Current Insights on Biomarkers in Lupus Nephritis: A Systematic Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Diagnostic Biomarkers
3.2. Biomarkers of Disease Activity and Organ Damage
Biomarker | Sample | Comparator | Disease activity | Metrics | References |
---|---|---|---|---|---|
Autoantibodies | |||||
Anti-C1q (+) | Serum/ Plasma | N/A | SLEDAI; ECLAM | r = 0.47 (SLEDAI); r = 0.28 (ECLAM) | Bock et al., 2015 [104] |
Inactive LN | proteinuria; SLEDAI | AUC = 0.76; sens.: 72%; spec.: 55%; r = 0.28 (proteinuria); r = 0.28 (SLEDAI) | Gómez-Puerta et al., 2018 [41] | ||
Inactive LN | proteinuria; active urinary sediment | AUC = 0.73; sens.: 63%; spec.: 75%; PPV: 69%; NPV: 67%; OR = 5.1 | Kianmehr et al., 2021 [105] | ||
Inactive LN | proteinuria; active urinary sediment | OR = 8.4 | Sjöwall et al., 2018 [50] | ||
SLE with no renal flares | renal flares | sens.: 70%; spec.: 44% | Birmingham et al., 2016 [51] | ||
SLE with no renal flare | renal flares | sens.: 75%; spec.: 69%; PPV: 35%; NPV: 93%; HRadj = 1.1 | Fatemi et al., 2016 [106] | ||
Anti-dsDNA (+) | Serum/ Plasma | Inactive LN | proteinuria; SLEDAI | AUC = 0.88; sens.: 71%; spec.: 88% | Jakiela et al., 2018 [61] |
Inactive LN | proteinuria; active urinary sediment; SLEDAI | AUC = 0.70; sens.: 71%; spec.: 63%; PPV: 63%; NPV: 71%; OR = 4.2 r = 0.23 (SLEDAI) | Kianmehr et al., 2021 [105] | ||
Inactive LN | proteinuria; active urinary sediment | OR = 4.8 | Sjöwall et al., 2018 [50] | ||
SLE with no renal flares | renal flares | AUC = 0.85; sens.: 88%; spec.: 83%; PPV: 43%; NPV: 97%; HR = 21.7 | Fasano et al., 2020 [107] | ||
PTEC-binding IgG (+) | Serum/Plasma | Inactive LN | renal flares | AUC = 0.63; sens.: 46%; spec.: 80%; PPV: 44%; NPV: 81% | Yap et al., 2016 [108] |
Complements | |||||
C3 (low) | Serum/ Plasma | Inactive LN | proteinuria; SLEDAI | AUC = 0.88; sens.: 100%; spec.: 65% | Jakiela et al., 2018 [61] |
N/A | SLEDAI | r = −0.99 (SLEDAI) | Selvaraja et al., 2019 [109] | ||
Active non-renal SLE | renal flares | sens.: 70%; spec.: 59%; OR = 2.5 | Ruchakorn et al., 2019 [110] | ||
SLE with no renal flares | renal flares | AUC = 0.76; sens.: 100%; spec.: 51%; PPV: 23%; NPV: 100%; HR = 6.0 | Fasano et al., 2020 [107] | ||
C4 (low) | Serum/ Plasma | N/A | SLEDAI | r = −0.83 (SLEDAI) | Selvaraja et al., 2019 [109] |
Inactive LN | proteinuria; SLEDAI | AUC = 0.88; sens.: 81%; spec.: 88% | Jakiela et al., 2018 [61] | ||
SLE with no renal flares | renal flares | AUC = 0.82; sens.: 100%; spec.: 62%; PPV: 28%; NPV: 100%; HR = 5.5 | Fasano et al., 2020 [107] | ||
SLE with no renal flares | renal flares | ORadj = 5.6 | Buyon et al., 2017 [111] | ||
Kidney disease-related markers | |||||
Proteinuria (↑) (>500 mg/24 h) | Urine | Inactive LN | proteinuria; active urinary sediment | AUC = 0.94 | Dolff et al., 2013 [112] |
Inactive LN | proteinuria; SLEDAI | AUC = 0.99; sens.: 88%; spec.: 100% | Jakiela et al., 2018 [61] | ||
SLE with no renal flares | renal flares | PPV: 43%; NPV: 85%; HRadj = 1.1 | Fatemi et al., 2016 [106] | ||
WBC (↑) | Urine | Inactive LN | proteinuria; SLEDAI | AUC = 0.75; sens.: 71%; spec.: 73% | Jakiela et al., 2018 [61] |
RBC (↑) | Urine | Inactive LN | proteinuria; SLEDAI | AUC = 0.92; sens.: 77%; spec.: 100% | Jakiela et al., 2018 [61] |
Granular casts (+) | Urine | Inactive LN | proteinuria; SLEDAI | AUC = 0.91; sens.: 82%; spec.: 91% | Jakiela et al., 2018 [61] |
Cytokines/chemokines | |||||
IL-10 (↑) | Serum/ Plasma | Inactive LN | proteinuria; SLEDAI | AUC = 0.87; sens.: 71%; spec.: 85% | Jakiela et al., 2018 [61] |
N/A | SLEDAI | r = 0.98 (SLEDAI) | Selvaraja et al., 2019 [109] | ||
IL-17 (↑) | Serum/ Plasma | Inactive LN | SLEDAI | AUC = 0.91; r = 0.63 (SLEDAI) | Dedong et al., 2019 [77] |
Inactive LN | BILAG renal score | AUC = 0.81; r = 0.26 (BILAG renal score) | Nordin et al., 2019 [113] | ||
IL-7 (↑) | Urine | Inactive SLE | rSLEDAI | AUC = 0.92; sens.: 84%; spec.: 95%; PPV: 95%; NPV: 84%; r = 0.70 (rSLEDAI) | Stanley et al., 2019 [78] |
IL-12 p40 (↑) | AUC = 0.93; sens.: 87%; spec.: 100%; PPV: 100%; NPV: 88%; r = 0.67 (rSLEDAI) | ||||
IL-15 (↑) | AUC = 0.91; sens.: 93%; spec.: 100%; PPV: 100%; NPV: 92%; r = 0.67 (rSLEDAI) | ||||
MCP-1 (↑) | Urine | Inactive LN; Non-renal SLE | rSLEDAI | AUC = 0.70; r = 0.35 (rSLEDAI) | Liu et al., 2020 [87] |
Inactive LN | SLEDAI | AUC = 0.76; sens.: 81%; spec.: 85% | Bona et al., 2020 [86] | ||
Inactive SLE | rSLEDAI | AUC = 0.79; sens.: 93%; spec.: 68%; PPV: 93%; NPV: 68% | Stanley et al., 2020 [11] | ||
Inactive LN | proteinuria; rSLEDAI | AUC = 1.00; sens.: 100%; spec.: 100%; PPV: 100%; NPV:100%; r = 0.84 (proteinuria); r = 0.92 (rSLEDAI) | Elsaid et al., 2021 [30] | ||
Inactive LN | SLEDAI-2K | AUC = 0.81; sens.: 50%; spec.: 90%; r = 0.39 (SLEDAI-2K) | Rosa et al., 2012 [84] | ||
Inactive LN | proteinuria; SLEDAI | AUC = 0.71; sens.: 70%; spec.: 58%; r = 0.47 (proteinuria); r = 0.33 (SLEDAI) | Gómez-Puerta et al., 2018 [41] | ||
Inactive LN | N/A | AUC = 0.90; sens.: 89%; spec.: 63%; OR = 19.4 | Xia et al., 2020 [91] | ||
IP-10/CXCL10 (↑) | Urine | Inactive SLE | rSLEDAI | AUC = 0.94; sens.: 87–88%; spec.: 81–100%; PPV: 100%; NPV: 88%; r = 0.67–0.74 (rSLEDAI) | Stanley et al., 2019 [78] |
Inactive LN | proteinuria; SLEDAI | AUC = 0.93; sens.: 88%; spec.: 81% | Jakiela et al., 2018 [61] | ||
Healthy controls | N/A | AUC = 0.92 | Zhang et al., 2020 [12] | ||
PF-4 (↑) | Urine | Inactive SLE | rSLEDAI | AUC = 0.71–0.88; sens.: 54–93%; spec.: 79–96%; PPV: 82–94%; NPV: 77–88% | Stanley et al., 2020 [11] |
TARC (↑) | Urine | Inactive SLE | rSLEDAI | AUC = 0.91; sens.: 78%; spec.: 92%, PPV: 91%; NPV: 80%; r = 0.70 (rSLEDAI) | Stanley et al., 2019 [78] |
TGFβ1 (↑) | Urine | Active non-renal SLE | proteinuria | r = 0.51 (proteinuria) | Fava et al., 2022 [79] |
Active non-renal SLE | rSLEDAI | AUC = 0.78; r = 0.37 (rSLEDAI) | Vanarsa et al., 2020 [80] | ||
TWEAK (↑) | Urine | N/A | proteinuria | r = 0.61 (proteinuria) | Reyes-Martínez et al., 2018 [27] |
Inactive LN | proteinuria; rSLEDAI | AUC = 1.00; sens.: 100%; spec.: 100%; PPV: 100%; NPV: 100%; r = 0.84 (proteinuria); r = 0.89 (rSLEDAI) | Elsaid et al., 2021 [30] | ||
Angiogenesis-related molecules | |||||
Angptl4 (↑) | Urine | Active non-renal SLE | rSLEDAI | AUC = 0.96; r = 0.66 | Vanarsa et al., 2020 [80] |
Healthy controls | N/A | AUC = 0.92 | Zhang et al., 2020 [12] | ||
Angiostatin (↑) | Serum/ Plasma | Inactive LN | SLEDAI | AUC = 0.83 | Wu et al., 2016 [13] |
Urine | Inactive LN | rSLEDAI | AUC = 0.99; sens.: 83%; spec.: 100%; r = 0.33 (rSLEDAI) | Soliman et al., 2017 [95] | |
Healthy controls | N/A | AUC = 0.97 | Zhang et al., 2020 [12] | ||
Inactive SLE | rSLEDAI; SLEDAI; SLICC-RAS | AUC = 0.83 r = 0.52 (rSLEDAI); r = 0.36 (SLEDAI); r = 0.68 (SLICC-RAS) | Wu et al., 2013 [69] | ||
Haemostasis-related molecules | |||||
Plasmin (↑) | Urine | Inactive LN | rSLEDAI; SLICC-RAS | AUC = 0.86; sens.: 100%; spec.: 70%; PPV: 96%; NPV: 50%; r = 0.50 (rSLEDAI); r = 0.58 (SLICC-RAS) | Qin et al., 2019 [97] |
Tissue Factor (↑) | AUC = 0.74; sens.: 61%; spec.: 85%; PPV: 90%; NPV: 35%; r = 0.33 (rSLEDAI); r = 0.38 (SLICC-RAS) | ||||
TFPI (↑) | AUC = 0.77; sens.: 86%; spec.: 58%; PPV: 92%; NPV: 36%; r = 0.40 (rSLEDAI); r = 0.31 (SLICC-RAS) | ||||
Inactive SLE | rSLEDAI | AUC = 0.71–0.88; sens.: 57–80%; spec.: 84–89%; PPV: 73–89%; NPV: 73–82% | Stanley et al., 2020 [11] | ||
Cell adhesion molecules | |||||
ALCAM (↑) | Urine | N/A | rSLEDAI | r = 0.35–0.41 (rSLEDAI) | Chalmers et al., 2022 [67] |
Inactive SLE | rSLEDAI | AUC = 0.84% sens.: 79–94%; spec.: 70–95%; PPV: 86–91%; NPV: 90–92% | Stanley et al., 2020 [11] | ||
N/A | rSLEDAI; SLICC-RAS | r = 0.55 (rSLEDAI); r = 0.58 (SLICC-RAS) | Ding et al., 2020 [68] | ||
ICAM-1 (↑) | Urine | Inactive LN | proteinuria; active urinary sediment | AUC = 0.97; sens.: 93–98%; spec.: 81–86% | Wang et al., 2018 [114] |
SLE with no renal flares | renal flares | AUC = 0.75; sens.: 88%; spec.: 59%; PPV: 25%; NPV: 97%; HR = 8.5 | Fasano et al., 2020 [107] | ||
NCAM-1 (↑) | Urine | Inactive LN | proteinuria; active urinary sediment | AUC = 0.88; sens.: 82%; spec.: 87% | Wang et al., 2018 [114] |
