Clinical Implications of the General Movement Optimality Score: Beyond the Classes of Rasch Analysis
Abstract
:1. Introduction
2. Experimental Section
3. Results
4. Discussion
4.1. Class Formation
4.2. Relationship between GMOS Scores (Total and Item Performance) and Clinical Populations
4.3. A Word of Caution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Class 1 | Class 2 | Class 3 | ||
---|---|---|---|---|
General Movements Optimality Scores (GMOS) Item List and Scoring | Item Difficulty by Class | |||
Item Number—Name/(Abbreviation) | Scoring Criteria (italics = original scoring) | Item Number—Abbreviation/Logit (SE) | ||
1—Sequence (Seque) | 2—variable 1—monotonous and/or broken 0—synchronized /disorganized | 13—LEspeed 1.005 (0.140) | 18—LEoffset 4.500 (0.270) | 5—UEspeed 1.450 (0.186) |
2—Neck (Neck) | 2—variably involved in the sequence 1—moves isolatedly 0—does not move at all 2 = involved 1 = hardly or not involved | 5—UEspeed 1.002 (0.139) | 10—UEoffset 3.264 (0.239) | 8—UEdisrot 1.334 (0.191) |
3—Trunk (Trunk) | 2—fluent and elegant rotations 1—just a few rotations 0—almost no rotation | 18—LEoffset 0.790 (0.421) | 1—Seque 1.939 (0.259) | 4—UEampli 1.269 (0.197) |
4—Upper Extremities Amplitude (UEampli) | 2—variable, full range 1—monotonous 0—predominantly small/large 2 = variable, full range 1 = predominantly small/ large/monotonous | 1—Seque 0.790 (0.371) | 17—LEonset 1.740 (0.251) | 6—UEspace 1.124 (0.198) |
5—Upper Extremities Speed (UEspeed) | 2—variable 1 –monotonous 0—predominantly slow/fast 2 = variable 1 = fast/slow/one speed | 3—Trunk 0.764 (0.185) | 19—LEcramp 1.547 (0.263) | 3—Trunk 1.112 (0.199) |
6—Upper Extremities Space (UEspace) | 2—full space variably used 1—limited 0—in one plane only | 15—Eproxrot 0.732 (0.187) | 11—UEcramp 0.507 (0.223) | 13—LEspeed 0.885 (0.233) |
7—Upper Extremities Proximal Rotation (UEproxrot) | 2—present, fluent, elegant 1—just a few rotations 0—almost no rotations | 16—LEdisrot 0.467 (0.181) | 9—UEonset 0.380 (0.226) | 2—Neck 0.778 (0.210) |
8—Upper Extremities Distal Rotation (UEdisrot) | 2—present, fluent, elegant 1—just a few rotations 0—almost no rotations | 4—UEampli 0.310 (0.142) | 15—LEproxrot 0.299 (0.231) | 7—UEproxrot 0.763 (0.214) |
9—Upper Extremities Onset (UEonset) | 2—smooth and fluctuating 1—minimal fluctuations 0—predominantly abrupt | 12—LEampli 0.301 (0.156) | 3—Trunk 0.024 (0.215) | 11—UEcramp 0.515 (0.212) |
10—Upper Extremities Offset (UEoffset) | 2—smooth and fluctuating 1—minimal fluctuations 0—predominantly sudden release | 17—LEonset 0.142 (0.292) | 16—LEdisrot −0.137 (0.214) | 9—UEonset 0.459 (0.229) |
11—Upper Extremities Cramped Components (UEcramp) | 2—absent 1—occasionally present 0—predominantly present | 7—UEproxrot 0.009 (0.174) | 14—LEspace −0.802 (0.198) | 10—UEoffset 0.343 (0.221) |
12—Lower Extremities Amplitude (LEampli) | 2—variable, full range 1—monotonous 0—predominantly small/large 2 = variable, full range 1 = predominantly small/ large/monotonous | 9—UEonset −0.218 (0.216) | 7—UEproxrot −0.836 (0.202) | 12—LEampli −0.177 (0.341) |
13—Lower Extremities Speed (LEspeed) | 2—variable 1 –monotonous 0—predominantly slow/fast 2 = variable 1 = fast/slow/one speed | 6—UEspace −0.224 (0.188) | 8—UEdisrot −1.057 (0.201) | 17—LEonset −0.182 (0.319) |
