Clinical and Non-Clinical Determinants of the Effect of Mechanical Thrombectomy and Post-Stroke Functional Status of Patients in Short and Long-Term Follow-Up
Abstract
:1. Introduction
2. Materials and Methods
- their age at the time of their first-ever stroke;
- their white blood cell counts (WBC), C-reactive protein (CRP), platelet (PLT), hemoglobin (Hb), glucose and troponin (TnI) concentration on the first day of hospitalization (at admission);
- their neurological status on the first day (at baseline, before MT) of stroke evaluated on the NIHSS (National Institute of Health Stroke Scale);
- comorbidities, such as atrial fibrillation (AF), arterial hypertension (AH), coronary heart disease (CHD), diabetes mellitus (DM), lipid disorders (LD), and >70% atherosclerotic carotid artery stenosis (CAS, ipsilaterally to stroke);
- exposition to antithrombotic/anticoagulant therapy before stroke;
- echocardiographic parameters (left atrium size, ejection fraction);
- angiographic effect of MT (according to TICI)
- beneficial angiographic effect (TICI 2b-3) after the first pass (FPE, first pass effect);
- their functional status according to modified Rankin scale (mRS) on days 10, 30 and 365 following stroke.
2.1. Description of the Mechanical Thrombectomy Method
2.2. Statistical Analysis
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Broderick, J.P.; Palesch, Y.Y.; Demchuk, A.M.; Yeatts, S.D.; Khatri, P.; Hill, M.; Jauch, E.C.; Jovin, T.G.; Yan, B.; Silver, F.L.; et al. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N. Engl. J. Med. 2013, 368, 893–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciccone, A.; Valvassori, L.; Nichelatti, M.; Sgoifo, A.; Ponzio, M.; Sterzi, R.; Boccardi, E. Endovascular treatment for acute ischemic stroke. N. Engl. J. Med. 2013, 368, 904–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidwell, C.S.; Jahan, R.; Gornbein, J.; Alger, J.R.; Nenov, V.; Ajani, Z.; Feng, L.; Meyer, B.C.; Olson, S.; Schwamm, L.; et al. A trial of imaging selection and endovascular treatment for ischemic stroke. N. Engl. J. Med. 2013, 368, 914–923. [Google Scholar] [CrossRef] [Green Version]
- Berkhemer, O.A.; Fransen, P.S.S.; Beumer, D.; Berg, L.A.V.D.; Lingsma, H.F.; Yoo, A.J.; Schonewille, W.J.; Vos, J.A.; Nederkoorn, P.J.; Wermer, M.J.H.; et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N. Engl. J. Med. 2015, 372, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Goyal, M.; Demchuk, A.M.; Menon, B.K.; Eesa, M.; Rempel, J.L.; Thornton, J.; Roy, D.; Jovin, T.G.; Willinsky, R.A.; Sapkota, B.L.; et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N. Engl. J. Med. 2015, 372, 1019–1030. [Google Scholar] [CrossRef] [PubMed]
- Saver, J.L.; Goyal, M.; Bonafe, A.; Diener, H.-C.; Levy, E.I.; Pereira, V.M.; Albers, G.W.; Cognard, C.; Cohen, D.J.; Hacke, W.; et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N. Engl. J. Med. 2015, 372, 2285–2295. [Google Scholar] [CrossRef] [Green Version]
- Campbell, B.; Mitchell, P.J.; Kleinig, T.; Dewey, H.M.; Churilov, L.; Yassi, N.; Yan, B.; Dowling, R.J.; Parsons, M.W.; Oxley, T.; et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N. Engl. J. Med. 2015, 372, 1009–1018. [Google Scholar] [CrossRef] [Green Version]
- Jovin, T.G.; Chamorro, A.; Cobo, E.; De Miquel, M.A.; Molina, C.A.; Rovira, A.; Román, L.S.; Serena, J.; Abilleira, S.; Ribo, M.; et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N. Engl. J. Med. 2015, 372, 2296–2306. [Google Scholar] [CrossRef] [Green Version]