Healthy controls | N/A | AUC = 0.75 | Zhang et al., 2020 [12] | ||
VCAM-1 (↑) | Serum/ Plasma | Inactive LN | rSLEDAI-2K; SLEDAI-2K | AUC = 0.86; sens.: 69%; spec.: 90%; r = 0.61 (rSLEDAI-2K); r = 0.62 (SLEDAI-2K) | Yu et al., 2021 [115] |
Urine | N/A | rSLAM-R | r = 0.26 (rSLAM-R) | Howe et al., 2012 [100] | |
Inactive SLE | rSLEDAI | AUC = 0.84–0.87; sens.:92–96%; spec.: 65–74%; PPV: 93–95%; NPV: 60–72% | Stanley et al., 2020 [11] | ||
N/A | rSLEDAI | r = 0.55 (rSLEDAI) | Liu et al., 2020 [87] | ||
SLE with no renal flares | renal flares | AUC = 0.76; sens.: 75%; spec.: 75%; PPV: 32%; NPV: 95%; HR = 7.5 | Fasano et al., 2020 [107] | ||
Inactive LN | rSLEDAI; SLEDAI | AUC = 0.98; sens.: 100%; spec.: 90%; r = 0.32 (rSLEDAI); r = 0.32 (SLEDAI) | Soliman et al., 2017 [95] | ||
Other proteins | |||||
Axl (↑) | Serum/ Plasma | Inactive LN | SLEDAI | AUC = 0.87 | Wu et al., 2016 [13] |
Calpastatin (↑) | Urine | Inactive SLE | rSLEDAI | AUC = 0.72–0.75; sens.: 50–66%; spec.: 78–100%; PPV: 75–82%; NPV: 70–100% | Stanley et al., 2020 [11] |
CD163 (↑) | Urine | Inactive LN | N/A | AUC = 0.98–0.99; sens.: 97%; spec.: 94% | Mejia-Vilet et al., 2020 [101] |
Active non-renal SLE | rSLEDAI | AUC = 0.87–0.94; r = 0.45–0.75 (rSLEDAI) | Zhang et al., 2020 [103] | ||
N/A | proteinuria | r = 0.40 (proteinuria) | Fava et al., 2022 [79] | ||
Ferritin (↑) | Serum/ Plasma | Inactive LN | SLEDAI | AUC = 0.84 | Wu et al., 2016 [13] |
FOLR2 (↑) | Urine | Active non-renal SLE | rSLEDAI | AUC = 0.73; r = 0.62 (rSLEDAI) | Vanarsa et al., 2020 [80] |
Hemopexin (↑) | Urine | Inactive SLE | rSLEDAI | AUC = 0.73–0.80; sens.: 85–100%; spec.: 56–99%; PPV: 79–100%; NPV: 57–70% | Stanley et al., 2020 [11] |
IGFBP-2 (↑) | Serum/ Plasma | N/A | rSLEDAI | r = 0.41 (rSLEDAI) | Ding et al., 2016 [71] |
L-selectin (↑) | Urine | Active non-renal SLE | rSLEDAI | AUC = 0.86; r = 0.73 (rSLEDAI) | Vanarsa et al., 2020 [80] |
NGAL (↑) | Urine | Inactive LN | rSLEDAI-2K | AUC = 0.83; sens.: 89%; spec.: 67% | Alharazy et al., 2013 [116] |
Inactive LN | proteinuria; SLEDAI | AUC = 0.67; sens.: 70%; spec.: 62%; r = 0.40 (proteinuria); r = 0.30 (SLEDAI) | Gómez-Puerta et al., 2018 [41] | ||
N/A | rSLEDAI | r = 0.42 (rSLEDAI) | Liu et al., 2020 [87] | ||
PDGFRβ (↑) | Urine | Active non-renal SLE | rSLEDAI | AUC = 0.67 | Vanarsa et al., 2020 [80] |
Peroxiredoxin 6 (↑) | Urine | Inactive SLE | rSLEDAI | AUC = 0.64–0.75; sens.: 50–56%; spec.: 79–91%; PPV: 68–87%; NPV: 64–68% | Stanley et al., 2020 [11] |
Progranulin (↑) | Serum/ Plasma | Stable LN | rSLEDAI; SLEDAI | AUC = 0.88; sens.: 53%; spec.: 89%; PPV: 82%; NPV: 66% | Wu et al., 2016 [117] |
Non-LN renal disorder | AUC = 0.67; sens.: 60%; spec.: 100%; PPV: 100%; NPV: 73%; r = 0.57 (rSLEDAI); r = 0.62 (SLEDAI) | ||||
Urine | Inactive LN | AUC = 0.90; sens.: 65%; spec.: 99%; PPV: 98%; NPV: 74%; r = 0.59 (rSLEDAI); r = 0.58 (SLEDAI) | |||
Properdin (↑) | Urine | Inactive SLE | rSLEDAI | AUC = 0.71–0.85; sens.: 62–86%; spec.: 84–90%; PPV: 79–90%; NPV: 68–86% | Stanley et al., 2020 [11] |
RBP4 (↑) | Urine | SLE with no proteinuric flare | proteinuric flares | AUC = 0.67; sens.: 93%; spec.: 67%; HR = 9.5 | Go et al., 2018 [118] |
N/A | rSLEDAI; SLEDAI; uPCR | r = 0.31 (rSLEDAI); r = 0.31 (SLEDAI); r = 0.39 (uPCR) | Aggarwal et al., 2017 [119] | ||
SDC-1 (↑) | Serum/ Plasma | Inactive LN | proteinuria; rSLEDAI-2K; SLEDAI-2K | AUC = 0.91; sens.: 85%; spec.: 86%; r = 0.57 (proteinuria); r = 0.68 (rSLEDAI-2K); r = 0.54 (SLEDAI-2K) | Yu et al., 2021 [120] |
N/A | SLEDAI; uPCR | r = 0.60 (SLEDAI); r = 0.45 (uPCR) | Kim et al., 2015 [121] | ||
sTNFRII (↑) | Serum/ Plasma | Non-renal SLE | rSLEDAI; rLAI | AUC = 0.77; r = 0.30 (rSLEDAI); r = 0.39 (rLAI) | Smith et al., 2019 [122] |
Inactive LN | N/A | AUC = 0.81 | Wu et al., 2016 [13] | ||
TSP1 (↑) | Urine | Active non-renal SLE | rSLEDAI | AUC = 0.72 | Vanarsa et al., 2020 [80] |
TTP1 (↑) | Urine | Active non-renal SLE | rSLEDAI | AUC = 0.84 | Vanarsa et al., 2020 [80] |
Microparticles | |||||
MP-HMGB1+ (↑) | Urine | Inactive LN | N/A | AUC = 0.83; sens.: 55%; spec.: 93% | Burbano et al., 2019 [48] |
Biomarker | Sample | Comparator | Disease activity | Metrics | References |
---|---|---|---|---|---|
Complement | |||||
C1q (low) | Serum/ Plasma | N/A | AI | r = −0.33 (AI) | Tan et al., 2013 [123] |
C3 (low) | Serum/ Plasma | membranous LN | proliferative LN | AUC = 0.77; sens.: 75%; spec.: 74%; PPV: 92%; NPV: 44% | Ding et al., 2020 [68] |
Kidney disease-related markers | |||||
Proteinuria (↑) (>500 mg/24 h) | Urine | Inactive LN | proliferative LN | AUC = 0.91; sens.: 89%; spec.: 85% | Enghard et al., 2014 [124] |
Cytokines/chemokines | |||||
IL-17 (↑) | Serum/ Plasma | N/A | AI | r = 0.52 (AI) | Dedong et al., 2019 [77] |
IL-16 (↑) | Urine | N/A | AI | r = 0.59–0.73 (AI) | Fava et al., 2022 [79] |
MCP-1 (↑) | Urine | Non-proliferative LN | proliferative LN | AUC = 0.64–0.78 | Endo et al., 2016 [102] |
TGFβ1 (↑) | Urine | N/A | AI | r = 0.65 (AI) | Fava et al., 2022 [79] |
Angiogenesis-related molecules | |||||
Angiostatin (↑) | Urine | N/A | AI | r = 0.93 (AI) | Soliman et al., 2017 [95] |
Cell adhesion molecules | |||||
ALCAM (↑) | Urine | Membranous LN | proliferative LN | AUC = 0.81; sens.: 78%; spec.: 81%; PPV: 94%; NPV: 52% | Ding et al., 2020 [68] |
VCAM-1 (↑) | Urine | N/A | AI | r = 0.42 (AI) | Singh et al., 2012 [66] |
N/A | AI | r = 0.97 (AI) | Soliman et al., 2017 [95] | ||
Other proteins | |||||
CD163 (↑) | Urine | N/A | AI | r = 0.48–0.59 (AI) | Mejia-Vilet et al., 2020 [101] |
Non-proliferative LN | proliferative LN | AUC = 0.83–0.89; sens.: 83%; spec.: 86% | Endo et al., 2016 [102] | ||
N/A | AI | r = 0.41 (AI) | |||
Non-proliferative LN | proliferative LN | AUC = 0.89 | Zhang et al., 2020 [103] | ||
N/A | AI | r = 0.40 (AI) | |||
N/A | AI | r = 0.67 (AI) | Fava et al., 2022 [79] | ||
SDC-1 (↑) | Serum/ Plasma | N/A | AI | r = 0.63; radj = 0.66 (AI) | Kim et al., 2015 [121] |
sTNFRII (↑) | Serum/ Plasma | N/A | AI | r = 0.40 (AI) | Wu et al., 2016 [13] |
Renal tissue markers | |||||
CSF-1 (↑) | Kidney biopsy | Non-renal SLE | AI | r = 0.46 | Menke et al., 2015 [125] |
Biomarker | Sample | Comparator | Organ Damage | Metrics | References |
---|---|---|---|---|---|
Autoantibodies | |||||
Anti-dsDNA (+) | Serum/Plasma | Non-CKD SLE | CKD stages | ORadj = 2.0 | Barnado et al., 2019 [57] |
Kidney disease-related markers | |||||
Urea (↑) (>10.25 mmol/L) | Serum/Plasma | Non-CKD LN | CKD stages | AUC = 0.91; sens.: 85%; spec.: 83%; PPV: 82%; NPV: 86% | Yang et al., 2016 [23] |
Other proteins | |||||
Angiostatin (↑) | Urine | N/A | CI | r = 0.52 | Wu et al., 2013 [69] |
IGFBP-2 (↑) | Serum/Plasma | N/A | CI | r = 0.58 | Ding et al., 2016 [71] |
IGFBP-4 (↑) | Serum/Plasma | N/A | CI; eGFR | r = 0.71; r = −0.62 | Wu et al., 2016 [126] |
Resistin (↑) | Serum/Plasma | N/A | creatinine; BUN | r = 0.45; r = 0.54 | Hutcheson et al., 2015 [127] |
sTNFRII (↑) | Serum/Plasma | N/A | CI | r = 0.34–0.43 | Parodis et al., 2017 [83] |
N/A | CI; eGFR | r = 0.57; r = −0.50 | Wu et al., 2016 [13] | ||
VCAM-1 (↑) | Urine | N/A | CKD stages | r = 0.39–0.50 | Parodis et al., 2020 [99] |
N/A | CI | r = 0.30 | Liu et al., 2020 [87] | ||
Renal tissue markers | |||||
Periostin (↑) | Kidney biopsy | N/A | CI; creatinine; BUN; eGFR | r = 0.59; r = 0.43; r = 0.31; r = −0.45 | Wantanasiri et al., 2015 [128] |
3.3. Biomarkers of Response to Therapy
Biomarker | Sample | Main Findings | References |
---|---|---|---|
Autoantibodies | |||
Anti-dsDNA (-) (disappearance at month 6) | Serum/Plasma | Sens.: 70%; spec.: 56%; PPV: 67%; NPV: 59% to predict a CRR by month 12 | Mejia-Vilet et al., 2020 [101] |
Complement | |||
C3 (↑) (normalization or 25% increase at month 6) | Serum/Plasma | Sens.: 65–70%; spec.: 67–72%; PPV: 73–75%; NPV: 62–63% to predict CRR by month 12 | Mejia-Vilet et al., 2020 [101] |
Kidney disease-related markers | |||
Proteinuria (↓) (baseline levels 0.1–0.87 g/24 h) | Urine | Low levels are predictive of CRR at 6 months (OR = 4.3) after immunosuppressive therapy | Ichinose et al., 2018 [137] |
