The Impact of Nonconvulsive Status Epilepticus after Cardiac Surgery on Outcome
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Intraoperative Management
2.3. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Raffa, G.M.; Agnello, F.; Occhipinti, G.; Miraglia, R.; Re, V.L.; Marrone, G.; Tuzzolino, F.; Arcadipane, A.; Pilato, M.; Luca, A. Neurological complications after cardiac surgery: A retrospective case-control study of risk factors and outcome. J. Cardiothorac. Surg. 2019, 14, 23. [Google Scholar] [CrossRef] [PubMed]
- Hunter, G.R.; Young, G.B. Seizures after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2011, 25, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Goldstone, A.B.; Bronster, D.J.; Anyanwu, A.C.; Goldstein, M.A.; Filsoufi, F.; Adams, D.H.; Chikwe, J. Predictors and outcomes of seizures after cardiac surgery: A multivariable analysis of 2,578 patients. Ann. Thorac. Surg. 2011, 91, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Tschernatsch, M.; Juenemann, M.; Alhaidar, F.; El Shazly, J.; Butz, M.; Meyer, M.; Gerriets, T.; Schönburg, M.; Schramm, P. Epileptic seizure discharges in patients after open chamber cardiac surgery-a prospective prevalence pilot study using continuous electroencephalography. Intensive Care Med. 2020, 46, 1418–1424. [Google Scholar] [CrossRef] [PubMed]
- Trinka, E.; Cock, H.; Hesdorffer, D.; Rossetti, A.O.; Scheffer, I.E.; Shinnar, S.; Shorvon, S.; Lowenstein, D.H. A definition and classification of status epilepticus—Report of the ILAE Task Force on Classification of Status Epilepticus. Epilepsia 2015, 56, 1515–1523. [Google Scholar] [CrossRef] [PubMed]
- Brophy, G.M.; Bell, R.; Claassen, J.; Alldredge, B.; Bleck, T.P.; Glauser, T.; Laroche, S.M.; Riviello, J.J., Jr.; Shutter, L.; Sperling, M.R. Neurocritical Care Society Status Epilepticus Guideline Writing Committee Guidelines for the evaluation and management of status epilepticus. Neurocrit. Care 2012, 17, 3–23. [Google Scholar] [CrossRef] [PubMed]
- Pataraia, E.; Jung, R.; Aull-Watschinger, S.; Skhirtladze-Dworschak, K.; Dworschak, M. Seizures after adult cardiac surgery and interventional cardiac procedures. J. Cardiothorac. Vasc. Anesth. 2018, 32, 2323–2329. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zheng, W.; Chen, F.; Bai, X.; Xue, L.; Liang, M.; Geng, Z. Associated factors and prognostic implications of non-convulsive status epilepticus in ischemic stroke patients with impaired consciousness. Front. Neurol. 2022, 12, 795076. [Google Scholar] [CrossRef] [PubMed]
- Kudenchuk, P.J.; Sandroni, C.; Drinhaus, H.R.; Böttiger, B.W.; Cariou, A.; Sunde, K.; Dworschak, M.; Taccone, F.S.; Deye, N.; Friberg, H.; et al. Breakthrough in cardiac arrest: Reports from the 4th Paris International Conference. Ann. Intensive Care 2015, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- Silveira, D.C.; Sagi, A.; Romero, R. Are seizures predictors of mortality in critically ill patients in the intensive care unit (ICU)? Seizure 2019, 73, 14–16. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, A.O.; Schindler, K.; Sutter, R.; Rüegg, S.; Zubler, F.; Novy, J.; Oddo, M.; Warpelin-Decrausaz, L.; Alvarez, V. Continuous vs routine electroencephalogram in critically ill adults with altered consciousness and no recent seizure: A multicenter randomized clinical trial. JAMA Neurol. 2020, 77, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
