Cross-Sectional Association between Hypercholesterolemia and Knee Pain in the Elderly with Radiographic Knee Osteoarthritis: Data from the Korean National Health and Nutritional Examination Survey
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Assessment of Radiographic Knee OA and Knee Pain
2.3. Diagnosis of Metabolic Diseases
2.4. Definition of Associated Factors
2.5. Statistical Analysis
3. Results
3.1. Prevalence of Knee Pain
3.2. Comparison between Subgroups Distinguished by the Presence of Knee Pain In Subjects with OA
3.3. The Result of Multivariable Ordinal Logistic Regression Analysis
3.4. Comparison of Pain Levels between the Subgroups of Hypercholesterolemia
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spitaels, D.; Mamouris, P.; Vaes, B.; Smeets, M.; Luyten, F.; Hermens, R.; Vankrunkelsven, P. Epidemiology of knee osteoarthritis in general practice: A registry-based study. BMJ Open 2020, 10, e031734. [Google Scholar] [CrossRef]
- Thomas, M.J.; Neogi, T. Flare-ups of osteoarthritis: What do they mean in the short-term and the long-term? Osteoarthr. Cartil. 2020. [Google Scholar] [CrossRef] [PubMed]
- Bedson, J.; Croft, P.R. The discordance between clinical and radiographic knee osteoarthritis: A systematic search and summary of the literature. BMC Musculoskelet. Disord 2008, 9, 116. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.T.; Felson, D.T.; Pincus, T. Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. J. Rheumatol. 2000, 27, 1513–1517. [Google Scholar]
- Dray, A.; Read, S.J. Arthritis and pain. Future targets to control osteoarthritis pain. Arthritis Res. Ther. 2007, 9, 212. [Google Scholar] [CrossRef]
- Schaible, H.G. Mechanisms of chronic pain in osteoarthritis. Curr. Rheumatol. Rep. 2012, 14, 549–556. [Google Scholar] [CrossRef] [PubMed]
- McDougall, J.J. Arthritis and pain. Neurogenic origin of joint pain. Arthritis Res. Ther. 2006, 8, 220. [Google Scholar] [CrossRef]
- Syx, D.; Tran, P.B.; Miller, R.E.; Malfait, A.M. Peripheral mechanisms contributing to osteoarthritis pain. Curr. Rheumatol. Rep. 2018, 20, 9. [Google Scholar] [CrossRef]
- Berenbaum, F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr. Cartil. 2013, 21, 16–21. [Google Scholar] [CrossRef]
- Mobasheri, A.; Rayman, M.P.; Gualillo, O.; Sellam, J.; van der Kraan, P.; Fearon, U. The role of metabolism in the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 2017, 13, 302–311. [Google Scholar] [CrossRef]
- Zhuo, Q.; Yang, W.; Chen, J.; Wang, Y. Metabolic syndrome meets osteoarthritis. Nat. Rev. Rheumatol. 2012, 8, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hunter, D.; Xu, J.; Ding, C. Metabolic triggered inflammation in osteoarthritis. Osteoarthr. Cartil. 2015, 23, 22–30. [Google Scholar] [CrossRef]
- Richter, F.; Natura, G.; Ebbinghaus, M.; von Banchet, G.S.; Hensellek, S.; Konig, C.; Brauer, R.; Schaible, H.G. Interleukin-17 sensitizes joint nociceptors to mechanical stimuli and contributes to arthritic pain through neuronal interleukin-17 receptors in rodents. Arthritis Rheum. 2012, 64, 4125–4134. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.S.; Lee, G.; Song, W.H.; Koh, J.T.; Yang, J.; Kwak, J.S.; Kim, H.E.; Kim, S.K.; Son, Y.O.; Nam, H.; et al. The ch25h-cyp7b1-roralpha axis of cholesterol metabolism regulates osteoarthritis. Nature 2019, 566, 254–258. [Google Scholar] [CrossRef]