uPCR (↓) (<1.5 g/g at month 6) | Urine | Sens.: 86%; spec.: 81%; PPV: 81%; NPV: 86% to predict CRR by month 12 | Mejia-Vilet et al., 2020 [101] |
Cytokines/chemokines | |||
APRIL (↑) (baseline levels >4 ng/mL) | Serum/Plasma | Predictive of treatment failure after six months: AUC = 0.71; sens.: 65%; spec.: 87%; PPV: 93%; NPV: 54% | Treamtrakanpon et al., 2012 [140] |
BAFF (↓) (baseline levels <1.5 ng/mL) | Serum/Plasma | Predictive of clinical (PPV: 87%) and histopathological response (PPV: 83%) (mean follow up: 8.1 months) | Parodis et al., 2015 [135] |
IL-8 (↓) (baseline levels) | Serum/Plasma | Lower values predictive of treatment response after 1-year: AUC = 0.64 | Wolf et al., 2016 [141] |
IL-23 (↓) (baseline levels) | Serum/Plasma | Predictor for outcome of therapy of induction of remission of active LN: AUC = 0.87 | Dedong et al., 2019 [77] |
MCP-1 (↑) (baseline levels) | Urine | Predictive of response to treatment with rituximab at 6 (ORadj = 2.6) and 12 months (ORadj = 0.6) | Davies et al., 2021 [72] |
Other proteins | |||
Axl (↑) (baseline levels ≥36.6 ng/mL) | Serum/Plasma | Predictive of histological response: OR = 5.5; ORadj = 9.3. Decreased levels in responders compared with non-responders after induction therapy. | Parodis et al., 2019 [131] |
CD163 (↓) (<370 ng/mmol at month 6) | Urine | Sens.: 90%; spec.: 87%; PPV: 87%; NPV: 90% to predict a CRR by month 12. | Mejia-Vilet et al., 2020 [101] |
CSF-1 (↓) (decrease ≥25% after initiation of therapy) | Serum/Plasma | Predictive of response to therapy and remission: PPV: 88%; NPV: 58% | Menke et al., 2015 [125] |
HNP1-3 (↓) (baseline levels) | Serum/Plasma | Predictive of proteinuria remission (mean follow up of 5.5 years): multivariate hazard = 0.2 | Cheng et al., 2015 [142] |
IL-2Rα (↓) (baseline levels) | Serum/Plasma | Low levels are predictive of treatment response after 1-year: AUC = 0.63 | Wolf et al., 2016 [141] |
NGAL (↓) (baseline levels <1964.58 ng/mL) (baseline levels <28.08 ng/mL) | Urine | Predictive of renal response after 6-month induction therapy: AUC = 0.78; sens.: 81%; spec.: 83%; PPV: 56%; NPV: 95% | Liu et al., 2020 [87] |
Discrimination between complete/partial response and non-response after 6-month of induction therapy: AUC = 0.77; sens.: 73%; spec.: 68% | Satirapoj et al., 2017 [35] | ||
NRP-1 (↑) (baseline levels >1143 ng/mg Cr) | Urine | High baseline levels are predictive of clinical response; AUC = 0.84; sens.: 87%; spec.: 72%; PPV: 88%; NPV: 71% | Torres-Salido et al., 2019 [143] |
OPG (↓) (baseline levels) | Serum/Plasma | Low levels are predictive of treatment response after 1-year: AUC = 0.67 | Wolf et al., 2016 [141] |
RBP4 (↓) (baseline leveles <800 ng/mgCr) | Urine | Low levels are predictive of proteinuria remission within 12 months of immunosuppressive therapy in active LN patients: AUC = 0.81; sens.: 82%; spec.: 89% | Go et al., 2018 [118] |
sTNFRII (↑) (baseline levels >8.6 ng/mL) (baseline levels >9.0 ng/mL) | Serum/Plasma | Predictive of clinical (AUC = 0.86; sens.: 86%; spec.: 80%) and histological response (AUC = 0.90; sens.: 83%; spec.: 80%) among patients with membranous LN (mean follow up: 7.7 months) | Parodis et al., 2017 [83] |
S100A8/A9 (↑) (baseline levels) | Serum/Plasma | Differences in disease activity (no response vs. “showing improvement”) in response after 6 months of rituximab: ORadj = 0.3 for both | Davies et al., 2020 [144] |
S100A12 (↑) (baseline levels) | |||
TF (↑) (baseline levels) | Urine | Predictive of response to treatment with rituximab at 12 months (ORadj = 1.4) | Davies et al., 2021 [72] |
Lymphocytes/immunoglobulins | |||
IgM (↑) (baseline levels 87.5–402 mg/dL) | Serum/Plasma | High levels are predictive of CRR at 12 months (OR = 2.1) after immunosuppressive therapy | Ichinose et al., 2018 [137] |
Lymphocyte count (↑) (baseline levels 1327–2683/μL) | Serum/Plasma | High levels are predictive of CRR at 12 months (OR = 2.4) after immunosuppressive therapy | Ichinose et al., 2018 [137] |
MicroRNAs | |||
miRNA-31-5p (↑) (upregulated at flare time and at month 12) | Urine | Significantly upregulated in responder group compared to non-responders: flare time: AUC = 0.68; 12 months after treatment: AUC = 0.76 | Garcia-Vives et al., 2020 [145] |
miRNA-107 (↑) (upregulated at flare time and at month 12) | Significantly upregulated in responder group compared to non-responders: flare time: AUC = 0.73; 12 months after treatment: AUC = 0.73 | ||
miRNA-135b-5p (↑) (upregulated at flare time and at month 12) | Significantly upregulated in responder group compared to non-responders: flare time: AUC = 0.78; sens.: 78%; spec.: 71%; 12 months after treatment: AUC = 0.86; sens.: 81%; spec.: 79% | ||
Renal tissue markers | |||
C9 (+) (positive staining at baseline) | Kidney biopsy | Positive staining is predictive of poor response at 6 months: OR = 5.4; ORadj = 4.6 | Wang et al., 2018 [138] |
Podocyte foot process width (↓) (baseline levels 498–897 nm) | Kidney biopsy | Smaller width is predictive of CRR after induction therapy at 6 months (OR = 4.9) and 12 months (OR = 5.8) after immunosuppressive therapy | Ichinose et al., 2018 [137] |
3.4. Prognostic Biomarkers
4. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anders, H.-J.; Saxena, R.; Zhao, M.-H.; Parodis, I.; Salmon, J.E.; Mohan, C. Lupus nephritis. Nat. Rev. Dis. Prim. 2020, 6, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Almaani, S.; Meara, A.; Rovin, B.H. Update on Lupus Nephritis. Clin. J. Am. Soc. Nephrol. 2017, 12, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Tektonidou, M.; Dasgupta, A.; Ward, M.M. Risk of End-Stage Renal Disease in Patients With Lupus Nephritis, 1971-2015: A Systematic Review and Bayesian Meta-Analysis. Arthritis Rheumatol. 2016, 68, 1432–1441. [Google Scholar] [CrossRef] [PubMed]
- Petri, M.; Barr, E.; Magder, L.S. Risk of Renal Failure Within 10 or 20 Years of Systemic Lupus Erythematosus Diagnosis. J. Rheumatol. 2020, 48, 222–227. [Google Scholar] [CrossRef]
- Yu, F.; Haas, M.; Glassock, R.; Zhao, M.-H. Redefining lupus nephritis: Clinical implications of pathophysiologic subtypes. Nat. Rev. Nephrol. 2017, 13, 483–495. [Google Scholar] [CrossRef]
- Fanouriakis, A.; Kostopoulou, M.; Cheema, K.; Anders, H.-J.; Aringer, M.; Bajema, I.; Boletis, J.; Frangou, E.; A Houssiau, F.; Hollis, J.; et al. 2019 Update of the Joint European League Against Rheumatism and European Renal Association–European Dialysis and Transplant Association (EULAR/ERA–EDTA) recommendations for the management of lupus nephritis. Ann. Rheum. Dis. 2020, 79, 713–723. [Google Scholar] [CrossRef]
- Hahn, B.H.; McMahon, M.A.; Wilkinson, A.; Wallace, W.D.; Daikh, D.I.; FitzGerald, J.; Karpouzas, G.A.; Merrill, J.T.; Wallace, D.J.; Yazdany, J.; et al. American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res. 2012, 64, 797–808. [Google Scholar] [CrossRef]
- Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef]
- Mok, C.C. Biomarkers for Lupus Nephritis: A Critical Appraisal. J. Biomed. Biotechnol. 2010, 2010, 638413. [Google Scholar] [CrossRef]
- Soliman, S.; Mohan, C. Lupus nephritis biomarkers. Clin. Immunol. 2017, 185, 10–20. [Google Scholar] [CrossRef]
- Stanley, S.; Vanarsa, K.; Soliman, S.; Habazi, D.; Pedroza, C.; Gidley, G.; Zhang, T.; Mohan, S.; Der, E.; Suryawanshi, H.; et al. Comprehensive aptamer-based screening identifies a spectrum of urinary biomarkers of lupus nephritis across ethnicities. Nat. Commun. 2020, 11, 2197. [Google Scholar]
- Zhang, T.; Duran, V.; Vanarsa, K.; Mohan, C. Targeted urine proteomics in lupus nephritis—A meta-analysis. Expert Rev. Proteom. 2020, 17, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Ding, H.; Han, J.; Arriens, C.; Wei, C.; Han, W.; Pedroza, C.; Jiang, S.; Anolik, J.; Petri, M.; et al. Antibody-Array-Based Proteomic Screening of Serum Markers in Systemic Lupus Erythematosus: A Discovery Study. J. Proteome Res. 2016, 15, 2102–2114. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Joanna BrIggs Institute. Checklist foriti Case Control AppraStudisal Tooles. Available online: https://jbi.global/critical-appraisal-tools (accessed on 4 July 2022).