- Leitinger, M.; Trinka, E.; Gardella, E.; Rohracher, A.; Kalss, G.; Qerama, E.; Höfler, J.; Hess, A.; Zimmermann, G.; Kuchukhidze, G.; et al. Diagnostic accuracy of the Salzburg EEG criteria for non-convulsive status epilepticus: A retrospective study. Lancet Neurol. 2016, 15, 1054–1062. [Google Scholar] [CrossRef]
- Gofton, T.E.; Chu, M.W.A.; Norton, L.; Fox, S.A.; Chase, L.; Murkin, J.M.; Young, G.B. A prospective observational study of seizures after cardiac surgery using continuous EEG monitoring. Neurocrit. Care 2014, 21, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Caricato, A.; Melchionda, I.; Antonelli, M. Continuous electroencephalography monitoring in adults in the intensive care unit. Crit. Care 2018, 22, 75. [Google Scholar] [CrossRef] [PubMed]
- Kubota, Y.; Nakamoto, H.; Egawa, S.; Kawamata, T. Continuous EEG monitoring in ICU. J. Intensive Care 2018, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Marcuse, L.V.; Bronster, D.J.; Fields, M.; Polanco, A.; Yu, T.; Chikwe, J. Evaluating the obtunded patient after cardiac surgery: The role of continuous electroencephalography. J. Crit. Care 2014, 29, 316.e1–316.e5. [Google Scholar] [CrossRef] [PubMed]
- Herta, J.; Koren, J.; Fürbass, F.; Hartmann, M.; Gruber, A.; Baumgartner, C. Reduced electrode arrays for the automated detection of rhythmic and periodic patterns in the intensive care unit: Frequently tried, frequently failed? Clin. Neurophysiol. 2017, 128, 1524–1531. [Google Scholar] [CrossRef] [PubMed]
- Ivascu, N.S.; Gaudino, M.; Lau, C.; Segal, A.Z.; Debois, W.J.; Munjal, M.; Girardi, L.N. Nonischemic postoperative seizure does not increase mortality after cardiac surgery. Ann. Thorac. Surg. 2015, 100, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Czerny, M.; Fleck, T.; Zimpfer, D.; Dworschak, M.; Hofmann, W.; Hutschala, D.; Dunkler, D.; Ehrlich, M.; Wolner, E.; Grabenwoger, M. Risk factors of mortality and permanent neurologic injury in patients undergoing ascending aortic and arch repair. J. Thorac. Cardiovasc. Surg. 2003, 126, 1296–1301. [Google Scholar] [CrossRef]
- Sutter, R.; Semmlack, S.; Kaplan, P.W.; Opić, P.; Marsch, S.; Rüegg, S. Prolonged status epilepticus: Early recognition and prediction of full recovery in a 12-year cohort. Epilepsia 2019, 60, 42–52. [Google Scholar] [CrossRef] [Green Version]
- Veraar, C.M.; Rinösl, H.; Kühn, K.; Skhirtladze-Dworschak, K.; Felli, A.; Mouhieddine, M.; Menger, J.; Pataraia, E.; Ankersmit, H.J.; Dworschak, M. Non-pulsatile blood flow is associated with enhanced cerebrovascular carbon dioxide reactivity and an attenuated relationship between cerebral blood flow and regional brain oxygenation. Crit. Care 2019, 23, 426. [Google Scholar] [CrossRef]
