2498. [Google Scholar] [CrossRef]
- Amar, J.; Lelouvier, B.; Servant, F.; Lluch, J.; Burcelin, R.; Bongard, V.; Elbaz, M. Blood Microbiota Modification After Myocardial Infarction Depends Upon Low-Density Lipoprotein Cholesterol Levels. J. Am. Heart Assoc. 2019, 8, e011797. [Google Scholar] [CrossRef]
- Emoto, T.; Yamashita, T.; Kobayashi, T.; Sasaki, N.; Hirota, Y.; Hayashi, T.; So, A.; Kasahara, K.; Yodoi, K.; Matsumoto, T. Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism: Gut microbiota could be a diagnostic marker of coronary artery disease. Heart Vessel. 2017, 32, 39–46. [Google Scholar] [CrossRef]
- Toya, T.; Corban, M.T.; Marrietta, E.; Horwath, I.E.; Lerman, L.O.; Murray, J.A.; Lerman, A. Coronary artery disease is associated with an altered gut microbiome composition. PLoS ONE 2020, 15, e0227147. [Google Scholar] [CrossRef]
- Zhu, Q.; Gao, R.; Zhang, Y.; Pan, D.; Zhu, Y.; Zhang, X.; Yang, R.; Jiang, R.; Xu, Y.; Qin, H. Dysbiosis signatures of gut microbiota in coronary artery disease. Physiol. Genom. 2018, 50, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Yan, K.T.; Wang, J.X.; Dou, J.; Wang, J.; Ren, M.; Ma, J.; Zhang, X.; Liu, Y. Gut microbial taxa as potential predictive biomarkers for acute coronary syndrome and post-STEMI cardiovascular events. Sci. Rep. 2020, 10, 2639. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Wu, T.T.; Liu, Z.Q.; Li, A.; Guo, Q.Q.; Ma, Y.Y.; Zhang, Z.L.; Xun, Y.L.; Zhang, J.C.; Wang, W.R. Gut Microbiome-Based Diagnostic Model to Predict Coronary Artery Disease. J. Agric. Food Chem. 2020, 68, 3548–3557. [Google Scholar] [CrossRef]
- Alhmoud, T.; Kumar, A.; Lo, C.C.; Al-Sadi, R.; Clegg, S.; Alomari, I.; Zmeilia, T.; Gleasne, C.D.; Mcmurry, K.; Dichosa, A.E.K. Investigating intestinal permeability and gut microbiota roles in acute coronary syndrome patients. Hum. Microbiome J. 2019, 13, 100059. [Google Scholar] [CrossRef]
- Jie, Z.; Xia, H.; Zhong, S.L.; Feng, Q.; Li, S.; Liang, S.; Zhong, H.; Liu, Z.; Gao, Y.; Zhao, H. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 2017, 8, 845. [Google Scholar] [CrossRef] [Green Version]
- Li, C.W.; Gao, M.; Zhang, W.; Chen, C.Y.; Zhou, F.Y.; Hu, Z.X.; Zeng, C. Zonulin Regulates Intestinal Permeability and Facilitates Enteric Bacteria Permeation in Coronary Artery Disease. Sci. Rep. 2016, 6, 29142. [Google Scholar] [CrossRef] [PubMed]
- Pisano, E.; Severino, A.; Bugli, F.; Pedicino, D.; Sterbini, F.P.; Martini, C. Microbial signature in plaque and gut in acute coronary syndrome: Pathogenetic implications. Giornale Italiano Cardiol. 2019, 20, 111S–112S. [Google Scholar]
- Casalta, J.P.; Fournier, P.E.; Habib, G.; Riberi, A.; Raoult, D. Prosthetic valve endocarditis caused by Pseudomonas luteola. BMC Infect. Dis. 2005, 5, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caesar, R.; Reigstad, C.S.; Bäckhed, H.K.; Reinhardt, C.; Ketonen, M.; Lundén, G.Ö.; Cani, P.D.; Bäckhed, F. Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut 2012, 61, 1701–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riley, E.; Dasari, V.; Frishman, W.H.; Sperber, K. Vaccines in Development to Prevent and Treat Atherosclerotic Disease. Cardiol. Rev. 2008, 16, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Binder, C.J.; Horkko, S.; Dewan, A.; Chang, M.-K.; Kieu, E.P.; Goodyear, C.S.; Shaw, P.X.; Palinski, W.; Witztum, J.L.; Silverman, G.J. Pneumococcal vaccination decreases atherosclerotic lesion formation: Molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat. Med. 2003, 9, 736–743. [Google Scholar] [CrossRef]