- Goyal, M.; Menon, B.K.; Van Zwam, W.H.; Dippel, D.W.J.; Mitchell, P.J.; Demchuk, A.M.; Dávalos, A.; Majoie, C.B.L.M.; Van Der Lugt, A.; De Miquel, M.A.; et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016, 387, 1723–1731. [Google Scholar] [CrossRef]
- Saver, J.L.; Goyal, M.; van der Lugt, A.A.D.; Menon, B.K.; Majoie, C.B.; Dippel, D.W. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: A meta-analysis. JAMA 2016, 316, 1279–1288. [Google Scholar] [CrossRef]
- Nogueira, R.G.; Jovin, T.G.; Haussen, D.C.; Gupta, R.; Jadhav, A.; Budzik, R.F. Influence of time to endovascular stroke treatment on outcomes in the early versus extended window paradigms. Int. J. Stroke 2021, 17474930211006304, published online ahead of print. [Google Scholar]
- Akbik, F.; Alawieh, A.; Cawley, C.M.; Howard, B.M.; Tong, F.C.; Nahab, F.; Grossberg, J.A. Differential effect of mechanical thrombectomy and intravenous thrombolysis in atrial fibrillation associated stroke. J. Neurointerv. Surg. 2021, 13, 883–888. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Shi, M.-C.; Wang, Z.-X.; Li, C.; Sun, M.-Y.; Zhou, J.; Zhang, W.-B.; Huo, L.-W.; Wang, S.-C. Factors associated with poor outcomes in patients undergoing endovascular therapy for acute ischemic stroke due to large-vessel occlusion in acute anterior circulation: A retrospective study. World Neurosurg. 2021, 149, e128–e134. [Google Scholar] [CrossRef] [PubMed]
- Wirtz, M.M.; Hendrix, P.; Goren, O.; Beckett, L.A.; DiCristina, H.R.; Schirmer, C.M.; Dalal, S.; Weiner, G.; Foreman, P.M.; Zand, R.; et al. Predictor of 90-day functional outcome after mechanical thrombectomy for large vessel occlusion stroke: NIHSS score of 10 or less at 24 hours. J. Neurosurg. 2021, 134, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.B.; Alqahtani, F.; Beltagy, A.; Tarabishy, A.; Alkhouli, M. Comparative outcomes of mechanical thrombectomy for acute ischemic stroke in patients with and without atrial fibrillation. J. Vasc. Interv. Radiol. 2017, 28, 1604–1605. [Google Scholar] [CrossRef]
- Pan, G.X.; Liu, G.; Li, Y.; Wang, B.; Chong, Y.; Jiang, C.; Ci, Y. Is atrial fibrillation a prognostic predictor for patients with acute ischemic stroke treated with thrombectomy? Int. J. Clin. Exp. Med. 2016, 9, 6819–6824. [Google Scholar]
- Li, X.; Li, C.; Shi, M.; Qu, Y.; Huo, L.; Hao, Z.; Yue, F.; Gan, L.; Wang, S. Which glucose parameter best predicts poor outcome after mechanical thrombectomy for acute large vessel occlusion stroke? Intern. Med. J. 2021. published online ahead of print. [Google Scholar] [CrossRef]
- Wollenweber, F.A.; Tiedt, S.; Alegiani, A.; Alber, B.; Bangard, C.; Berrouschot, J.; Fiehler, J. Functional outcome following stroke thrombectomy in clinical practice. Stroke 2019, 50, 2500–2506. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, A.P.; Aghaebrahim, A.; Jankowitz, B.T.; Haussen, D.C.; Budzik, R.F.; Bonafe, A.; Jovin, T.G. Benefit of endovascular thrombectomy by mode of onset: Secondary analysis of the DAWN trial. Stroke 2019, 50, 3141–3146. [Google Scholar] [CrossRef] [PubMed]
- Leker, R.R.; Farraj, A.; Filioglo, A.; Sacagiu, T.; Honig, A.; Gomori, J.M.; Cohen, J.E. Influence of atrial fibrillation detection time on outcome after endovascular thrombectomy. J. Neurol. Sci. 2020, 419, 117189. [Google Scholar] [CrossRef] [PubMed]