- Bernardi, M.H.; Wahrmann, M.; Dworschak, M.; Kietaibl, C.; Ristl, R.; Edlinger-Stanger, M.; Lassnigg, A.; Hiesmayr, M.J.; Weber, U. Carotid artery blood flow velocities during open-heart surgery and its association with delirium: A prospective, observational pilot study. Medicine 2019, 98, e18234. [Google Scholar] [CrossRef] [PubMed]
- Grubhofer, G.; Mares, P.; Rajek, A.; Müllner, T.; Haisjackl, M.; Dworschak, M.; Lassnigg, A. Pulsatility does not change cerebral oxygenation during cardiopulmonary bypass. Acta Anaesthesiol. Scand. 2000, 44, 586–591. [Google Scholar] [CrossRef]
- Towne, A.R.; Waterhouse, E.J.; Boggs, J.G.; Garnett, L.K.; Brown, A.J.; Jr, J.R.S.; DeLorenzo, R.J. Prevalence of nonconvulsive status epilepticus in comatose patients. Neurology 2000, 54, 340–345. [Google Scholar] [CrossRef]
- Mehta, A.; Zusman, B.E.; Shutter, L.A.; Choxi, R.; Yassin, A.; Antony, A.; Thirumala, P.D. The prevalence and impact of status epilepticus secondary to intracerebral hemorrhage: Results from the US nationwide inpatient sample. Neurocrit. Care 2018, 28, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, A.O.; Hirsch, L.J.; Drislane, F.W. Nonconvulsive seizures and nonconvulsive status epilepticus in the neuro ICU should or should not be treated aggressively: A debate. Clin. Neurophysiol. Pract. 2019, 4, 170–177. [Google Scholar] [CrossRef]
- Naim, M.Y.; Gaynor, J.W.; Chen, J.; Nicolson, S.C.; Fuller, S.; Spray, T.L.; Dlugos, D.J.; Clancy, R.R.; Costa, L.V.; Licht, D.J.; et al. Subclinical seizures by postoperative electroencephalographic monitoring are common after neonatal cardiac surgery. J. Thorac. Cardiovasc. Surg. 2015, 150, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Bögli, S.Y.; Wang, S.; Romaguera, N.; Schütz, V.; Rafi, O.; Gilone, M.; Keller, E.; Imbach, L.L.; Brandi, G. Impact of seizures and status epilepticus on outcome in patients with aneurysmal subarachnoid hemorrhage. Neurocrit. Care 2022, 36, 751–759. [Google Scholar] [CrossRef] [PubMed]
Variable | EEG Group (n = 89) | Asymptomatic Control Group (n = 92) | p Value |
---|---|---|---|
Preoperative characteristics | |||
Age, (years) | 69 ± 12 | 68 ± 11 | 0.307 |
Gender, M/F, (n) | 58/31 | 61/31 | 0.872 |
Body weight, (kg) | 78 ± 16 | 80 ± 16 | 0.485 |
Height, (cm) | 171 ± 10 | 171 ± 15 | 0.923 |
BMI, (kg/m2) | 27 ± 4 | 27 ± 4 | 0.647 |
Prior myocardial infarction, (n) | 24 | 21 | 0.519 |
No sinus rhythms, (n) | 36 | 29 | 0.211 |
Prior cardiac surgery, (n) | 24 | 14 | 0.052 |
Implanted PM/ICD, (n) | 21 | 15 | 0.219 |
Left ventricular ejection fraction, (n) <30% 30–50% >50% | 25 20 44 | 20 22 50 | 0.611 |
Diabetes mellitus, (n) | 25 | 20 | 0.323 |
Acute or chronic kidney injury, (n) | 40 | 22 | 0.003 |
Chronic obstructive pulmonary disease, (n) | 21 | 14 | 0.154 |
Peripheral arterial occlusive disease, (n) | 17 | 14 | 0.488 |
Cerebral arterial occlusive disease, (n) | 17 | 5 | 0.005 |
Endocarditis, (n) | 5 | 2 | 0.694 |
Previous cerebrovascular accident, (n) | 15 | 13 | 0.257 |
History of seizures (n) | 3 | 0 | |
Extensive aortic calcification or atherosclerosis, (n) | 14 | 2 | 0.003 |