- Bagavant, H.; Fu, S.M. Pathogenesis of kidney disease in systemic lupus erythematosus. Curr. Opin. Rheumatol. 2009, 21, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Bonanni, A.; Vaglio, A.; Bruschi, M.; Sinico, R.A.; Cavagna, L.; Moroni, G.; Franceschini, F.; Allegri, L.; Pratesi, F.; Migliorini, P.; et al. Multi-antibody composition in lupus nephritis: Isotype and antigen specificity make the difference. Autoimmun. Rev. 2015, 14, 692–702. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, L.; Chen, K.; Huang, F.; Feng, Y.; Xu, Z.; Wang, W. Anti–α-enolase antibody combined with β2 microglobulin evaluated the incidence of nephritis in systemic lupus erythematosus patients. Lupus 2019, 28, 365–370. [Google Scholar] [CrossRef]
- Bruschi, M.; Sinico, R.A.; Moroni, G.; Pratesi, F.; Migliorini, P.; Galetti, M.; Murtas, C.; Tincani, A.; Madaio, M.; Radice, A.; et al. Glomerular autoimmune multicomponents of human lupus nephritis in vivo: Alpha-enolase and annexin AI. J. Am. Soc. Nephrol. JASN 2014, 25, 2483–2498. [Google Scholar] [CrossRef]
- Bruschi, M.; Moroni, G.; Sinico, R.A.; Franceschini, F.; Fredi, M.; Vaglio, A.; Cavagna, L.; Petretto, A.; Pratesi, F.; Migliorini, P.; et al. Serum IgG2 antibody multicomposition in systemic lupus erythematosus and lupus nephritis (Part 1): Cross-sectional analysis. Rheumatology 2020, 60, 3176–3188. [Google Scholar] [CrossRef]
- Bruschi, M.; Moroni, G.; Sinico, R.A.; Franceschini, F.; Fredi, M.; Vaglio, A.; Cavagna, L.; Petretto, A.; Pratesi, F.; Migliorini, P.; et al. Serum IgG2 antibody multi-composition in systemic lupus erythematosus and in lupus nephritis (Part 2): Prospective study. Rheumatology 2020, 60, 3388–3397. [Google Scholar] [CrossRef]
- Calich, A.L.; Borba, E.F.; Ugolini-Lopes, M.R.; da Rocha, L.F.; Bonfá, E.; Fuller, R. Serum uric acid levels are associated with lupus nephritis in patients with normal renal function. Clin. Rheumatol. 2018, 37, 1223–1228. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, Z.; Qin, B.; Wu, P.; Zhong, R.; Zhou, L.; Liang, Y. Human Epididymis Protein 4: A Novel Biomarker for Lupus Nephritis and Chronic Kidney Disease in Systemic Lupus Erythematosus. J. Clin. Lab. Anal. 2016, 30, 897–904. [Google Scholar] [CrossRef]
- Hafez, E.A.; Hassan, S.A.E.-M.; Teama, M.A.M.; Badr, F.M. Serum uric acid as a predictor for nephritis in Egyptian patients with systemic lupus erythematosus. Lupus 2020, 30, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Winkles, J.A. The TWEAK–Fn14 cytokine–receptor axis: Discovery, biology and therapeutic targeting. Nat. Rev. Drug Discov. 2008, 7, 411–425. [Google Scholar] [CrossRef]
- Salem, M.N.; Taha, H.A.; Abd El-Fattah El-Feqi, M.; Eesa, N.N.; Mohamed, R.A. Urinary TNF-like weak inducer of apoptosis (TWEAK) as a biomarker of lupus nephritis. Z Rheumatol. 2018, 77, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Martinez, F.; Perez-Navarro, M.; Rodriguez-Matias, A.; Soto-Abraham, V.; Gutierrez-Reyes, G.; Medina-Avila, Z.; Valdez-Ortiz, R. Assessment of urinary TWEAK levels in Mexican patients with untreated lupus nephritis: An exploratory study. Nefrologia 2018, 38, 152–160. [Google Scholar] [CrossRef]
- Michaelson, J.S.; Wisniacki, N.; Burkly, L.C.; Putterman, C. Role of TWEAK in lupus nephritis: A bench-to-bedside review. J. Autoimmun. 2012, 39, 130–142. [Google Scholar] [CrossRef]
- Xia, Y.; Herlitz, L.C.; Gindea, S.; Wen, J.; Pawar, R.D.; Misharin, A.; Perlman, H.; Wu, L.; Wu, P.; Michaelson, J.S.; et al. Deficiency of Fibroblast Growth Factor-Inducible 14 (Fn14) Preserves the Filtration Barrier and Ameliorates Lupus Nephritis. J. Am. Soc. Nephrol. 2014, 26, 1053–1070. [Google Scholar] [CrossRef]
- Elsaid, D.S.; Abdel Noor, R.A.; Shalaby, K.A.; Haroun, R.A.-H. Urinary Tumor Necrosis Factor-Like Weak Inducer of Apoptosis (uTWEAK) and Urinary Monocyte Chemo-attractant Protein-1 (uMCP-1): Promising Biomarkers of Lupus Nephritis Activity? Saudi J. Kidney Dis. Transplant. Off. Publ. Saudi Cent. Organ Transplant. Saudi Arab. 2021, 32, 19–29. [Google Scholar] [CrossRef]
- Mirioglu, S.; Cinar, S.; Yazici, H.; Ozluk, Y.; Kilicaslan, I.; Gul, A.; Ocal, L.; Inanc, M.; Artim-Esen, B. Serum and urine TNF-like weak inducer of apoptosis, monocyte chemoattractant protein-1 and neutrophil gelatinase-associated lipocalin as biomarkers of disease activity in patients with systemic lupus erythematosus. Lupus 2020, 29, 379–388. [Google Scholar] [CrossRef]
- Choe, J.-Y.; Kim, S.-K. Serum TWEAK as a biomarker for disease activity of systemic lupus erythematosus. Inflamm Res. 2016, 65, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Kaur, S.; Guha, S.; Batra, S.K. The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim. Biophys. Acta BBA Rev. Cancer 2012, 1826, 129–169. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, T.; Pitashny, M.; Putterman, C. The novel role of neutrophil gelatinase-B associated lipocalin (NGAL)/Lipocalin-2 as a biomarker for lupus nephritis. Autoimmun. Rev. 2008, 7, 229–234. [Google Scholar] [CrossRef]
- Satirapoj, B.; Kitiyakara, C.; Leelahavanichkul, A.; Avihingsanon, Y.; Supasyndh, O. Urine neutrophil gelatinase-associated lipocalin to predict renal response after induction therapy in active lupus nephritis. BMC Nephrol. 2017, 18, 263. [Google Scholar] [CrossRef]
- Fang, Y.G.; Chen, N.N.; Cheng, Y.B.; Sun, S.J.; Li, H.X.; Sun, F.; Xiang, Y. Urinary neutrophil gelatinase-associated lipocalin for diagnosis and estimating activity in lupus nephritis: A meta-analysis. Lupus 2015, 24, 1529–1539. [Google Scholar] [CrossRef] [PubMed]
- Brunner, H.I.; Bennett, M.R.; Mina, R.; Suzuki, M.; Petri, M.; Kiani, A.N.; Pendl, J.; Witte, D.; Ying, J.; Rovin, B.H.; et al. Association of noninvasively measured renal protein biomarkers with histologic features of lupus nephritis. Arthritis Care Res. 2012, 64, 2687–2697. [Google Scholar] [CrossRef]
- Torres-Salido, M.T.; Cortes-Hernandez, J.; Vidal, X.; Pedrosa, A.; Vilardell-Tarres, M.; Ordi-Ros, J. Neutrophil gelatinase-associated lipocalin as a biomarker for lupus nephritis. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 2014, 29, 1740–1749. [Google Scholar] [CrossRef]
- El Shahawy, M.S.; Hemida, M.H.; Abdel-Hafez, H.A.; El-Baz, T.Z.; Lotfy, A.-W.M.; Emran, T.M. Urinary neutrophil gelatinase-associated lipocalin as a marker for disease activity in lupus nephritis. Scand. J. Clin. Lab. Investig. 2018, 78, 264–268. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, B.; Cao, J.; Feng, S.; Liu, B. Elevated Urinary Neutrophil Gelatinase-Associated Lipocalin Is a Biomarker for Lupus Nephritis: A Systematic Review and Meta-Analysis. BioMed Res. Int. 2020, 2020, 2768326. [Google Scholar] [CrossRef]
- A Gómez-Puerta, J.; Ortiz-Reyes, B.; Urrego, T.; Vanegas-García, A.L.; Muñoz, C.H.; A González, L.; Cervera, R.; Vásquez, G. Urinary neutrophil gelatinase-associated lipocalin and monocyte chemoattractant protein 1 as biomarkers for lupus nephritis in Colombian SLE patients. Lupus 2017, 27, 637–646. [Google Scholar] [CrossRef]
- Li, Y.-J.; Wu, H.-H.; Liu, S.-H.; Tu, K.-H.; Lee, C.-C.; Hsu, H.-H.; Chang, M.-Y.; Yu, K.-H.; Chen, W.; Tian, Y.-C. Polyomavirus BK, BKV microRNA, and urinary neutrophil gelatinase-associated lipocalin can be used as potential biomarkers of lupus nephritis. PLoS ONE 2019, 14, e0210633. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Belasco, J.G. Let Me Count the Ways: Mechanisms of Gene Regulation by miRNAs and siRNAs. Mol. Cell 2008, 29, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Tam, L.-S.; Kwan, B.C.-H.; Li, E.K.-M.; Chow, K.-M.; Luk, C.C.-W.; Li, P.K.-T.; Szeto, C.-C. Expression of miR-146a and miR-155 in the urinary sediment of systemic lupus erythematosus. Clin. Rheumatol. 2011, 31, 435–440. [Google Scholar] [CrossRef]
- Khoshmirsafa, M.; Kianmehr, N.; Falak, R.; Mowla, S.J.; Seif, F.; Mirzaei, B.; Valizadeh, M.; Shekarabi, M. Elevated expression of miR-21 and miR-155 in peripheral blood mononuclear cells as potential biomarkers for lupus nephritis. Int. J. Rheum. Dis. 2018, 22, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Nakhjavani, M.; Etemadi, J.; Pourlak, T.; Mirhosaini, Z.; Vahed, S.Z.; Abediazar, S. Plasma levels of miR-21, miR-150, miR-423 in patients with lupus nephritis. Iran. J. Kidney Dis. 2019, 13, 198–206. [Google Scholar]
- Abdul-Maksoud, R.S.; Rashad, N.M.; Elsayed, W.S.H.; Ali, M.A.; Kamal, N.M.; Zidan, H.E. Circulating miR-181a and miR-223 expression with the potential value of biomarkers for the diagnosis of systemic lupus erythematosus and predicting lupus nephritis. J. Gene Med. 2021, 23, e3326. [Google Scholar] [CrossRef]
- Burbano, C.; A Gómez-Puerta, J.; Muñoz-Vahos, C.; Vanegas-García, A.; Rojas, M.; Vásquez, G.; Castaño, D. HMGB1 + microparticles present in urine are hallmarks of nephritis in patients with systemic lupus erythematosus. Eur. J. Immunol. 2018, 49, 323–335. [Google Scholar] [CrossRef]