14—Lower Extremities Space (LEspace) | 2—full space variably used 1—limited 0—in one plane only | 8—UEdisrot −0.238 (0.169) | 13—LEspeed −1.659 (0.218) | 15 -LEproxrot −0.443 (0.281) |
15—Lower Extremities Proximal Rotation (LEproxrot) | 2—present, fluent, elegant 1—just a few rotations 0—almost no rotations | 10—UEoffset −0.420 (0.272) | 6—UEspace −1.731 (0.215) | 1—Seque −0.460 (0.278) |
16—Lower Extremities Distal Rotation (LEdistrot) | 2—present, fluent, elegant 1—just a few rotations 0—almost no rotations | 2—Neck −0.814 (0.185) | 12—LEampli −1.831 (0.225) | 16 LEdisrot −0.463 (0.283) |
17—Lower Extremities Onset (LEonset) | 2—smooth and fluctuating 1—minimal fluctuations 0—predominantly abrupt | 14—LEspace −0.941 (0.216) | 5—UEspeed −1.958 (0.202) | 19 -LEcramp −1.759 (0.224) |
18—Lower Extremities Offset (LEoffset) | 2—smooth and fluctuating 1—minimal fluctuations 0—predominantly sudden release | 19—Ecramp −0.980 (0.166) | 4—UEampli −2.240 (0.200) | 18—LEoffset −2.550 (0.302) |
19—Lower Extremities Cramped Components (LEcramp) | 2—absent 1—occasionally present 0—predominantly present | 11—Ecramp −2.480 (0.202) | 2—Neck −3.074 (0.241) | 14—LEspace −3.996 (0.549) |
References
- Prechtl, H.F.R.; Einspieler, C.; Cioni, G.; Bos, A.F.; Ferrari, F.; Sontheimer, D. An early marker for neurological deficits after perinatal brain lesions. Lancet 1997, 349, 1361–1363. [Google Scholar] [CrossRef]
- Einspieler, C.; Prechtl, H.F.R. Prechtl’s assessment of general movements: A diagnostic tool for the functional assessment of the young nervous system. Ment. Retard Dev. Disabil. Res. Rev. 2005, 11, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Novak, I.; Morgan, C.; Adde, L.; Blackman, J.; Boyd, R.N.; Brunstrom-Hernandez, J.; Cioni, G.; Damiano, D.; Darrah, J.; Eliasson, A.C.; et al. Early, accurate diagnosis and early intervention in cerebral palsy: Advances in diagnosis and treatment. JAMA Pediatr. 2017, 171, 897–907. [Google Scholar] [CrossRef]
- Morgan, C.; Romeo, D.M.; Chorna, O.; Novak, I.; Galea, C.; Del Secco, S.; Guzzetta, A. The Pooled Diagnostic Accuracy of Neuroimaging, General Movements, and Neurological Examination for Diagnosing Cerebral Palsy Early in High-Risk Infants: A Case Control Study. J. Clin. Med. 2019, 8, 1879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, F.; Cioni, G.; Prechtl, H.F.R. Qualitative changes of general movements in preterm infants with brain lesions. Early Hum. Dev. 1990, 23, 193–231. [Google Scholar] [CrossRef]
- Einspieler, C.; Prechtl, H.F.; Bos, A.F.; Ferrari, F.; Cioni, G. Prechtl’s Method on the Qualitative Assessment of General Movements in Preterm, Term and Young Infants; Mac Keith Press: London, UK, 2004. [Google Scholar]
- Einspieler, C.; Marschik, P.B.; Pansy, J.; Scheuchenegger, A.; Krieber, M.; Yang, H.; Kornacka, M.K.; Rowinska, E.; Soloveichick, M.; Bos, A.F. The general movement optimality score: A detailed assessment of general movements during preterm and term age. Dev. Med. Child Neurol. 2016, 58, 361–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prechtl, H.F. The optimality concept. Early Hum. Dev. 1980, 4, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Ustad, T.; Evensen, K.A.I.; Bertoncelli, N.; Frassoldati, R.; Ferrari, F. Validity of the General Movement Optimality List in Infants Born Preterm. Pediatr. Phys. Ther. 2017, 29, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Hempenius, M.A.; Verhagen, E.A.; Tanis, J.C.; Einspieler, C.; Bos, A.F. Early neonatal morbidities and neurological functioning of preterm infants 2 weeks after birth. J. Perinatol. 2018, 38, 1518–1525. [Google Scholar] [CrossRef] [PubMed]