- Ishigami, T.; Abe, K.; Aoki, I.; Minegishi, S.; Ryo, A.; Matsunaga, S.; Matsuoka, K.; Takeda, H.; Sawasaki, T.; Umemura, S. Anti-interleukin-5 and multiple autoantibodies are associated with human atherosclerotic diseases and serum interleukin-5 levels. FASEB J. 2013, 27, 3437–3445. [Google Scholar] [CrossRef]
- Canducci, F.; Saita, D.; Foglieni, C.; Piscopiello, M.R.; Chiesa, R.; Colombo, A.; Cianflone, D.; Maseri, A.; Clementi, M.; Burioni, R. Cross-reacting antibacterial auto-antibodies are produced within coronary atherosclerotic plaques of acute coronary syndrome patients. PLoS ONE 2012, 7, e42283. [Google Scholar] [CrossRef] [PubMed]
- Saita, D.; Ferrarese, R.; Foglieni, C.; Esposito, A.; Canu, T.; Perani, L.; Ceresola, E.R.; Visconti, L.; Burioni, R.; Clementi, M. Adaptive immunity against gut microbiota enhances apoE-mediated immune regulation and reduces atherosclerosis and western-diet-related inflammation. Sci. Rep. 2016, 6, 29353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neves, A.L.; Coelho, J.; Couto, L.; Leite-Moreira, A.; Roncon-Albuquerque, R. Metabolic endotoxemia: A molecular link between obesity and cardiovascular risk. J. Mol. Endocrinol. 2013, 51, R51–R64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.S.; Bie, J.; Wang, J.; Ghosh, S. Oral Supplementation with Non-Absorbable Antibiotics or Curcumin Attenuates Western Diet-Induced Atherosclerosis and Glucose Intolerance in LDLR−/− Mice—Role of Intestinal Permeability and Macrophage Activation. PLoS ONE 2014, 9, e108577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, J.; Kanazawa, A.; Ikeda, F.; Yoshihara, T.; Goto, H.; Abe, H.; Komiya, K.; Kawaguchi, M.; Shimizu, T.; Ogihara, T. Gut Dysbiosis and Detection of “Live Gut Bacteria” in Blood of Japanese Patients with Type 2 Diabetes. Diabetes Care 2014, 37, 2343–2350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Chen, G.; Manwani, D.; Mortha, A.; Xu, C.; Faith, J.J.; Burk, R.D.; Kunisaki, Y.; Jang, J.E.; Scheiermann, C. Neutrophil ageing is regulated by the microbiome. Nature 2015, 525, 528–532. [Google Scholar] [CrossRef]
- Arakawa, K.; Ishigami, T.; Nakai-Sugiyama, M.; Chen, L.; Doi, H.; Kino, T.; Minegishi, S.; Saigoh-Teranaka, S.; Sasaki-Nakashima, R.; Hibi, K. Lubiprostone as a potential therapeutic agent to improve intestinal permeability and prevent the development of atherosclerosis in apolipoprotein E-deficient mice. PLoS ONE 2019, 14, e0218096. [Google Scholar] [CrossRef]
- Campbell, L.A.; Kuo, C.C. Chlamydia pneumoniae--an infectious risk factor for atherosclerosis? Nat. Rev. Microbiol. 2004, 2, 23–32. [Google Scholar] [CrossRef]
- Moazed, T.C.; Kuo, C.; Grayston, J.T.; Campbell, L.A. Murine models of Chlamydia pneumoniae infection and atherosclerosis. J. Infect. Dis. 1997, 175, 883–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ott, S.J.; El Mokhtari, N.E.; Musfeldt, M.; Hellmig, S.; Freitag, S.; Rehman, A.; Kühbacher, T.; Nikolaus, S.; Namsolleck, P.; Blaut, M. Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation 2006, 113, 929–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidenreich, P.A.; Mamic, P. Is Our Diet Turning Our Gut Microbiome Against Us? J. Am. Coll. Cardiol. 2020, 75, 773–775. [Google Scholar] [CrossRef] [PubMed]
Study | Country of Origin | Population | Sample Size | Type of Sample | Region of Gene Quantification | ||