- Yoshimoto, S.; Nakatani, K.; Iwano, M.; Asai, O.; Samejima, K.-I.; Sakan, H.; Terada, M.; Harada, K.; Akai, Y.; Shiiki, H.; et al. Elevated Levels of Fractalkine Expression and Accumulation of CD16+ Monocytes in Glomeruli of Active Lupus Nephritis. Am. J. Kidney Dis. 2007, 50, 47–58. [Google Scholar] [CrossRef]
- Sjӧwall, C.; Bentow, C.; Aure, M.A.; Mahler, M. Two-Parametric Immunological Score Development for Assessing Renal Involvement and Disease Activity in Systemic Lupus Erythematosus. J. Immunol. Res. 2018, 2018, 1294680. [Google Scholar] [CrossRef]
- Birmingham, D.J.; Bitter, J.E.; Ndukwe, E.G.; Dials, S.; Gullo, T.R.; Conroy, S.; Nagaraja, H.N.; Rovin, B.H.; Hebert, L.A. Relationship of Circulating Anti-C3b and Anti-C1q IgG to Lupus Nephritis and Its Flare. Clin. J. Am. Soc. Nephrol. 2015, 11, 47–53. [Google Scholar] [CrossRef]
- Pang, Y.; Tan, Y.; Li, Y.; Zhang, J.; Guo, Y.; Guo, Z.; Zhang, C.; Yu, F.; Zhao, M.-H. Serum A08 C1q antibodies are associated with disease activity and prognosis in Chinese patients with lupus nephritis. Kidney Int. 2016, 90, 1357–1367. [Google Scholar] [CrossRef] [PubMed]
- Hardt, U.; Larsson, A.; Gunnarsson, I.; Clancy, R.M.; Petri, M.; Buyon, J.P.; Silverman, G.J.; Svenungsson, E.; Grönwall, C. Autoimmune reactivity to malondialdehyde adducts in systemic lupus erythematosus is associated with disease activity and nephritis. Arthritis Res. Ther. 2018, 20, 36. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-R.; Qi, Y.-Y.; Zhao, Y.-F.; Cui, Y.; Wang, X.-Y.; Zhao, Z.-Z. Albumin-to-globulin ratio (AGR) as a potential marker of predicting lupus nephritis in Chinese patients with systemic lupus erythematosus. Lupus 2021, 30, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.C.; Lee, E.-J.; Oh, J.S.; Hong, S.; Lee, C.-K.; Yoo, B.; Park, M.-C.; Kim, Y.-G. Plasma immunoglobulin binding protein 1 as a predictor of development of lupus nephritis. Lupus 2020, 29, 547–553. [Google Scholar] [CrossRef]
- Mok, C.C.; Ding, H.H.; Kharboutli, M.; Mohan, C. Axl, Ferritin, Insulin-Like Growth Factor Binding Protein 2, and Tumor Necrosis Factor Receptor Type II as Biomarkers in Systemic Lupus Erythematosus. Arthr. Care Res. 2016, 68, 1303–1309. [Google Scholar] [CrossRef]
- Barnado, A.; Carroll, R.; Casey, C.; Wheless, L.; Denny, J.; Crofford, L. Phenome-wide association study identifies dsDNA as a driver of major organ involvement in systemic lupus erythematosus. Lupus 2018, 28, 66–76. [Google Scholar] [CrossRef]
- Tang, C.; Fang, M.; Tan, G.; Zhang, S.; Yang, B.; Li, Y.; Zhang, T.; Saxena, R.; Mohan, C.; Wu, T. Discovery of Novel Circulating Immune Complexes in Lupus Nephritis Using Immunoproteomics. Front. Immunol. 2022, 13, 850015. [Google Scholar] [CrossRef]
- Ishizaki, J.; Saito, K.; Nawata, M.; Mizuno, Y.; Tokunaga, M.; Sawamukai, N.; Tamura, M.; Hirata, S.; Yamaoka, K.; Hasegawa, H.; et al. Low complements and high titre of anti-Sm antibody as predictors of histopathologically proven silent lupus nephritis without abnormal urinalysis in patients with systemic lupus erythematosus. Rheumatology 2014, 54, 405–412. [Google Scholar] [CrossRef]
- Martin, M.; Trattner, R.; Nilsson, S.C.; Björk, A.; Zickert, A.; Blom, A.M.; Gunnarsson, I. Plasma C4d Correlates With C4d Deposition in Kidneys and With Treatment Response in Lupus Nephritis Patients. Front. Immunol. 2020, 11, 582737. [Google Scholar] [CrossRef]
- Jakiela, B.; Kosalka-Wegiel, J.; Plutecka, H.; Węgrzyn, A.S.; Bazan-Socha, S.; Sanak, M.; Musiał, J. Urinary cytokines and mRNA expression as biomarkers of disease activity in lupus nephritis. Lupus 2018, 27, 1259–1270. [Google Scholar] [CrossRef]
- Phatak, S.; Chaurasia, S.; Mishra, S.K.; Gupta, R.; Agrawal, V.; Aggarwal, A.; Misra, R. Urinary B cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL): Potential biomarkers of active lupus nephritis. Clin. Exp. Immunol. 2016, 187, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Vincent, F.B.; Kandane-Rathnayake, R.; Hoi, A.Y.; Slavin, L.; Godsell, J.D.; Kitching, A.R.; Harris, J.; Nelson, C.L.; Jenkins, A.J.; Chrysostomou, A.; et al. Urinary B-cell-activating factor of the tumour necrosis factor family (BAFF) in systemic lupus erythematosus. Lupus 2018, 27, 2029–2040. [Google Scholar] [CrossRef] [PubMed]
- Mok, C.C.; Soliman, S.; Ho, L.Y.; Mohamed, F.A.; Mohamed, F.I.; Mohan, C. Urinary angiostatin, CXCL4 and VCAM-1 as biomarkers of lupus nephritis. Arthritis Res. Ther. 2018, 20, 6. [Google Scholar] [CrossRef]
- Barbado, J.; Martin, D.; Vega, L.; Almansa, R.; Gonçalves, L.; Nocito, M.; Jimeno, A.; de Lejarazu, R.O.; Bermejo-Martin, J.F. MCP-1 in urine as biomarker of disease activity in Systemic Lupus Erythematosus. Cytokine 2012, 60, 583–586. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Wu, T.; Xie, C.; Vanarsa, K.; Han, J.; Mahajan, T.; Oei, H.B.; Ahn, C.; Zhou, X.J.; Putterman, C.; et al. Urine VCAM-1 as a marker of renal pathology activity index in lupus nephritis. Arthritis Res. Ther. 2012, 14, R164-11. [Google Scholar] [CrossRef]
- Chalmers, S.A.; Ramachandran, R.A.; Garcia, S.J.; Der, E.; Herlitz, L.; Ampudia, J.; Chu, D.; Jordan, N.; Zhang, T.; Parodis, I.; et al. The CD6/ALCAM pathway promotes lupus nephritis via T cell–mediated responses. J. Clin. Investig. 2022, 132. [Google Scholar] [CrossRef]
- Ding, H.; Lin, C.; Cai, J.; Guo, Q.; Dai, M.; Mohan, C.; Shen, N. Urinary activated leukocyte cell adhesion molecule as a novel biomarker of lupus nephritis histology. Arthritis Res. Ther. 2020, 22, 122. [Google Scholar] [CrossRef]
- Wu, T.; Du, Y.; Han, J.; Singh, S.; Xie, C.; Guo, Y.; Zhou, X.J.; Ahn, C.; Saxena, R.; Mohan, C. Urinary Angiostatin—A Novel Putative Marker of Renal Pathology Chronicity in Lupus Nephritis. Mol. Cell. Proteom. 2013, 12, 1170–1179. [Google Scholar] [CrossRef]
- Ren, Y.; Xie, J.; Lin, F.; Luo, W.; Zhang, Z.; Mao, P.; Zhong, R.; Liang, Y.; Yang, Z. Serum human epididymis protein 4 is a predictor for developing nephritis in patients with systemic lupus erythematosus: A prospective cohort study. Int. Immunopharmacol. 2018, 60, 189–193. [Google Scholar] [CrossRef]
- Ding, H.; Kharboutli, M.; Saxena, R.; Wu, T. Insulin-like growth factor binding protein-2 as a novel biomarker for disease activity and renal pathology changes in lupus nephritis. Clin. Exp. Immunol. 2016, 184, 11–18. [Google Scholar] [CrossRef]
- Davies, J.C.; Carlsson, E.; Midgley, A.; Smith, E.M.D.; Bruce, I.N.; Beresford, M.W.; Hedrich, C.M. A panel of urinary proteins predicts active lupus nephritis and response to rituximab treatment. Rheumatology 2020, 60, 3747–3759. [Google Scholar] [CrossRef] [PubMed]
- Urrego, T.; Ortiz-Reyes, B.; Vanegas-García, A.L.; Muñoz, C.H.; González, L.A.; Vásquez, G.; Gómez-Puerta, J.A. Utility of urinary transferrin and ceruloplasmin in patients with systemic lupus erythematosus for differentiating patients with lupus nephritis. Reumatol. Clin. 2019, 16, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Choe, J.-Y.; Park, S.-H.; Kim, S.-K. Urine β2-microglobulin is associated with clinical disease activity and renal involvement in female patients with systemic lupus erythematosus. Lupus 2014, 23, 1486–1493. [Google Scholar] [CrossRef] [PubMed]
- Alves, I.; Santos-Pereira, B.; Dalebout, H.; Santos, S.; Vicente, M.M.; Campar, A.; Thepaut, M.; Fieschi, F.; Strahl, S.; Boyaval, F.; et al. Protein Mannosylation as a Diagnostic and Prognostic Biomarker of Lupus Nephritis: An Unusual Glycan Neoepitope in Systemic Lupus Erythematosus. Arthritis Rheumatol. 2021, 73, 2069–2077. [Google Scholar] [CrossRef]
- Brad, H.R. The chemokine network in systemic lupus erythematous nephritis. Front. Biosci. 2008, 13, 904–922. [Google Scholar] [CrossRef]
- Dedong, H.; Feiyan, Z.; Jie, S.; Xiaowei, L.; Shaoyang, W. Analysis of interleukin-17 and interleukin-23 for estimating disease activity and predicting the response to treatment in active lupus nephritis patients. Immunol. Lett. 2019, 210, 33–39. [Google Scholar] [CrossRef]
- Stanley, S.; Mok, C.C.; Vanarsa, K.; Habazi, D.; Li, J.; Pedroza, C.; Saxena, R.; Mohan, C. Identification of Low-Abundance Urinary Biomarkers in Lupus Nephritis Using Electrochemiluminescence Immunoassays. Arthritis Rheumatol. 2019, 71, 744–755. [Google Scholar] [CrossRef]
- Fava, A.; Rao, D.A.; Mohan, C.; Zhang, T.; Rosenberg, A.; Fenaroli, P.; Belmont, H.M.; Izmirly, P.; Clancy, R.; Trujillo, J.M.; et al. Urine Proteomics and Renal Single-Cell Transcriptomics Implicate Interleukin-16 in Lupus Nephritis. Arthritis Rheumatol. 2021, 74, 829–839. [Google Scholar] [CrossRef]
- Vanarsa, K.; Soomro, S.; Zhang, T.; Strachan, B.; Pedroza, C.; Nidhi, M.; Cicalese, P.; Gidley, C.; Dasari, S.; Mohan, S.; et al. Quantitative planar array screen of 1000 proteins uncovers novel urinary protein biomarkers of lupus nephritis. Ann. Rheum. Dis. 2020, 79, 1349–1361. [Google Scholar] [CrossRef]
- Puapatanakul, P.; Chansritrakul, S.; Susantitaphong, P.; Ueaphongsukkit, T.; Eiam-Ong, S.; Praditpornsilpa, K.; Kittanamongkolchai, W.; Avihingsanon, Y. Interferon-Inducible Protein 10 and Disease Activity in Systemic Lupus Erythematosus and Lupus Nephritis: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2019, 20, 4954. [Google Scholar] [CrossRef]