- Lamassa, M.; Di Carlo, A.; Pracucci, G.; Basile, A.M.; Trefoloni, G.; Vanni, P.; Inzitari, D. Characteristics, outcome, and care of stroke associated with atrial fibrillation in Europe: Data from a multicenter multinational hospital-based registry (The European community stroke project). Stroke 2001, 32, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Leker, R.; Farraj, A.; Sacagiu, T.; Honig, A.; Abu Elhasan, H.; Gomori, J.; Cohen, J. Atrial fibrillation treatment adequacy and outcome after endovascular thrombectomy. J. Stroke Cerebrovasc. Dis. 2020, 29, 104948. [Google Scholar] [CrossRef] [PubMed]
- Smaal, J.; De Ridder, I.; Heshmatollah, A.; Van Zwam, W.; Dippel, D.; Majoie, C.; Brown, S.; Goyal, M.; Campbell, B.; Muir, K.; et al. Effect of atrial fibrillation on endovascular thrombectomy for acute ischemic stroke. A meta-analysis of individual patient data from six randomised trials: Results from the HERMES collaboration. Eur. Stroke J. 2020, 5, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Heshmatollah, A.; Fransen, P.S.S.; Berkhemer, O.A.; Beumer, D.; Van Der Lugt, A.; Majoie, C.B.L.M.; Oostenbrugge, R.J.; Van Zwam, W.H.; Koudstaal, P.J.; Roos, Y.B.W.E.M.; et al. Endovascular thrombectomy in patients with acute ischaemic stroke and atrial fibrillation: A MR clean subgroup analysis. EuroIntervention 2017, 13, 996–1002. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Zha, M.; Gao, J.; Du, J.; Liu, R.; Liu, X. Increased intracranial hemorrhage of mechanical thrombectomy in acute ischemic stroke patients with atrial fibrillation. J. Thromb. Thrombolysis 2021, 51, 536–544. [Google Scholar] [CrossRef] [PubMed]
- L’Allinec, V.; Ernst, M.; Sevin-Allouet, M.; Testard, N.; Delasalle-Guyomarch, B.; Guillon, B.; Bourcier, R. Safety and efficacy of mechanical thrombectomy in acute ischemic stroke of anticoagulated patients. J. Neurointerv. Surg. 2018, 10, 29. [Google Scholar] [CrossRef]
- Rebello, L.C.; Haussen, D.C.; Belagaje, S.; Anderson, A.; Frankel, M.; Nogueira, R.G. Endovascular treatment for acute ischemic stroke in the setting of anticoagulation. Stroke 2015, 46, 3536–3539. [Google Scholar] [CrossRef] [Green Version]
- Mundiyanapurath, S.; Tillmann, A.; Möhlenbruch, M.A.; Bendszus, M.; Ringleb, P.A. Endovascular stroke therapy may be safe in patients with elevated international normalized ratio. J. Neurointerv. Surg. 2016, 9, 1187–1190. [Google Scholar] [CrossRef]
- Wong, J.W.; Churilov, L.; Dowling, R.; Mitchell, P.; Bush, S.; Kanesan, L.; Yan, B. Safety of endovascular thrombectomy for acute ischaemic stroke in anticoagulated patients ineligible for intravenous thrombolysis. Cerebrovasc. Dis. 2018, 46, 193–199. [Google Scholar] [CrossRef]
- Giustozzi, M.; Acciarresi, M.; Agnelli, G.; Caso, V.; Bandini, F.; Tsivgoulis, G.; Masotti, L. Safety of anticoagulation in patients treated with urgent reperfusion for ischemic stroke related to atrial fibrillation. Stroke 2020, 51, 2347–2354. [Google Scholar] [CrossRef]
- Xun, K.; Mo, J.; Ruan, S.; Dai, J.; Zhang, W.; Lv, Y.; Wu, Y. A meta-analysis of prognostic factors in patients with posterior circulation stroke after mechanical thrombectomy. Cerebrovasc. Dis. 2021, 50, 185–199. [Google Scholar] [CrossRef] [PubMed]