- Larranaga-Vera, A.; Lamuedra, A.; Perez-Baos, S.; Prieto-Potin, I.; Pena, L.; Herrero-Beaumont, G.; Largo, R. Increased synovial lipodystrophy induced by high fat diet aggravates synovitis in experimental osteoarthritis. Arthritis Res. Ther. 2017, 19, 264. [Google Scholar] [CrossRef]
- Clockaerts, S.; Van Osch, G.J.; Bastiaansen-Jenniskens, Y.M.; Verhaar, J.A.; Van Glabbeek, F.; Van Meurs, J.B.; Kerkhof, H.J.; Hofman, A.; Stricker, B.H.; Bierma-Zeinstra, S.M. Statin use is associated with reduced incidence and progression of knee osteoarthritis in the rotterdam study. Ann. Rheum. Dis. 2012, 71, 642–647. [Google Scholar] [CrossRef]
- Michaelsson, K.; Lohmander, L.S.; Turkiewicz, A.; Wolk, A.; Nilsson, P.; Englund, M. Association between statin use and consultation or surgery for osteoarthritis of the hip or knee: A pooled analysis of four cohort studies. Osteoarthr. Cartil. 2017, 25, 1804–1813. [Google Scholar] [CrossRef]
- Eymard, F.; Parsons, C.; Edwards, M.H.; Petit-Dop, F.; Reginster, J.Y.; Bruyere, O.; Chevalier, X.; Cooper, C.; Richette, P. Statin use and knee osteoarthritis progression: Results from a post-hoc analysis of the sekoia trial. Jt. Bone Spine 2018, 85, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Riddle, D.L.; Moxley, G.; Dumenci, L. Associations between statin use and changes in pain, function and structural progression: A longitudinal study of persons with knee osteoarthritis. Ann. Rheum. Dis. 2013, 72, 196–203. [Google Scholar] [CrossRef]
- Kellgren, J.H.; Lawrence, J.S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 1957, 16, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Bijur, P.E.; Silver, W.; Gallagher, E.J. Reliability of the visual analog scale for measurement of acute pain. Acad. Emerg. Med. 2001, 8, 1153–1157. [Google Scholar] [CrossRef]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An american heart association/national heart, lung, and blood institute scientific statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef]
- Lee, S.Y.; Park, H.S.; Kim, D.J.; Han, J.H.; Kim, S.M.; Cho, G.J.; Kim, D.Y.; Kwon, H.S.; Kim, S.R.; Lee, C.B.; et al. Appropriate waist circumference cutoff points for central obesity in korean adults. Diabetes Res. Clin. Pr. 2007, 75, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Chun, M.Y. Validity and reliability of korean version of international physical activity questionnaire short form in the elderly. Korean J. Fam. Med. 2012, 33, 144–151. [Google Scholar] [CrossRef]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the international physical activity questionnaire short form (ipaq-sf): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef]
- Kang, K.; Sung, J.; Kim, C.Y. [high risk groups in health behavior defined by clustering of smoking, alcohol, and exercise habits: National heath and nutrition examination survey]. J. Prev. Med. Public Health 2010, 43, 73–83. [Google Scholar] [CrossRef]
- Tall, A.R.; Yvan-Charvet, L. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 2015, 15, 104–116. [Google Scholar] [CrossRef] [PubMed]