---|---|---|---|---|---|---|---|
Fecal Samples | Plaque Samples | Blood Samples | |||||
Tuomisto S, 2019 [13] | Finland | CHD | 67 | √ | √ | DNA | |
Liu HH, 2019 [14] | China | CAD | 201 | √ | V3-V4 of 16S rRNA | ||
Emoto T, 2016 [15] | Japan | CAD | 119 | √ | 16S rDNA | ||
Cui L, 2017 [16] | China | CHD | 64 | √ | V3-V5 of 16S rRNA | ||
Yoshida N, 2018 [17] | Japan | CAD | 60 | √ | V3-V4 of 16S rRNA | ||
Amar J, 2019 [18] | France | MI | 201 | √ | V3-V4 of 16S rDNA | ||
Emoto T, 2017 [19] | Japan | CAD | 69 | √ | 16S rDNA | ||
Toya T, 2020 [20] | USA | Advanced CAD | 106 | √ | V3-V5 of 16S rDNA | ||
Zhu Q, 2018 [21] | China | CAD | 168 | √ | V4 of 16S rRNA | ||
Gao J, 2020 [22] | China | ACS | 90 | √ | V4 of 16S rDNA | ||
Zheng YY, 2020 [23] | China | CAD | 309 | √ | V3-V4 of 16S rRNA | ||
Koren O, 2011 [11] | USA | Atherosclerosis | 30 | √ | V1-V2 of 16S rRNA | ||
Alhmoud T, 2019 [24] | USA | ACS | 38 | √ | V3-V4 of 16S rRNA | ||
Jie Z, 2017 [25] | China | ACVD | 405 | √ | DNA | ||
Li CW, 2016 [26] | China | CAD | 206 | √ | 16S rRNA | ||
Pisano E, 2019 [27] | Italy | CAD | 77 | √ | √ | 16S rRNA |
Microbiota in Plaque Samples | No. of Publications (n = 3) |
---|---|
Veillonella; Staphylococcus; Burkholderia; Propionibacterium; Corynebacterium; Proteobacteria | 2 |
Streptococcus | 3 |
Microbiota in Fecal Samples | No. of Publications (n = 13) |
---|---|
Enterococcus; Catenisphaera; Coriobacteriaceae; Akkermansla; Veillonella; Erysipelotrichaceae bacterium | 2 |
Proteobacteria; Fusobacteria; Escherichia | 3 |
Lachnospiraceae; Ruminococcaceae; Roseburia; Faecalibacterium | 4 |
Streptococcus | 5 |
Enterobacteriaceae; Lactobacillales | 6 |
Firmicutes | 7 |
Bacteroides; Prevotela | 9 |
Microbiota in Fecal Samples | Increase | Decrease | No. of Publications (n = 13) |
---|---|---|---|
Catenisphaera; Coriobacteriaceae | √ | 2 | |
Fusobacteria; Escherichia | √ | 3 | |
Lachnospiraceae | √ | 4 | |
Streptococcus | √ | 5 |
The Change of Microbiota | |
---|---|
Increase | Sphingobacteria, hymenobacter, virgisporangium, micromonosporaceae, bauldia, rhizobiales, Pseudomonadaceae, Rahnella, Serratia, Pseudomonas |
Decrease | Caulobacteraceae, Clostridiales, Microbacteriaceae, Neisseriaceae, Brevundimonas, Chryseobacterium, Gordonia, Microbacterium |
Microbiota | Plaque + Fecal | Blood + Fecal |
---|---|---|
Veillonella | √ | |
Proteobacteria | √ | |
Streptococcus | √ | |
Clostridiales | √ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Ishigami, T.; Doi, H.; Arakawa, K.; Tamura, K. The Types and Proportions of Commensal Microbiota Have a Predictive Value in Coronary Heart Disease. J. Clin. Med. 2021, 10, 3120. https://doi.org/10.3390/jcm10143120
Chen L, Ishigami T, Doi H, Arakawa K, Tamura K. The Types and Proportions of Commensal Microbiota Have a Predictive Value in Coronary Heart Disease. Journal of Clinical Medicine. 2021; 10(14):3120. https://doi.org/10.3390/jcm10143120
Chicago/Turabian StyleChen, Lin, Tomoaki Ishigami, Hiroshi Doi, Kentaro Arakawa, and Kouichi Tamura. 2021. "The Types and Proportions of Commensal Microbiota Have a Predictive Value in Coronary Heart Disease" Journal of Clinical Medicine 10, no. 14: 3120. https://doi.org/10.3390/jcm10143120
APA StyleChen, L., Ishigami, T., Doi, H., Arakawa, K., & Tamura, K. (2021). The Types and Proportions of Commensal Microbiota Have a Predictive Value in Coronary Heart Disease. Journal of Clinical Medicine, 10(14), 3120. https://doi.org/10.3390/jcm10143120