- Pansy, J.; Baik, N.; Schwaberger, B.; Scheuchenegger, A.; Pichler-Stachl, E.; Avian, A.; Schmölzer, G.M.; Urlesberger, B.; Pichler, G. Cerebral hypoxia during immediate transition after birth and short term neurological outcome. Early Hum. Dev. 2017, 110, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Raith, W.; Marschik, P.B.; Sommer, C.; Maurer-Fellbaum, U.; Amhofer, C.; Avian, A.; Löwenstein, E.; Soral, S.; Muller, W.D.; Einspieler, C.; et al. General Movements in preterm infants undergoing craniosacral therapy: A randomised controlled pilot-trial. BMC Complement. Altern. Med. 2015, 16, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, V.M.; Smith, E.J.; Bos, A.; Cioni, G.; Ferrari, F.; Guzzetta, A.; Marschik, P.B.; Pansy, J.; Urlesberger, B.; Yang, H.; et al. Psychometric properties of the general movement optimality score using Rasch analysis. J. Appl. Meas. 2020, 21, 17–37. [Google Scholar]
- Smith, E.V.; Smith, R.M. Introduction to Rasch Measurement; JAM Press: Maple Grove, MN, USA, 2004. [Google Scholar]
- Butcher, P.R.; van Braeckel, K.; Bouma, A.; Einspieler, C.; Stremmelaar, E.F.; Bos, A.F. The quality of preterm infant’s spontaneous movements: An early indicator of intelligence and behavior at school age. J. Child Psychol. Psychiatr. 2009, 50, 920–930. [Google Scholar] [CrossRef]
- Roescher, A.M.; Timmer, A.; Hitzert, M.M.; de Vries, N.K.; Verhagen, E.A.; Erwich, J.J.H.; Bos, A.F. Placental pathology and neurological morbidity in preterm infants during the first two weeks after birth. Early Hum. Dev. 2014, 90, 21–25. [Google Scholar] [CrossRef]
- Einspieler, C.; Bos, A.F.; Libertus, M.E.; Marschik, P.B. The General Movement Assessment Helps Us to Identify Preterm Infants at Risk for Cognitive Dysfunction. Front. Psychol. 2016, 7, 406. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, Y.; Einspieler, C.; Marschik, P.B.; Bos, A.F.; Prechtl, H.F. Does a detailed assessment of poor repertoire general movements help to identify those infants who will develop normally? Early Hum. Dev. 2006, 82, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, F.; Cioni, G.; Einspieler, C.; Roversi, M.F.; Bos, A.F.; Paolicelli, P.B.; Ranzi, A.; Prechtl, H.F.R. Cramped Synchronized General Movements in Preterm Infants as an Early Marker for Cerebral Palsy. Arch. Pediatr. Adolesc. Med. 2002, 156, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, F.; Plessi, C.; Lucaccioni, L.; Bertoncelli, N.; Bedetti, L.; Ori, L.; Berardi, A.; Della Casa, E.; Iughetti, L.; D’Amico, R. Motor and Postural Patterns Concomitant with General Movements Are Associated with Cerebral Palsy at Term and Fidgety Age in Preterm Infants. J. Clin. Med. 2019, 8, 1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
TOTAL = 383 N (%) | Class 1 (n = 137) | Class 2 (n = 123) | Class 3 (n = 123) | |
---|---|---|---|---|
Gender | ||||
Male | 232 (60.6%) | 97 | 80 | 55 |
Female | 151 (39.4%) | 48 | 66 | 37 |
Age of Assessment | ||||
Very Preterm Period (26+0 to 31+6 weeks PMA) | 35 (9.1%) | 21 | 2 | 12 |
Moderate Preterm Period (32+0 to 33+6 weeks PMA) | 29 (7.6%) | 17 | 4 | 8 |
Late Preterm Period (34+0 to 36+6 weeks PMA) | 71 (18.5%) | 25 | 15 | 31 |