- French, H.P.; Smart, K.M.; Doyle, F. Prevalence of neuropathic pain in knee or hip osteoarthritis: A systematic review and meta-analysis. Semin. Arthritis Rheum. 2017, 47, 1–8. [Google Scholar] [CrossRef]
- Kraemer, M.P.; Mao, G.; Hammill, C.; Yan, B.; Li, Y.; Onono, F.; Smyth, S.S.; Morris, A.J. Effects of diet and hyperlipidemia on levels and distribution of circulating lysophosphatidic acid. J. Lipid Res. 2019, 60, 1818–1828. [Google Scholar] [CrossRef] [PubMed]
- McDougall, J.J.; Albacete, S.; Schuelert, N.; Mitchell, P.G.; Lin, C.; Oskins, J.L.; Bui, H.H.; Chambers, M.G. Lysophosphatidic acid provides a missing link between osteoarthritis and joint neuropathic pain. Osteoarthr. Cartil. 2017, 25, 926–934. [Google Scholar] [CrossRef] [PubMed]
- Han, C.D.; Yang, I.H.; Lee, W.S.; Park, Y.J.; Park, K.K. Correlation between metabolic syndrome and knee osteoarthritis: Data from the korean national health and nutrition examination survey (knhanes). BMC Public Health 2013, 13, 603. [Google Scholar] [CrossRef]
- Shin, D. Association between metabolic syndrome, radiographic knee osteoarthritis, and intensity of knee pain: Results of a national survey. J. Clin. Endocrinol. Metab. 2014, 99, 3177–3183. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.X.; Wei, J.; Zeng, C.; Yang, T.; Li, H.; Wang, Y.L.; Long, H.Z.; Wu, Z.Y.; Qian, Y.X.; Li, K.H.; et al. Association between metabolic syndrome and knee osteoarthritis: A cross-sectional study. BMC Musculoskelet. Disord 2017, 18, 533. [Google Scholar] [CrossRef]
- Hame, S.L.; Alexander, R.A. Knee osteoarthritis in women. Curr. Rev. Musculoskelet. Med. 2013, 6, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Chen, C. Body mass index and risk of knee osteoarthritis: Systematic review and meta-analysis of prospective studies. BMJ Open 2015, 5, e007568. [Google Scholar] [CrossRef]
- Jorgensen, K.T.; Pedersen, B.V.; Nielsen, N.M.; Hansen, A.V.; Jacobsen, S.; Frisch, M. Socio-demographic factors, reproductive history and risk of osteoarthritis in a cohort of 4.6 million danish women and men. Osteoarthr. Cartil. 2011, 19, 1176–1182. [Google Scholar] [CrossRef] [PubMed]
- Callahan, L.F.; Cleveland, R.J.; Shreffler, J.; Schwartz, T.A.; Schoster, B.; Randolph, R.; Renner, J.B.; Jordan, J.M. Associations of educational attainment, occupation and community poverty with knee osteoarthritis in the johnston county (north carolina) osteoarthritis project. Arthritis Res. Ther. 2011, 13, R169. [Google Scholar] [CrossRef] [PubMed]
Knee Pain Group (n = 8,119,372 †) | Control Group (n = 12,171,049 †) | p-Value | |
---|---|---|---|
Female sex (%) | 81.2 | 60.8 | <0.001 |
Age (years) | 71.5 ± 0.2 | 70.3 ± 0.2 | <0.001 |
BMI (kg/m2) | 25.0 ± 0.1 | 24.3 ± 0.1 | <0.001 |
Waist circumference (cm) | 85.7 ± 0.3 | 84.6 ± 0.2 | 0.004 |
Residential area (%) | 0.007 | ||
Urban | 63.3 | 68.7 | |
Rural | 36.7 | 31.3 | |
Current smoking (%) | 8.8 | 11.1 | 0.062 |
HTN (%) | 66.6 | 63.1 | 0.050 ‡ |
DM (%) | 23.4 | 20.7 | 0.124 |
Obesity (%) | 46.8 | 39.1 | <0.001 |
Metabolic syndrome (%) | 53.9 | 47.6 | 0.002 |
Hypercholesterolemia (%) | 27.2 | 22.3 | 0.005 |
Hypo-HDL-cholesterolemia (%) | 25.9 | 25.5 | 0.856 |
Hypertriglyceridemia (%) | 16.8 | 17.5 | 0.671 |
Lipid profiles | |||
Total cholesterol (mg/dL) | 195.1 ± 1.2 | 191.6 ± 0.9 | 0.025 |