Intraoperative details | |||
Urgent or emergent operation, (n) | 22 | 25 | 0.706 |
Surgical Procedure, (n) | 0.114 | ||
CABG | 16 | 17 | |
Other valve operations | 7 | 7 | |
Aortic valve replacement | 15 | 15 | |
Ascending aortic surgery | 7 | 8 | |
LVAD | 7 | 8 | |
HTX | 7 | 7 | |
Combined procedures | 30 | 30 | |
Duration of anesthesia (min) | 439 (175–980) | 398 (222–699) | 0.036 |
Duration of surgery (min) | 340 (125–945) | 304 (160–597) | 0.108 |
Duration of CPB (min) | 158 (30–505) | 149 (50–322) | 0.307 |
Duration of ACC (min) | 94 (23–300) | 91 (27–201) | 0.942 |
Deep hypothermic circulatory arrest, (n) | 10 | 8 | 0.568 |
Tranexamic acid, (g) | 1.4 (0.4–3.0) | 1.4 (0.5–3.0) | 0.361 |
Intraoperative fluid balance, (ml) | 5050 (884–20,169) | 4496 (310–17,799) | 0.859 |
Use of vasopressors, (%) Low High | 95 6 94 | 91 49 51 | 0.256 |
Transfusion of packed red blood cells, (mL) | 900 (300–4500) | 600 (250–4800) | 0.077 |
Transfusion of fresh frozen plasma, (mL) | 800 (200–4600) | 800 (128–4000) | 0.706 |
Transfusion of platelets, (mL) | 245 (104–719) | 193 (100–1000) | 0.415 |
Postoperative data | |||
ICU length of stay, (days) | 32 ± 33 22 (1–160) | 9 ± 22 2 (1–175) | 0.00001 |
Hospital length of stay, (days) | 57 ± 48 43 (8–270) | 26 ± 26 16 (8–178) | 0.00001 |
Mortality, (n) 30-day In-hospital | 3 24 | 1 1 | 0.296 0.00001 |
CPR perioperatively, (n) | 19 | 1 | 0.0002 |
Postoperative stroke, (n) | 28 | 0 | <0.05 |
Postoperative seizures, (n) | 39 | 0 | <0.05 |
Patient | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
Age | 75 | 41 | 68 | 63 | 72 | 88 | 74 | 84 | 85 | 68 | 84 |
Gender | F | M | M | M | M | M | M | F | F | F | F |
BMI | 26 | 25 | 26 | 25 | 26 | 25 | 23 | 22 | 21 | 21 | 27 |
LVEF (%) | 31–50 | >50 | <30 | <30 | >50 | <30 | >50 | >50 | 31–50 | >50 | >50 |
Reoperation | Yes | No | No | Yes | No | No | No | No | No | No | No |
Severe aortic calcifications | Yes | No | No | No | No | No | No | Yes | No | No | Yes |
CVOD | No | No | No | Yes | No | No | Yes | No | Yes | No | No |
Previous neurological insult | No | Yes | No | No | No | No | Yes (TIA) | Yes | No | No | No |
AKI/CKI | Yes | Yes | Yes | No | No | Yes | No | No | No | No | No |
Surgery | AVR/CABG | AVR | HTX | LVAD | MVR | AVR/CABG | AVR/TVR/CABG | AVR/CABG | CABG/MVR/TVR | MVR/TVR | Bio-Bentall |
CPBT (min) | 212 | 137 | 277 | 134 | 125 | 171 | 324 | 111 | 184 | 217 | 237 |
ACCT (min) | 157 | 49 | 75 | 0 | 97 | 135 | 166 | 81 | 109 | 140 | 150 |
Surgery time (min) | 401 | 232 | 535 | 305 | 200 | 406 | 409 | 289 | 342 | 315 | 510 |
Duration of anesthesia (min) | 506 | 320 | 655 | 457 | 252 | 536 | 596 | 372 | 418 | 437 | 580 |
Urgency of procedure | Urgent | Urgent | Urgent | Elective | Elective | Elective | Elective | Elective | Elective | Elective | Elective |
Known CVA or seizures | No/No | Yes/No | No/No | No/No | No/No | No/No | TIA/No | Yes/No | No/No | No/No | No/No |