Term (37+0 to 41+6 weeks PMA) | 87 (22.7%) | 21 | 45 | 21 |
Post-term Period (42+0 to 45 weeks PMA) | 161(42.1%) | 53 | 57 | 51 |
Brain Injury (Images and Clinical Signs) | ||||
Normal | 99 (25.8%) | 30 | 6 | 63 |
PVL grade 1 or IVH grade I, or Sarnat I | 40 (10.4%) | 18 | 14 | 8 |
PVL grade 2 or IVH grade II, or Sarnat II | 94 (24.5%) | 33 | 42 | 19 |
PVL grade 3 or IVH grade III and IV, or Sarnat III | 42 (11.1%) | 16 | 25 | 1 |
Missing data | 108 (28.2%) | 40 | 36 | 32 |
GMA Classification | ||||
Normal | 116 (30.3) | 2 | 7 | 107 |
Poor Repertoire | 179 (46.7) | 131 | 33 | 15 |
Cramped Synchronized | 83 (21.7) | 3 | 80 | 0 |
Chaotic | 5 (1.3) | 1 | 3 | 1 |
Outcome at 2 years of age | ||||
Normal | 147 (38.4%) | 27 | 16 | 104 |
Cerebral Palsy | 92 (24%) | 25 | 65 | 2 |
Other Neurodevelopmental Disorders | 85 (22.2%) | 51 | 27 | 7 |
Unknown * | 59 (15.4%) | 34 | 15 | 10 |
Class 1 | Class 2 | Class 3 | |
---|---|---|---|
Summary of our previous results ◊ | |||
Reliability Index—ANOVA | 0.862 | 0.955 | 0.748 |
Reliability Index—Andrich | 0.840 | 0.953 | 0.664 |
Category scoring probability | Mostly category 1 | Mostly category 0 | Category 2 for all items |
♦GMOS Mean Raw Score (SD) | 20.681 (5.205) | 15.175 (9.858) | 33.153 (5.157) |
♦GMOS Mean Logits (SD) | 0.441 (1.217) | −1.361 (3.171) | 3.086 (1.408) |
Class vs. GMOS Logits | F = 210.148 DF = 2/380 p < 0.001 | ||
Post hoc—Tukey Test | |||
Class 1 | <0.001 | <0.001 | |
Class 2 | <0.001 | ||
Summary of current results | |||
Class vs. Age | |||
Continuous | F = 12.167 DF = 2/380 p < 0.001 | ||
Mean age | 37.6 weeks | 40.59 weeks | 38.73 weeks |
Post hoc—Tukey Test | |||
Class 1 | p < 0.001 | p = 0.150 | |
Class 2 | p = 0.008 | ||
Categorical | X2 (2, N = 383), 24.36, p < 0.000 | ||
<34 weeks PMA = 64 | 27.7% | 4.9% | 16.3% |
≥34 weeks PMA = 319 | 72.3% | 95.1% | 83.7% |
Class vs. Brain Injury (Images and Clinical Signs) | X2 (2, N = 275) = 53.957, p < 0.001 | ||
NL/Level 1 = 139 | 49.5% | 23% | 78% |
Levels 2, 3, 4 = 136 | 50.5% | 77% | 22% |
Class vs. GMA | X2 (6, N = 383) = 464.607, p < 0.001 | ||
Post hoc—Tukey Test | Standard Residuals > +/−1.96, p = 0.0055 | ||
NL = 116 | 1.5% | 5.7% | 87% |
PR = 179 | 95.6% | 26.8% | 12.2% |
CS = 83 | 2.2% | 65% | 0% |
*CH = 5 | 0.7% | 2.4% | 0.8% |
Class vs. 2-year Outcome | X2 (2, N= 324) = 155.212, p < 0.001 | ||
Typical (NL) =147 | 26.2% | 14.8% | 92% |
Atypical (CP + Other) = 177 | 73.8% | 85.2% | 8% |
Atypical vs. class 1 and 2 | X2 (1, N = 168) = 23.855, p < 0.001 | ||
CP = 90 | 32.9% | 70.7% | |
Other = 78 | 67.1% | 29.3% |
Class 1—N = 137 | ||||||||
GMA (n = 137) | Outcome (n = 103) | Brain Injury (n = 97) | Age of Assessment (n = 137) | |||||
NL | CP | Other | NL + Level 1 | Level 2, 3, and 4 | <34 weeks | ≥34 weeks | ||
NL | 2 (1.5%) | 1 (100%) | 2 (100%) | 2 (100%) | ||||
PR | 131 (95.6%) | 27 (27.6%) | 22 (22.4%) | 49 (50%) | 45 (48.4%) | 48 (51.6%) | 38 (29%) | 93 (71%) |
CS | 3 (2.2%) | 3 (100%) | 1 (100%) | 3 (100%) | ||||
*CH | 1 (0.7%) | 1 (100%) | 1 (100%) | 1 (100%) | ||||
Total | 137 (100%) | 27 (26.2%) | 25 (24.3%) | 51 (49.5%) | 48 (49.5%) | 49 (50.5%) | 38 (27.7%) | 99 (72.3%) |
Chi-squares within Class 1 | ||||||||
GMA by Outcome | X2 (6, N = 103), 11.515 p = 0.074 | |||||||
GMA by Brain Injury | X2 (3, N = 97), 4.087 p = 0.252 | |||||||