- Parsons, M.W.; Barber, P.A.; Desmond, P.M.; Baird, T.A.; Darby, D.G.; Byrnes, G.; Tress, B.M.; Davis, S.M. Acute hyperglycemia adversely affects stroke outcome: A magnetic resonance imaging and spectroscopy study. Ann. Neurol. 2002, 52, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Lansberg, M.G.; Albers, G.W.; Wijman, C.A.C. Symptomatic intracerebral hemorrhage following thrombolytic therapy for acute ischemic stroke: A review of the risk factors. Cerebrovasc. Dis. 2007, 24, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Hong, J.M.; Lee, S.E.; Kang, D.R.; Ovbiagele, B.; Demchuk, A.M.; Lee, J.S. Association of fibrinogen level with early neurological deterioration among acute ischemic stroke patients with diabetes. BMC Neurol. 2017, 17, 101. [Google Scholar] [CrossRef] [Green Version]
- Kase, C.S.; Furlan, A.J.; Wechsler, L.R.; Higashida, R.T.; Rowley, H.A.; Hart, R.G.; Proact II Investigators. Cerebral hemorrhage after intra-arterial thrombolysis for ischemic stroke: The PRO-ACT II trial. Neurology 2001, 57, 1603–1610. [Google Scholar] [CrossRef]
- Lee, J.S.; Hwang, Y.-H.; Sohn, S.-I. Factors contributing to an efficacious endovascular treatment for acute ischemic stroke in asian population. Neurointervention 2021, 16, 91–110. [Google Scholar] [CrossRef]
- Kim, J.T.; Liebeskind, D.S.; Jahan, R.; Menon, B.K.; Goyal, M.; Nogueira, R.G.; Saver, J.L. Impact of hyperglycemia according to the collateral status on outcomes in mechanical thrombectomy. Stroke 2018, 49, 2706–2714. [Google Scholar] [CrossRef]
- Kruyt, N.D.; Biessels, G.J.; Devries, J.H.; Roos, Y.B. Hyperglycemia in acute ischemic stroke: Pathophysiology and clinical management. Nat. Rev. Neurol. 2010, 6, 145–155. [Google Scholar] [CrossRef]
- Borggrefe, J.; Glück, B.; Maus, V.; Onur, Ö.; Abdullayev, N.; Barnikol, U.; Kabbasch, C.; Fink, G.R.; Mpotsaris, A. Clinical outcome after mechanical thrombectomy in patients with diabetes with major ischemic stroke of the anterior circulation. World Neurosurg. 2018, 120, e212–e220. [Google Scholar] [CrossRef]
- Marik, P.E.; Bellomo, R. Stress hyperglycemia. Crit. Care Med. 2013, 41, e93–e94. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Z.; Tian, X.; Wang, H.; Yang, D.; Hao, Y.; Shi, Z.; Lin, M.; Wang, Z.; Zheng, D.; et al. Impact of relative blood glucose changes on mortality risk of patient with acute ischemic stroke and treated with mechanical thrombectomy. J. Stroke Cerebrovasc. Dis. 2019, 28, 213–219. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Z.; Miao, J.; Zheng, W.; Yang, Q.; Ye, X.; Zhuang, X.; Peng, F. High stress hyperglycemia ratio predicts poor outcome after mechanical thrombectomy for ischemic stroke. J. Stroke Cerebrovasc. Dis. 2019, 28, 1668–1673. [Google Scholar] [CrossRef]
- Merlino, G.; Pez, S.; Gigli, G.L.; Sponza, M.; Lorenzut, S.; Surcinelli, A.; Smeralda, C.; Valente, M. Stress hyperglycemia in patients with acute ischemic stroke due to large vessel occlusion undergoing mechanical thrombectomy. Front. Neurol. 2021, 12, 1701. [Google Scholar] [CrossRef]
- Kannan, M.; Ahmad, F.; Saxena, R. Platelet activation markers in evaluation of thrombotic risk factors in various clinical set-tings. Blood Rev. 2019, 37, 100583. [Google Scholar] [CrossRef] [PubMed]
- Kojok, K.; Mira, M.; Souhad, E.; Mourad, W.; Merhi, Y. CD40L priming of platelets via nf-κb activation is cd40- and tak1-dependent. Can. J. Cardiol. 2018, 34, S167. [Google Scholar] [CrossRef]
- Fuentes, E.; Moore-Carrasco, R.; Paes, A.M.D.A.; Trostchansky, A. Role of platelet activation and oxidative stress in the evolution of myocardial infarction. J. Cardiovasc. Pharmacol. Ther. 2019, 24, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Mechtouff, L.; Bochaton, T.; Paccalet, A.; Da Silva, C.C.; Buisson, M.; Amaz, C.; Derex, L.; Ong, E.; Berthezene, Y.; Eker, O.F.; et al. Association of Interleukin-6 levels and futile reperfusion after mechanical thrombectomy. Neurology 2020, 96, 752–757. [Google Scholar] [CrossRef]