- Singh, S.; Anshita, D.; Ravichandiran, V. MCP-1: Function, regulation, and involvement in disease. Int. Immunopharmacol. 2021, 101, 107598. [Google Scholar] [CrossRef] [PubMed]
- Parodis, I.; Ding, H.; Zickert, A.; Arnaud, L.; Larsson, A.; Svenungsson, E.; Mohan, C.; Gunnarsson, I. Serum soluble tumour necrosis factor receptor-2 (sTNFR2) as a biomarker of kidney tissue damage and long-term renal outcome in lupus nephritis. Scand. J. Rheumatol. 2016, 46, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Rosa, R.F.; Takei, K.; Araújo, N.C.; Loduca, S.M.; Szajubok, J.C.; Chahade, W.H. Monocyte Chemoattractant-1 as a Urinary Biomarker for the Diagnosis of Activity of Lupus Nephritis in Brazilian Patients. J. Rheumatol. 2012, 39, 1948–1954. [Google Scholar] [CrossRef]
- Singh, R.G.; Usha; Rathore, S.S.; Behura, S.K.; Singh, N.K. Urinary MCP-1 as diagnostic and prognostic marker in patients with lupus nephritis flare. Lupus 2012, 21, 1214–1218. [Google Scholar] [CrossRef] [PubMed]
- Bona, N.; Pezzarini, E.; Balbi, B.; Daniele, S.M.; Rossi, M.F.; Monje, A.L.; Basiglio, C.L.; Pelusa, H.F.; Arriaga, S.M.M. Oxidative stress, inflammation and disease activity biomarkers in lupus nephropathy. Lupus 2020, 29, 311–323. [Google Scholar] [CrossRef]
- Liu, L.; Wang, R.; Ding, H.; Tian, L.; Gao, T.; Bao, C. The utility of urinary biomarker panel in predicting renal pathology and treatment response in Chinese lupus nephritis patients. PLoS ONE 2020, 15, e0240942. [Google Scholar] [CrossRef] [PubMed]
- Alharazy, S.; Kong, N.C.; Mohd, M.; Shah, S.A.; Ba’in, A.; Abdul Gafor, A.H. Urine Monocyte Chemoattractant Protein-1 and Lupus Nephritis Disease Activity: Preliminary Report of a Prospective Longitudinal Study. Autoimmune Dis. 2015, 2015, 962046. [Google Scholar] [CrossRef]
- Dong, X.W.; Zheng, Z.H.; Ding, J.; Luo, X.; Li, Z.Q.; Li, Y.; Rong, M.Y.; Fu, Y.L.; Shi, J.H.; Yu, L.C.; et al. Combined detection of uMCP-1 and uTWEAK for rapid discrimination of severe lupus nephritis. Lupus 2018, 27, 971–981. [Google Scholar] [CrossRef]
- Taha, H.A.; Abdallah, N.H.; Salem, M.N.; Hamouda, A.H.; Abd Elazeem, M.I.; Eesa, N.N. Urinary and tissue monocyte chemoattractant protein1 (MCP1) in lupus nephritis patients. Egypt. Rheumatol. 2017, 39, 145–150. [Google Scholar] [CrossRef]
- Xia, Y.-R.; Li, Q.-R.; Wang, J.-P.; Guo, H.-S.; Bao, Y.-Q.; Mao, Y.-M.; Wu, J.; Pan, H.-F.; Ye, D.-Q. Diagnostic value of urinary monocyte chemoattractant protein-1 in evaluating the activity of lupus nephritis: A meta-analysis. Lupus 2020, 29, 599–606. [Google Scholar] [CrossRef]
- Urrego-Callejas, T.; Álvarez, S.S.; Arias, L.F.; Reyes, B.O.; Vanegas-García, A.L.; A González, L.; Muñoz-Vahos, C.H.; Vásquez, G.; Quintana, L.F.; Gómez-Puerta, J.A. Urinary levels of ceruloplasmin and monocyte chemoattractant protein-1 correlate with extra-capillary proliferation and chronic damage in patients with lupus nephritis. Clin. Rheumatol. 2020, 40, 1853–1859. [Google Scholar] [CrossRef] [PubMed]
- Soff, G.A. Angiostatin and angiostatin-related proteins. Cancer Metastasis Rev. 2000, 19, 97–107. [Google Scholar] [CrossRef]
- O’Reilly, M.S.; Holmgren, L.; Shing, Y.; Chen, C.; Rosenthal, R.A.; Moses, M.; Lane, W.S.; Cao, Y.; Sage, E.; Folkman, J. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a lewis lung carcinoma. Cell 1994, 79, 315–328. [Google Scholar] [CrossRef]
- Soliman, S.; Mohamed, F.A.; Ismail, F.M.; Stanley, S.; Saxena, R.; Mohan, C. Urine angiostatin and VCAM-1 surpass conventional metrics in predicting elevated renal pathology activity indices in lupus nephritis. Int. J. Rheum. Dis. 2017, 20, 1714–1727. [Google Scholar] [CrossRef]
- Song, D.; Wu, L.-H.; Wang, F.-M.; Yang, X.-W.; Zhu, D.; Chen, M.; Yu, F.; Liu, G.; Zhao, M.-H. The spectrum of renal thrombotic microangiopathy in lupus nephritis. Arthritis Res. Ther. 2013, 15, R12. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Stanley, S.; Ding, H.; Zhang, T.; Truong, V.T.T.; Celhar, T.; Fairhurst, A.-M.; Pedroza, C.; Petri, M.; Saxena, R.; et al. Urinary pro-thrombotic, anti-thrombotic, and fibrinolytic molecules as biomarkers of lupus nephritis. Arth. Res. Ther. 2019, 21, 176. [Google Scholar] [CrossRef]
- Springer, T.A. Adhesion receptors of the immune system. Nature 1990, 346, 425–434. [Google Scholar] [CrossRef]
- Parodis, I.; Gokaraju, S.; Zickert, A.; Vanarsa, K.; Zhang, T.; Habazi, D.; Botto, J.; Alves, C.S.; Giannopoulos, P.; Larsson, A.; et al. ALCAM and VCAM-1 as urine biomarkers of activity and long-term renal outcome in systemic lupus erythematosus. Rheumatology 2019, 59, 2237–2249. [Google Scholar] [CrossRef]
- Howe, H.S.; Kong, K.O.; Thong, B.Y.; Law, W.G.; Chia, F.L.A.; Lian, T.Y.; Lau, T.C.; Chng, H.H.; Leung, B.P.L. Urine sVCAM-1 and sICAM-1 levels are elevated in lupus nephritis. Int. J. Rheum. Dis. 2012, 15, 13–16. [Google Scholar] [CrossRef]
- Mejia-Vilet, J.M.; Zhang, X.L.; Cruz, C.; Cano-Verduzco, M.L.; Shapiro, J.P.; Nagaraja, H.N.; Morales-Buenrostro, L.E.; Rovin, B.H. Urinary Soluble CD163: A Novel Noninvasive Biomarker of Activity for Lupus Nephritis. J. Am. Soc. Nephrol. 2020, 31, 1335–1347. [Google Scholar] [CrossRef]
- Endo, N.; Tsuboi, N.; Furuhashi, K.; Shi, Y.; Du, Q.; Abe, T.; Hori, M.; Imaizumi, T.; Kim, H.; Katsuno, T.; et al. Urinary soluble CD163 level reflects glomerular inflammation in human lupus nephritis. Nephrol. Dial. Transplant. 2016, 31, 2023–2033. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, H.; Vanarsa, K.; Gidley, G.; Mok, C.C.; Petri, M.; Saxena, R.; Mohan, C. Association of Urine sCD163 With Proliferative Lupus Nephritis, Fibrinoid Necrosis, Cellular Crescents and Intrarenal M2 Macrophages. Front. Immunol. 2020, 11, 671. [Google Scholar] [CrossRef] [PubMed]
- Bock, M.; Heijnen, I.; Trendelenburg, M. Anti-C1q Antibodies as a Follow-Up Marker in SLE Patients. PLoS ONE 2015, 10, e0123572. [Google Scholar] [CrossRef] [PubMed]
- Kianmehr, N.; Khoshmirsafa, M.; Shekarabi, M.; Falak, R.; Haghighi, A.; Masoodian, M.; Seif, F.; Omidi, F.; Shirani, F.; Dadfar, N. High frequency of concurrent anti-C1q and anti-dsDNA but not anti-C3b antibodies in patients with Lupus Nephritis. J. Immunoass. Immunochem. 2021, 42, 406–423. [Google Scholar] [CrossRef]
- Fatemi, A.; Samadi, G.; Sayedbonakdar, Z.; Smiley, A. Anti-C1q antibody in patients with lupus nephritic flare: 18-month follow-up and a nested case-control study. Mod. Rheumatol. 2015, 26, 233–239. [Google Scholar] [CrossRef]
- Fasano, S.; Pierro, L.; Borgia, A.; Coscia, M.A.; Formica, R.; Bucci, L.; Riccardi, A.; Ciccia, F. Biomarker panels may be superior over single molecules in prediction of renal flares in systemic lupus erythematosus: An exploratory study. Rheumatology 2020, 59, 3193–3200. [Google Scholar] [CrossRef]
- Yap, D.Y.H.; Yung, S.; Zhang, Q.; Tang, C.; Chan, T.M. Serum level of proximal renal tubular epithelial cell-binding immunoglobulin G in patients with lupus nephritis. Lupus 2015, 25, 46–53. [Google Scholar] [CrossRef]
- Selvaraja, M.; Abdullah, M.; Arip, M.; Chin, V.K.; Shah, A.; Nordin, S.A. Elevated interleukin-25 and its association to Th2 cytokines in systemic lupus erythematosus with lupus nephritis. PLoS ONE 2019, 14, e0224707. [Google Scholar] [CrossRef]
- Ruchakorn, N.; Ngamjanyaporn, P.; Suangtamai, T.; Kafaksom, T.; Polpanumas, C.; Petpisit, V.; Pisitkun, T.; Pisitkun, P. Performance of cytokine models in predicting SLE activity. Arthritis Res. Ther. 2019, 21, 287. [Google Scholar] [CrossRef]
- Buyon, J.P.; Kim, M.Y.; Guerra, M.M.; Lu, S.; Reeves, E.; Petri, M.; Laskin, C.A.; Lockshin, M.D.; Sammaritano, L.R.; Branch, D.W.; et al. Kidney Outcomes and Risk Factors for Nephritis (Flare/De Novo) in a Multiethnic Cohort of Pregnant Patients with Lupus. Clin. J. Am. Soc. Nephrol. 2017, 12, 940–946. [Google Scholar] [CrossRef]
- Dolff, S.; Abdulahad, W.H.; Arends, S.; Van Dijk, M.C.; Limburg, P.C.; Kallenberg, C.G.; Bijl, M. Urinary CD8+ T-cell counts discriminate between active and inactive lupus nephritis. Arthritis Res. Ther. 2013, 15, R36. [Google Scholar] [CrossRef] [PubMed]
- Nordin, F.; Shaharir, S.S.; Wahab, A.A.; Mustafar, R.; Gafor, A.H.A.; Said, M.S.M.; Rajalingham, S.; Shah, S.A. Serum and urine interleukin-17A levels as biomarkers of disease activity in systemic lupus erythematosus. Int. J. Rheum. Dis. 2019, 22, 1419–1426. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tao, Y.; Liu, Y.; Zhao, Y.; Song, C.; Zhou, B.; Wang, T.; Gao, L.; Zhang, L.; Hu, H. Rapid detection of urinary soluble intercellular adhesion molecule-1 for determination of lupus nephritis activity. Medicine 2018, 97, e11287. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.Y.; Yung, S.; Chau, M.K.; Tang, C.S.; Yap, D.Y.; Tang, A.H.; Ying, S.K.; Lee, C.K.; Chan, T.M. Clinico-pathological associations of serum VCAM-1 and ICAM-1 levels in patients with lupus nephritis. Lupus 2021, 30, 1039–1050. [Google Scholar] [CrossRef]
- Alharazy, S.M.; Kong, N.C.; Mohd, M.; Shah, S.A.; Gafor, A.H.A.; Ba´in, A. The role of urinary neutrophil gelatinase-associated lipocalin in lupus nephritis. Clin. Chim. Acta 2013, 425, 163–168. [Google Scholar] [CrossRef]