Conscious-ness, neurological symptoms | Neurological deterioration somnolence, motor restlessness | Neurolo-gical deterio-ration, coma | Somnolence, coma, peri-oral myoclonus | Grand-mal seizures | Awake, myoclonus | Coma, repetitive head movements | Coma, suspected seizures | Awake, grand-mal seizures, mono-paresis of left arm | Awake, hemiparesis left side | Coma, myoclonus | Sedated, tonic-clonic seizures |
Neuro-imaging CCT | Subacute SAB and micro-bleeds in the left fronto-parietal lobe | Media infarction with hemor-rhagic transfor-mation in the right hemisphere | Right temporal ischemic insult | SAB | No pathology | No pathology | Ischemic stroke | Ischemic and hemor-rhagic stroke | No pathology | Right peri-ventricular insult | Brain stem infarction |
CCT POD | 12 | preop. CCT | 6 | 25 | 19 | 9 | 2 | 9 | 2 | 1 | 1 |
EEG POD | 14 | 26 | 26 | 27 | 20 | 13 | 2 | 11 | 3 | 1 | 1 |
EEG finding | NCSE | NCSE | NCSE | NCSE + EPI | NCSE + EPI | NCSE | NCSE | NCSE | NCSE + ASS | NCSE + ASS | NCSE + ASS |
Treatment | Phenytoin Levetira-cetam Lorazepam | Phenytoin Levetira-cetam Lorazepam | Levetira-cetam | Levetira-cetam Lorazepam | Levetira-cetam | Phenytoin Levetira-cetam | Phenytoin Levetira-cetam | Phenytoin Levetira-cetam Lorazepam | Levetira-cetam Lacosamide | Levetira-cetam Lacosamide | Levetira-cetam |
Improvement in EEG | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Improvement of general condition | No | No | No | No | Yes (slowly) | Yes (slowly) | Yes (slowly) | Yes | Yes | Yes | Yes |
ICU stay (d) | 37 | 65 | 49 | 112 | 73 | 42 | 92 | 7 | 21 | 5 | 10 |
Hospital stay (d) | 63 | 65 | 49 | 235 | 103 | 54 | 172 | 8 | 23 | 11 | 56 |
Death/day after surgery | Yes/176 | Yes/161 | Yes/149 | Yes/190 | No | No | No | No | No | No | No |
CPC at hospital discharge | N/A | N/A | N/A | N/A | CPC 2 | CPC 3 | CPC 3 | CPC 2 | CPC 3 | CPC 2 | CPC 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skhirtladze-Dworschak, K.; Felli, A.; Aull-Watschinger, S.; Jung, R.; Mouhieddine, M.; Zuckermann, A.; Tschernko, E.; Dworschak, M.; Pataraia, E. The Impact of Nonconvulsive Status Epilepticus after Cardiac Surgery on Outcome. J. Clin. Med. 2022, 11, 5668. https://doi.org/10.3390/jcm11195668
Skhirtladze-Dworschak K, Felli A, Aull-Watschinger S, Jung R, Mouhieddine M, Zuckermann A, Tschernko E, Dworschak M, Pataraia E. The Impact of Nonconvulsive Status Epilepticus after Cardiac Surgery on Outcome. Journal of Clinical Medicine. 2022; 11(19):5668. https://doi.org/10.3390/jcm11195668
Chicago/Turabian StyleSkhirtladze-Dworschak, Keso, Alessia Felli, Susanne Aull-Watschinger, Rebekka Jung, Mohamed Mouhieddine, Andreas Zuckermann, Edda Tschernko, Martin Dworschak, and Ekaterina Pataraia. 2022. "The Impact of Nonconvulsive Status Epilepticus after Cardiac Surgery on Outcome" Journal of Clinical Medicine 11, no. 19: 5668. https://doi.org/10.3390/jcm11195668
APA StyleSkhirtladze-Dworschak, K., Felli, A., Aull-Watschinger, S., Jung, R., Mouhieddine, M., Zuckermann, A., Tschernko, E., Dworschak, M., & Pataraia, E. (2022). The Impact of Nonconvulsive Status Epilepticus after Cardiac Surgery on Outcome. Journal of Clinical Medicine, 11(19), 5668. https://doi.org/10.3390/jcm11195668