GMA by Age of assessment | X2 (3, N = 137), 2.409 p = 0.494 | |||||||
Brain Injury by Outcome | X2 (2, N = 82), 6.273 p = 0.043 | |||||||
Brain Injury by Outcome given GMA | X2 (2, N = 82), 5.271 p = 0.072 | |||||||
Brain Injury by Age of assessment | X2 (1, N = 82), 2.556 p = 0.110 | |||||||
Brain Injury by Outcome given age <34 weeks PMA | X2 (2, N = 24), 8.640 p = 0.013 | |||||||
Brain Injury by Outcome given age ≥34 weeks PMA | X2 (2, N = 58), 2.638 p = 0.267 | |||||||
Class 2—N = 123 | ||||||||
GMA (n = 123) | Outcome (n = 108) | Brain Injury (n = 87) | Age of Assessment (N = 123) | |||||
NL | CP | Other | NL + Grade 1 | Grades 2, 3, and 4 | <34 weeks | ≥34 weeks | ||
NL | 7 (5.7%) | 7 (100%) | 2 (50%) | 2 (50%) | 7 (100%) | |||
PR | 33 (26.8%) | 9 (39.1%) | 2 (8.7%) | 12 (52.2%) | 8 (36.4%) | 14 (63.6%) | 2 (6.1%) | 31 (93.9%) |
CS | 80 (65%) | 61 (81.3%) | 14 (18.7%) | 10 (16.9%) | 49 (83.1%) | 4 (5%) | 76 (95%) | |
*CH | 3 (2.4%) | 2 (66.7%) | 1 (33.3%) | 2 (100%) | 3 (100%) | |||
Total | 123 (100%) | 16 (14.8%) | 65 (60.2%) | 27 (25%) | 20 (23%) | 67 (77%) | 6 (4.9%) | 117 (95.1%) |
Chi-squares within Class 2 | ||||||||
GMA By Outcome | X2 (6, N = 108), 83.678 p < 0.001 | |||||||
Post hoc: | Standardized residual +/−1.96 | |||||||
GMA | Outcome | |||||||
NL | Normal vs. CP Normal vs. Other | p = 0.0055 p = 0.0055 | ||||||
PR | Normal vs. CP Normal vs. Other CP vs. Other | p = 0.0055 p = 0.0055 p = 0.0055 | ||||||
CS | Normal vs. CP CP vs. Other | p = 0.0055 p = 0.0055 | ||||||
GMA by Brain Injury | X2 (3, N = 87), 5.684 p = 0.128 | |||||||
GMA by Age of assessment | X2 (3, N = 123), 0.781 p = 0.854 | |||||||
Brain Injury by Outcome | X2 (2, N = 82), 6.207 p = 0.045 | |||||||
Brain Injury by Age of assessment | X2 (1, N = 82), 0.829 p = 0.363 | |||||||
Brain Injury by Outcome given GMA | X2 (2, N = 82), 1.587 p = 0.452 | |||||||
Brain Injury by Outcome given age <34 weeks PMA | X2 (1, N = 2), 0.000 p = 1.000 | |||||||
Brain Injury by Outcome given age ≥34 weeks PMA | X2 (2, N = 80), 6.965 p = 0.031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, V.M.; Einspieler, C.; Smith, E.; Bos, A.F.; Cioni, G.; Ferrari, F.; Yang, H.; Urlesberger, B.; Marschik, P.B.; Zhang, D. Clinical Implications of the General Movement Optimality Score: Beyond the Classes of Rasch Analysis. J. Clin. Med. 2021, 10, 1069. https://doi.org/10.3390/jcm10051069
Barbosa VM, Einspieler C, Smith E, Bos AF, Cioni G, Ferrari F, Yang H, Urlesberger B, Marschik PB, Zhang D. Clinical Implications of the General Movement Optimality Score: Beyond the Classes of Rasch Analysis. Journal of Clinical Medicine. 2021; 10(5):1069. https://doi.org/10.3390/jcm10051069
Chicago/Turabian StyleBarbosa, Vanessa Maziero, Christa Einspieler, Everett Smith, Arend F. Bos, Giovanni Cioni, Fabrizio Ferrari, Hong Yang, Berndt Urlesberger, Peter B. Marschik, and Dajie Zhang. 2021. "Clinical Implications of the General Movement Optimality Score: Beyond the Classes of Rasch Analysis" Journal of Clinical Medicine 10, no. 5: 1069. https://doi.org/10.3390/jcm10051069
APA StyleBarbosa, V. M., Einspieler, C., Smith, E., Bos, A. F., Cioni, G., Ferrari, F., Yang, H., Urlesberger, B., Marschik, P. B., & Zhang, D. (2021). Clinical Implications of the General Movement Optimality Score: Beyond the Classes of Rasch Analysis. Journal of Clinical Medicine, 10(5), 1069. https://doi.org/10.3390/jcm10051069