- Wu, J.; Wei, L.; Wang, W.; Zhang, X.; Chen, L.; Lin, C. Diagnostic value of progranulin in patients with lupus nephritis and its correlation with disease activity. Rheumatol. Int. 2016, 36, 759–767. [Google Scholar] [CrossRef]
- Go, D.J.; Lee, J.Y.; Kang, M.J.; Lee, E.Y.; Yi, E.C.; Song, Y.W. Urinary vitamin D-binding protein, a novel biomarker for lupus nephritis, predicts the development of proteinuric flare. Lupus 2018, 27, 1600–1615. [Google Scholar] [CrossRef]
- Aggarwal, A.; Gupta, R.; Negi, V.S.; Rajasekhar, L.; Misra, R.; Singh, P.; Chaturvedi, V.; Sinha, S. Urinary haptoglobin, alpha-1 anti-chymotrypsin and retinol binding protein identified by proteomics as potential biomarkers for lupus nephritis. Clin. Exp. Immunol. 2017, 188, 254–262. [Google Scholar] [CrossRef]
- Yu, K.Y.C.; Yung, S.; Chau, M.K.M.; O Tang, C.S.; Yap, D.Y.H.; Tang, A.H.N.; Ying, S.K.Y.; Lee, C.K.; Chan, T.M. Serum syndecan-1, hyaluronan and thrombomodulin levels in patients with lupus nephritis. Rheumatology 2021, 60, 737–750. [Google Scholar] [CrossRef]
- Kim, K.-J.; Kim, J.-Y.; Baek, I.-W.; Kim, W.-U.; Cho, C.-S. Elevated Serum Levels of Syndecan-1 Are Associated with Renal Involvement in Patients with Systemic Lupus Erythematosus. J. Rheumatol. 2015, 42, 202–209. [Google Scholar] [CrossRef]
- Smith, M.A.; Henault, J.; Karnell, J.L.; Parker, M.L.; Riggs, J.M.; Sinibaldi, D.; Taylor, D.K.; Ettinger, R.; Grant, E.P.; Sanjuan, M.A.; et al. SLE Plasma Profiling Identifies Unique Signatures of Lupus Nephritis and Discoid Lupus. Sci. Rep. 2019, 9, 14433. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Song, D.; Wu, L.-H.; Yu, F.; Zhao, M.-H. Serum levels and renal deposition of C1q complement component and its antibodies reflect disease activity of lupus nephritis. BMC Nephrol. 2013, 14, 63. [Google Scholar] [CrossRef] [PubMed]
- Enghard, P.; Rieder, C.; Kopetschke, K.; Klocke, J.R.; Undeutsch, R.; Biesen, R.; Dragun, D.; Gollasch, M.; Schneider, U.; Aupperle, K.; et al. Urinary CD4 T cells identify SLE patients with proliferative lupus nephritis and can be used to monitor treatment response. Ann. Rheum. Dis. 2013, 73, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Menke, J.; Amann, K.; Cavagna, L.; Blettner, M.; Weinmann, A.; Schwarting, A.; Kelley, V.R. Colony-Stimulating Factor-1: A Potential Biomarker for Lupus Nephritis. J. Am. Soc. Nephrol. 2014, 26, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Xie, C.; Han, J.; Ye, Y.; Singh, S.; Zhou, J.; Li, Y.; Ding, H.; Li, Q.-Z.; Zhou, X.; et al. Insulin-Like Growth Factor Binding Protein-4 as a Marker of Chronic Lupus Nephritis. PLoS ONE 2016, 11, e0151491. [Google Scholar] [CrossRef]
- Hutcheson, J.; Ye, Y.; Han, J.; Arriens, C.; Saxena, R.; Li, Q.-Z.; Mohan, C.; Wu, T. Resistin as a potential marker of renal disease in lupus nephritis. Clin. Exp. Immunol. 2015, 179, 435–443. [Google Scholar] [CrossRef]
- Wantanasiri, P.; Satirapoj, B.; Charoenpitakchai, M.; Aramwit, P. Periostin: A novel tissue biomarker correlates with chronicity index and renal function in lupus nephritis patients. Lupus 2015, 24, 835–845. [Google Scholar] [CrossRef]
- Fiebeler, A.; Park, J.-K.; Muller, D.N.; Lindschau, C.; Mengel, M.; Merkel, S.; Banas, B.; Luft, F.C.; Haller, H. Growth arrest specific protein 6/Axl signaling in human inflammatory renal diseases. Am. J. Kidney Dis. 2004, 43, 286–295. [Google Scholar] [CrossRef]
- Rothlin, C.V.; Ghosh, S.; Zuniga, E.I.; Oldstone, M.B.; Lemke, G. TAM Receptors Are Pleiotropic Inhibitors of the Innate Immune Response. Cell 2007, 131, 1124–1136. [Google Scholar] [CrossRef]
- Parodis, I.; Ding, H.; Zickert, A.; Cosson, G.; Fathima, M.; Grönwall, C.; Mohan, C.; Gunnarsson, I. Serum Axl predicts histology-based response to induction therapy and long-term renal outcome in lupus nephritis. PLoS ONE 2019, 14, e0212068. [Google Scholar] [CrossRef]
- Ekman, C.; Jönsen, A.; Sturfelt, G.; Bengtsson, A.A.; Dahlbäck, B. Plasma concentrations of Gas6 and sAxl correlate with disease activity in systemic lupus erythematosus. Rheumatology 2011, 50, 1064–1069. [Google Scholar] [CrossRef]
- Möckel, T.; Basta, F.; Weinmann-Menke, J.; Schwarting, A. B cell activating factor (BAFF): Structure, functions, autoimmunity and clinical implications in Systemic Lupus Erythematosus (SLE). Autoimmun. Rev. 2020, 20, 102736. [Google Scholar] [CrossRef]
- A Levy, R.; Gonzalez-Rivera, T.; Khamashta, M.; Fox, N.L.; Jones-Leone, A.; Rubin, B.; Burriss, S.W.; Gairy, K.; van Maurik, A.; A Roth, D. 10 Years of belimumab experience: What have we learnt? Lupus 2021, 30, 1705–1721. [Google Scholar] [CrossRef] [PubMed]
- Parodis, I.; Zickert, A.; Sundelin, B.; Axelsson, M.; Gerhardsson, J.; Svenungsson, E.; Malmström, V.; Gunnarsson, I. Evaluation of B lymphocyte stimulator and a proliferation inducing ligand as candidate biomarkers in lupus nephritis based on clinical and histopathological outcome following induction therapy. Lupus Sci. Med. 2015, 2, e000061. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, E.; Quist, A.; Davies, J.C.; Midgley, A.; Smith, E.M.; Bruce, I.N.; Beresford, M.W.; Hedrich, C.M. Longitudinal analysis of urinary proteins in lupus nephritis—A pilot study. Clin. Immunol. 2022, 236, 108948. [Google Scholar] [CrossRef] [PubMed]
- Ichinose, K.; Kitamura, M.; Sato, S.; Fujikawa, K.; Horai, Y.; Matsuoka, N.; Tsuboi, M.; Nonaka, F.; Shimizu, T.; Fukui, S.; et al. Podocyte foot process width is a prediction marker for complete renal response at 6 and 12 months after induction therapy in lupus nephritis. Clin. Immunol. 2018, 197, 161–168. [Google Scholar] [CrossRef]
- Wang, S.; Wu, M.; Chiriboga, L.; Zeck, B.; Belmont, H. Membrane attack complex (mac) deposition in lupus nephritis is associated with hypertension and poor clinical response to treatment. Semin. Arthritis Rheum. 2018, 48, 256–262. [Google Scholar] [CrossRef]
- Wang, S.; Wu, M.; Chiriboga, L.; Zeck, B.; Goilav, B.; Wang, S.; Jimenez, A.L.; Putterman, C.; Schwartz, D.; Pullman, J.; et al. Membrane attack complex (MAC) deposition in renal tubules is associated with interstitial fibrosis and tubular atrophy: A pilot study. Lupus Sci. Med. 2022, 9, e000576. [Google Scholar] [CrossRef]
- Treamtrakanpon, W.; Tantivitayakul, P.; Benjachat, T.; Somparn, P.; Kittikowit, W.; Eiam-Ong, S.; Leelahavanichkul, A.; Hirankarn, N.; Avihingsanon, Y. APRIL, a proliferation-inducing ligand, as a potential marker of lupus nephritis. Arthritis Res. Ther. 2012, 14, R252. [Google Scholar] [CrossRef]
- Wolf, B.J.; Spainhour, J.C.; Arthur, J.M.; Janech, M.G.; Petri, M.; Oates, J.C. Development of Biomarker Models to Predict Outcomes in Lupus Nephritis. Arthritis Rheumatol. 2016, 68, 1955–1963. [Google Scholar] [CrossRef]
- Cheng, F.-J.; Zhou, X.-J.; Zhao, Y.-F.; Zhao, M.-H.; Zhang, H. Human neutrophil peptide 1-3, a component of the neutrophil extracellular trap, as a potential biomarker of lupus nephritis. Int. J. Rheum. Dis. 2014, 18, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Torres-Salido, M.T.; Sanchis, M.; Solé, C.; Moliné, T.; Vidal, M.; Solà, A.; Hotter, G.; Ordi-Ros, J.; Cortés-Hernández, J. Urinary Neuropilin-1: A Predictive Biomarker for Renal Outcome in Lupus Nephritis. Int. J. Mol. Sci. 2019, 20, 4601. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.C.; Midgley, A.; Carlsson, E.; Donohue, S.; Bruce, I.N.; Beresford, M.W.; Hedrich, C.M. Urine and serum S100A8/A9 and S100A12 associate with active lupus nephritis and may predict response to rituximab treatment. RMD Open 2020, 6, e001257. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Vives, E.; Solé, C.; Moliné, T.; Vidal, M.; Agraz, I.; Ordi-Ros, J.; Cortés-Hernández, J. The Urinary Exosomal miRNA Expression Profile is Predictive of Clinical Response in Lupus Nephritis. Int. J. Mol. Sci. 2020, 21, 1372. [Google Scholar] [CrossRef] [PubMed]
- Tamirou, F.; Lauwerys, B.R.; Dall’Era, M.; Mackay, M.; Rovin, B.; Cervera, R.; A Houssiau, F.; Maintain Nephritis on behalf of the MAINTAIN Nephritis Trial investigators. A proteinuria cut-off level of 0.7 g/day after 12 months of treatment best predicts long-term renal outcome in lupus nephritis: Data from the MAINTAIN Nephritis Trial. Lupus Sci. Med. 2015, 2, e000123. [Google Scholar] [CrossRef]
- Dall’Era, M.; Cisternas, M.G.; Smilek, D.E.; Straub, L.; Houssiau, F.A.; Cervera, R.; Rovin, B.H.; Mackay, M. Predictors of Long-Term Renal Outcome in Lupus Nephritis Trials: Lessons Learned from the Euro-Lupus Nephritis Cohort. Arthritis Rheumatol. 2015, 67, 1305–1313. [Google Scholar] [CrossRef]
- Ugolini-Lopes, M.R.; Seguro, L.P.C.; Castro, M.X.F.; Daffre, D.; Lopes, A.C.; Borba, E.; Bonfa, E. Early proteinuria response: A valid real-life situation predictor of long-term lupus renal outcome in an ethnically diverse group with severe biopsy-proven nephritis? Lupus Sci. Med. 2017, 4, e000213. [Google Scholar] [CrossRef]