- Lasek-Bal, A.; Jedrzejowska-Szypulka, H.; Student, S.; Warsz-Wianecka, A.; Zareba, K.; Puz, P.; Lewin-Kowalik, J. The importance of selected markers of inflammation and blood-brain barrier damage for short-term ischemic stroke prognosis. J. Physiol. Pharmacol. 2019, 70, 209–217. [Google Scholar]
- Stryjewska-Makuch, G.; Glück, J.; Niemiec-Urbańczyk, M.; Humeniuk-Arasiewicz, M.; Kolebacz, B.; Lasek-Bal, A. Inflammatory lesions in the paranasal sinuses in patients with ischemic stroke who underwent mechanical thrombectomy. Pol. Arch. Intern. Med. 2021, 131, 326–331. [Google Scholar]
- Kim, S.K.; Yoon, W.; Kim, T.S.; Kim, H.S.; Heo, T.W.; Park, M.S. Histologic analysis of retrieved clots in acute ischemic stroke: Correlation with stroke etiology and gradient-echo MRI. Am. J. Neuroradiol. 2015, 36, 1756–1762. [Google Scholar] [CrossRef] [Green Version]
- Sporns, P.B.; Hanning, U.; Schwindt, W.; Velasco, A.; Minnerup, J.; Zoubi, T.; Niederstadt, T.U. Ischemic stroke: What does the histological composition tell us about the origin of the thrombus? Stroke 2017, 48, 2206–2210. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, X.; Wang, J.; Zhang, Y.; Dmytriw, A.A.; Wang, T.; Xu, R.; Ma, Y.; Li, L.; Feng, Y.; et al. Factors influencing recanalization after mechanical thrombectomy with first-pass effect for acute ischemic stroke: A systematic review and meta-analysis. Front. Neurol. 2021, 12, 628523. [Google Scholar] [CrossRef] [PubMed]
- Zaidat, O.; Castonguay, A.; Gupta, R.; Sun, C.; Martín, C.; Holloway, W.; Mueller-Kronast, N.; English, J.; Linfante, I.; Dabus, G.; et al. O-004 the first pass effect: A new measure for stroke thrombectomy devices. J. NeuroInterv. Surg. 2015, 7, A2.2–A3. [Google Scholar] [CrossRef]
- Kang, D.-H.; Kim, B.M.; Heo, J.H.; Nam, H.S.; Kim, Y.D.; Hwang, Y.H.; Kim, Y.-W.; Kim, D.J.; Kim, J.W.; Baek, J.-H. Effects of first pass recanalization on outcomes of contact aspiration thrombectomy. J. NeuroInterv. Surg. 2019, 12, 466–470. [Google Scholar] [CrossRef] [PubMed]
- García-Tornel, Á.; Requena, M.; Rubiera, M.; Muchada, M.; Pagola, J.; Rodriguez-Luna, D.; Ribo, M. When to stop. Stroke 2019, 50, 1781–1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Age Mean ± SD; Med. (Range) | 67.8 ± 13.2; 70 (20–92) |
---|---|
Female | 199 (47.7%) |
AF | 108 (26.0%) |
CHD (data for n = 408) | 221 (52.9%) |
DM | 105 (25.3%) |
LD | 168 (40.4%) |
AH | 315 (75.5%) |
CAS (ipsilateral ICA ≥ 50%) | 51 (12.1%) |
Nicotinism (data for n = 310) | 115 (37.1%) |
Antiplatelet therapy before MT | 134 (32.1%) |
Anticoagulation therapy before MT | 55 (13.2%) |
rt-PA iv | 254 (61.2%) |
Thrombocytopenia (data for n = 412) | 27 (6.6%) |
Leukocytosis | 95 (22.7%) |
Anemia | 33 (7.91%) |
High CRP levels | 118 (28.2%) |
High troponin concentration (data for n = 374) | 202 (54.0%) |
Admission hyperglycemia (≥160 mg%) | 91 (21.82%) |
INR out of therapeutic range (in treated patients) | 39 (70.9%) |
MT in drip-and-ship model | 274 (65.7%) |
Time stroke onset- first head CT, mean (range) | 198 ± 7.8 min (119–315) |
Time stroke onset- groin puncture, mean (range) | 242 ± 12.3 min (80–368) |
Time of MT duration, mean (range) | 111 min (24–199) |
FPE | 176 (42.2%) |