HDL-cholesterol (mg/dL) | 47.5 ± 0.4 | 47.7 ± 0.3 | 0.669 |
Triglyceride (mg/dL) | 144.6 ± 3.2 | 142.9 ± 2.3 | 0.670 |
LDL-cholesterol (mg/dL) | 118.2 ± 3.3 | 114.5 ± 2.0 | 0.314 |
Alcohol consumption (%) | <0.001 | ||
Low | 85.4 | 76.3 | |
Moderate | 9.2 | 13.4 | |
Excessive | 5.4 | 10.3 | |
Household income (%) | <0.001 | ||
Quartile 1 (low) | 43.1 | 36.0 | |
Quartile 2 | 27.3 | 25.5 | |
Quartile 3 | 16.5 | 21.2 | |
Quartile 4 (high) | 13.2 | 17.3 | |
Education attainment (%) | <0.001 | ||
Graduate school | 0.2 | 1.2 | |
University | 1.0 | 4.8 | |
College | 0.3 | 1.2 | |
High school | 7.0 | 17.6 | |
Middle school | 13.5 | 16.5 | |
Elementary school | 49.2 | 42.8 | |
Less than elementary school | 26.9 | 14.5 | |
None | 2.0 | 1.3 | |
Physical activity (%) | <0.001 | ||
Low | 51.8 | 45.4 | |
Moderate | 29.8 | 31.9 | |
High | 18.4 | 22.7 | |
Kellgren–Lawrence grade | <0.001 | ||
Grade 2 | 20.3 | 46.4 | |
Grade 3 | 44.2 | 42.4 | |
Grade 4 | 35.5 | 11.2 |
Variables | OA Group (KL Grade ≥ 2) † | Non-OA Group (KL Grade < 2) ‡ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Univariable | Multivariable | Univariable | Multivariable | |||||||||
OR | 95% CI | p-Value | OR | 95% CI | p-Value | OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Metabolic syndrome | 1.28 | 1.09–1.50 | 0.002 | 1.03 | 0.85–1.25 | 0.752 | 1.25 | 0.98–1.60 | 0.072 | |||
Hypercholesterolemia | 1.37 | 1.13–1.65 | 0.001 | 1.24 | 1.02–1.52 | 0.033 | 1.33 | 1.03–1.72 | 0.027 | 1.14 | 0.88–1.49 | 0.329 |
Hypo-HDL-cholesterolemia | 0.98 | 0.82–1.17 | 0.831 | 0.98 | 0.75–1.29 | 0.909 | ||||||
Hypertriglyceridemia | 0.95 | 0.76–1.20 | 0.687 | 1.11 | 0.79–1.56 | 0.554 | ||||||
Hypertension | 1.16 | 1.00–1.34 | 0.055 | 1.10 | 0.89–1.36 | 0.382 | ||||||
Diabetes | 1.18 | 0.97–1.43 | 0.101 | 1.01 | 0.74–1.37 | 0.970 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, B.W.; Kim, D.S.; Kwon, H.M.; Yang, I.H.; Lee, W.-S.; Park, K.K. Cross-Sectional Association between Hypercholesterolemia and Knee Pain in the Elderly with Radiographic Knee Osteoarthritis: Data from the Korean National Health and Nutritional Examination Survey. J. Clin. Med. 2021, 10, 933. https://doi.org/10.3390/jcm10050933
Cho BW, Kim DS, Kwon HM, Yang IH, Lee W-S, Park KK. Cross-Sectional Association between Hypercholesterolemia and Knee Pain in the Elderly with Radiographic Knee Osteoarthritis: Data from the Korean National Health and Nutritional Examination Survey. Journal of Clinical Medicine. 2021; 10(5):933. https://doi.org/10.3390/jcm10050933
Chicago/Turabian StyleCho, Byung Woo, Du Seong Kim, Hyuck Min Kwon, Ick Hwan Yang, Woo-Suk Lee, and Kwan Kyu Park. 2021. "Cross-Sectional Association between Hypercholesterolemia and Knee Pain in the Elderly with Radiographic Knee Osteoarthritis: Data from the Korean National Health and Nutritional Examination Survey" Journal of Clinical Medicine 10, no. 5: 933. https://doi.org/10.3390/jcm10050933
APA StyleCho, B. W., Kim, D. S., Kwon, H. M., Yang, I. H., Lee, W.-S., & Park, K. K. (2021). Cross-Sectional Association between Hypercholesterolemia and Knee Pain in the Elderly with Radiographic Knee Osteoarthritis: Data from the Korean National Health and Nutritional Examination Survey. Journal of Clinical Medicine, 10(5), 933. https://doi.org/10.3390/jcm10050933