NIHSS; mean ± SD; med. (range); IQR (range Q1 Q3) | 12.8 ± 5.6; 12 (0–43); 7 (9–16) |
TICI 2b–3 | 274 (65.7%) |
ICB; sICB | 95 (22.7%); 21 (5%) |
mRS 10 d; mean ± SD; med. (range); IQR (range Q1 Q3) | 3.87 ± 1.75; 4 (0–6); 2 (3–5) |
mRS 30d; mean ± SD; med. (range); IQR (range Q1 Q3) | 3.32 ± 1.69; 3 (2–5); 4 (0–6) |
mRS 12m; mean ± SD; med. (range); IQR (range Q1 Q3) | 3.14 ± 1.52; 3 (0–6); 3 (2–5) |
Coefficients | OR | CI 95% | p-Value |
---|---|---|---|
Age | 1.103 | 1.044–1.174 | 0.001 |
Gender | 0.484 | 0.126–1.731 | 0.274 |
LD | 0.554 | 0.265–1.126 | 0.108 |
AF | 0.365 | 0.064–1.919 | 0.239 |
AH | 0.743 | 0.053–1.828 | 0.238 |
DM | 0.484 | 0.083–2.749 | 0.409 |
CAS | 0.698 | 0.114–3.858 | 0.683 |
CHD | 1.625 | 0.684–3.721 | 0.109 |
Nicotinism | 0.373 | 0.115–1.62 | 0.163 |
CRP | 1.827 | 0.884–3.931 | 0.111 |
WBC | 0.294 | 0.08–1.002 | 0.05 |
TnI | 0.554 | 0.265–1.126 | 0.101 |
EF | 0.663 | 0.376–1.237 | 0.219 |
LAE | 0.371 | 0.071–2.632 | 0.308 |
NIHSS | 1.291 | 1.129–1.511 | 0.001 |
rt-PA iv | 0.947 | 0.195–4.539 | 0.945 |
TICI | 0.184 | 0.044–01.688 | 0.055 |
ICB | 1.128 | 0.354–3.598 | 0.837 |
Hemicraniectomy | 0.657 | 0.103–2.771 | 0.585 |
Coefficients | OR | CI 95% | p-Value |
---|---|---|---|
Age | 1.048 | (1.015–1.086) | 0.006 |
NIHSS | 1.166 | (1.077–1.275) | 0 |
LD | 0.554 | (0.265–1.126) | 0.108 |
Coefficients | OR | CI 95% | p-Value |
---|---|---|---|
Age | 1.098 | 1.038–1.171 | 0.002 |
Gender | 0.77 | 0.197–2.858 | 0.699 |
NIHSS | 1.269 | 1.107–1.491 | 0.002 |
rt-PA iv | 1.412 | 0.29–7.004 | 0.668 |
DM | 0.927 | 0.156–5.593 | 0.933 |
AH | 1.099 | 0.265–4.716 | 0.897 |
CHD | 0.89 | 0.186–2.653 | 0.575 |
AF | 1.05 | 0.176–6.529 | 0.957 |
LD | 0.742 | 0.199–2.713 | 0.651 |
CAS | 0.434 | 0.051–2.887 | 0.408 |
Nicotinism | 0.262 | 0.114–1.522 | 0.163 |
TICI | 0.259 | 0.062–0.988 | 0.053 |
ICB | 1.26 | 0.375–4.254 | 0.707 |
Coefficients | OR | CI 95% | p-Value |
---|---|---|---|
Age | 1.098 | (1.038–1.171) | 0.0002 |
NIHSS | 1.269 | (1.107–1.495) | 0.002 |
TICI | 0.319 | (0.086–1.097) | 0.076 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasek-Bal, A.; Binek, Ł.; Żak, A.; Student, S.; Krzan, A.; Puz, P.; Bal, W.; Uchwat, U. Clinical and Non-Clinical Determinants of the Effect of Mechanical Thrombectomy and Post-Stroke Functional Status of Patients in Short and Long-Term Follow-Up. J. Clin. Med. 2021, 10, 5084. https://doi.org/10.3390/jcm10215084
Lasek-Bal A, Binek Ł, Żak A, Student S, Krzan A, Puz P, Bal W, Uchwat U. Clinical and Non-Clinical Determinants of the Effect of Mechanical Thrombectomy and Post-Stroke Functional Status of Patients in Short and Long-Term Follow-Up. Journal of Clinical Medicine. 2021; 10(21):5084. https://doi.org/10.3390/jcm10215084
Chicago/Turabian StyleLasek-Bal, Anetta, Łukasz Binek, Amadeusz Żak, Sebastian Student, Aleksandra Krzan, Przemysław Puz, Wiesław Bal, and Urszula Uchwat. 2021. "Clinical and Non-Clinical Determinants of the Effect of Mechanical Thrombectomy and Post-Stroke Functional Status of Patients in Short and Long-Term Follow-Up" Journal of Clinical Medicine 10, no. 21: 5084. https://doi.org/10.3390/jcm10215084
APA StyleLasek-Bal, A., Binek, Ł., Żak, A., Student, S., Krzan, A., Puz, P., Bal, W., & Uchwat, U. (2021). Clinical and Non-Clinical Determinants of the Effect of Mechanical Thrombectomy and Post-Stroke Functional Status of Patients in Short and Long-Term Follow-Up. Journal of Clinical Medicine, 10(21), 5084. https://doi.org/10.3390/jcm10215084