- Tamirou, F.; D’Cruz, D.; Sangle, S.; Remy, P.; Vasconcelos, C.; Fiehn, C.; Guttierez, M.D.M.A.; Gilboe, I.-M.; Tektonidou, M.; Blockmans, D.; et al. Long-term follow-up of the MAINTAIN Nephritis Trial, comparing azathioprine and mycophenolate mofetil as maintenance therapy of lupus nephritis. Ann. Rheum. Dis. 2015, 75, 526–531. [Google Scholar] [CrossRef]
- Koo, H.S.; Kim, S.; Chin, H.J. Remission of proteinuria indicates good prognosis in patients with diffuse proliferative lupus nephritis. Lupus 2015, 25, 3–11. [Google Scholar] [CrossRef]
- Almaani, S.; Fussner, L.; Brodsky, S.; Meara, A.; Jayne, D. ANCA-Associated Vasculitis: An Update. J. Clin. Med. 2021, 10, 1446. [Google Scholar] [CrossRef]
- Nakazawa, D.; Masuda, S.; Tomaru, U.; Ishizu, A. Pathogenesis and therapeutic interventions for ANCA-associated vasculitis. Nat. Rev. Rheumatol. 2018, 15, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, X.; Cai, J.; Xie, L.; Wang, W.; Tang, S.; Yin, S.; Gao, X.; Zhang, J.; Zhao, J.; et al. Clinicopathologic Characteristics and Outcomes of Lupus Nephritis With Antineutrophil Cytoplasmic Antibody: A Retrospective Study. Medicine 2016, 95, e2580. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shang, J.; Xiao, J.; Zhao, Z. Clinicopathologic characteristics and outcomes of lupus nephritis with positive antineutrophil cytoplasmic antibody. Ren. Fail. 2020, 42, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Wu, L.-H.; Tan, Y.; Li, L.-H.; Wang, C.-L.; Wang, W.-K.; Qu, Z.; Chen, M.-H.; Gao, J.-J.; Li, Z.-Y.; et al. Tubulointerstitial lesions of patients with lupus nephritis classified by the 2003 International Society of Nephrology and Renal Pathology Society system. Kidney Int. 2010, 77, 820–829. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.; Chang, A.; Brandt, D.; Guttikonda, R.; Utset, T.O.; Clark, M.R. Predicting outcomes of lupus nephritis with tubulointerstitial inflammation and scarring. Arthritis Care Res. 2011, 63, 865–874. [Google Scholar] [CrossRef]
- Alsuwaida, A. Interstitial inflammation and long-term renal outcomes in lupus nephritis. Lupus 2013, 22, 1446–1454. [Google Scholar] [CrossRef]
- Parodis, I.; Adamichou, C.; Aydin, S.; Gomez, A.; Demoulin, N.; Weinmann-Menke, J.; A Houssiau, F.; Tamirou, F. Per-protocol repeat kidney biopsy portends relapse and long-term outcome in incident cases of proliferative lupus nephritis. Rheumatology 2020, 59, 3424–3434. [Google Scholar] [CrossRef]
- Bajema, I.M.; Wilhelmus, S.; Alpers, C.E.; Bruijn, J.A.; Colvin, R.B.; Cook, H.T.; D’Agati, V.D.; Ferrario, F.; Haas, M.; Jennette, J.C.; et al. Revision of the International Society of Nephrology/Renal Pathology Society classification for lupus nephritis: Clarification of definitions, and modified National Institutes of Health activity and chronicity indices. Kidney Int. 2018, 93, 789–796. [Google Scholar] [CrossRef]
- Hachiya, A.; Karasawa, M.; Imaizumi, T.; Kato, N.; Katsuno, T.; Ishimoto, T.; Kosugi, T.; Tsuboi, N.; Maruyama, S. The ISN/RPS 2016 classification predicts renal prognosis in patients with first-onset class III/IV lupus nephritis. Sci. Rep. 2021, 11, 1525. [Google Scholar] [CrossRef]
- Wu, L.-H.; Yu, F.; Tan, Y.; Qu, Z.; Chen, M.-H.; Wang, S.-X.; Liu, G.; Zhao, M.-H. Inclusion of renal vascular lesions in the 2003 ISN/RPS system for classifying lupus nephritis improves renal outcome predictions. Kidney Int. 2013, 83, 715–723. [Google Scholar] [CrossRef]
- Tan, Y.; Yu, F.; Liu, G. Diverse vascular lesions in systemic lupus erythematosus and clinical implications. Curr. Opin. Nephrol. Hypertens. 2014, 23, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Gerhardsson, J.; Sundelin, B.; Zickert, A.; Padyukov, L.; Svenungsson, E.; Gunnarsson, I. Histological antiphospholipid-associated nephropathy versus lupus nephritis in patients with systemic lupus erythematosus: An observational cross-sectional study with longitudinal follow-up. Arthritis Res. Ther. 2015, 17, 109. [Google Scholar] [CrossRef] [PubMed]
- Leatherwood, C.; Speyer, C.B.; Feldman, C.H.; D’Silva, K.; A Gómez-Puerta, J.; Hoover, P.J.; Waikar, S.S.; McMahon, G.M.; Rennke, H.G.; Costenbader, K.H. Clinical characteristics and renal prognosis associated with interstitial fibrosis and tubular atrophy (IFTA) and vascular injury in lupus nephritis biopsies. Semin. Arthritis Rheum. 2019, 49, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Yu, X.; Wu, L.; Tan, Y.; Qu, Z.; Yu, F. The Spectrum of C4d Deposition in Renal Biopsies of Lupus Nephritis Patients. Front. Immunol. 2021, 12, 654652. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, T.; Kim, M.; Lee, H.Y.; Kim, Y.; Kang, M.S.; Kim, J. Activation of the alternative complement pathway predicts renal outcome in patients with lupus nephritis. Lupus 2020, 29, 862–871. [Google Scholar] [CrossRef]
- Chua, J.S.; Baelde, H.J.; Zandbergen, M.; Wilhelmus, S.; van Es, L.A.; de Fijter, J.W.; Bruijn, J.A.; Bajema, I.M.; Cohen, D. Complement Factor C4d Is a Common Denominator in Thrombotic Microangiopathy. J. Am. Soc. Nephrol. 2015, 26, 2239–2247. [Google Scholar] [CrossRef]
- Cohen, D.; Koopmans, M.; Hovinga, I.C.L.K.; Berger, S.P.; van Groningen, M.R.; Steup-Beekman, G.M.; de Heer, E.; Bruijn, J.A.; Bajema, I.M. Potential for glomerular C4d as an indicator of thrombotic microangiopathy in lupus nephritis. Arthritis Care Res. 2008, 58, 2460–2469. [Google Scholar] [CrossRef]
- Chen, Y.M.; Hung, W.T.; Liao, Y.W.; Hsu, C.Y.; Hsieh, T.Y.; Chen, H.H.; Hsieh, C.W.; Lin, C.T.; Lai, K.L.; Tang, K.T.; et al. Combination immunosuppressant therapy and lupus nephritis outcome: A hospital-based study. Lupus 2019, 28, 658–666. [Google Scholar] [CrossRef]
- Mejia-Vilet, J.M.; Shapiro, J.P.; Zhang, X.L.; Cruz, C.; Zimmerman, G.; Méndez-Pérez, R.A.; Cano-Verduzco, M.L.; Parikh, S.V.; Nagaraja, H.N.; Morales-Buenrostro, L.E.; et al. Association Between Urinary Epidermal Growth Factor and Renal Prognosis in Lupus Nephritis. Arthritis Rheumatol. 2020, 73, 244–254. [Google Scholar] [CrossRef]
- Parodis, I.; Tamirou, F.; Houssiau, F.A. Treat-to-Target in Lupus Nephritis. What is the Role of the Repeat Kidney Biopsy? Arch. Immunol. et Ther. Exp. 2022, 70, 8. [Google Scholar] [CrossRef]
- Parodis, I.; Tamirou, F.; A Houssiau, F. Prediction of prognosis and renal outcome in lupus nephritis. Lupus Sci. Med. 2020, 7, e000389. [Google Scholar] [CrossRef] [PubMed]
Biomarker | Sample | Comparator | Metrics | References |
---|---|---|---|---|
Autoantibodies | ||||
Anti-C1q (+) | Serum/Plasma | Non-renal SLE | AUC = 0.76; sens.: 74%; spec.: 55% | Gomez-Puerta et al., 2018 [41] |
Non-renal SLE | OR = 4.4 | Sjöwall et al., 2018 [50] | ||
Non-renal SLE | sens.: 63%; spec.: 71% | Birmingham et al., 2016 [51] | ||
Active non-renal SLE | AUC = 0.64; sens.: 47%; spec.: 83% | Pang et al., 2016 [52] | ||
Anti-dsDNA (+) | Serum/Plasma | Non-renal SLE | AUC = 0.65 | Bruschi et al., 2021 [20]* |
Healthy controls | AUC = 0.94 | |||
Non-renal SLE | OR = 2.1 | Hardt et al., 2018 [53] | ||
Non-renal SLE | AUC = 0.72; sens.: 72%; spec.: 73%; HR = 5.8; HRadj = 2.7 | Liu et al., 2021 [54] | ||
Non-renal SLE | AUC = 0.89; sens.: 100%; spec.: 71%; PPV:44%; NPV: 100%; HR = 1.1 | Kwon et al., 2020 [55] | ||
Active non-renal SLE; Inactive SLE | sens.: 94%; spec.: 40%; PPV: 43%; NPV: 93% | Mok et al., 2016 [56] | ||
Non-renal SLE | OR = 2.9 | Sjöwall et al., 2018 [50] | ||
Non-renal SLE | OR = 3.3 | Barnado et al., 2019 [57] | ||
Anti-dsDNA-negative SLE | OR = 4.6 | |||
Anti-ENO-1 (+) | Serum/Plasma | Non-renal SLE | AUC = 0.81; sens.: 82%; spec.: 91% | Huang et al., 2019 [18] |
Non-renal SLE | AUC = 0.82 | Bruschi et al., 2021 [20] * | ||
Healthy controls | AUC = 0.94 | |||
PHACTR4 icx (+) | Serum/Plasma | Healthy controls | AUC = 0.99 | Tang et al., 2022 [58] |
P3H1 icx (+) | AUC = 0.82 | |||
RGS12 icx (+) | AUC = 0.90 | |||
Complements | ||||
C3 (low) | Serum/Plasma | Non-renal SLE | HR = 6.4 | Liu et al., 2021 [54] |
Non-renal SLE | sens.: 78%; spec.: 92%; PPV: 97%; NPV: 58%; OR = 39 | Ishizaki et al., 2015 [59] | ||
Non-renal SLE | sens.: 74%; spec.: 64%; PPV: 67%; NPV: 71%; OR = 5.0 | Martin et al., 2020 [60] | ||
Active non-renal SLE; Inactive SLE | sens.: 97%; spec.: 32%; PPV: 41%; NPV: 95% | Mok et al., 2016 [56] | ||
C4 (low) | Serum/Plasma | Non-renal SLE | sens.: 70%; spec.: 68%; PPV: 69%; NPV: 70%; OR = 5.1 | Martin et al., 2020 [56] |
Non-renal SLE | HR = 5.0 | Liu et al., 2021 [54] | ||
Kidney disease-related markers | ||||
Albumin to globulin ratio (low) | Urine | Non-renal SLE | AUC = 0.65; sens.: 84%; spec.: 52%; HR = 5.5; HRadj = 7.0 | Liu et al., 2021 [54] |
Creatinine (↑) | Serum/Plasma | Non-renal SLE | AUC = 0.83; sens.: 75%; spec.: 76%; PPV: 86%; NPV: 61% | Yang et al., 2016 [23] |
Proteinuria (↑) (>500 mg/24 h) | Urine | Non-renal SLE | AUC = 0.99 | Jakiela et al., 2018 [61] |
Urea (↑) | Serum/Plasma | Non-renal SLE | AUC = 0.82; sens.: 60%; spec.: 94%; PPV: 95%; NPV: 55% | Yang et al., 2016 [23] |
Uric acid (↑) | Serum/Plasma | Non-renal SLE | AUC = 0.86; sens.: 78%; spec.: 79%; PPV: 70%; NPV: 75% | Calich et al., 2018 [22] |
Non-renal SLE | AUC = 0.80; sens.: 75%; spec.: 78%; PPV: 87%; NPV: 62% | Yang et al., 2016 [23] | ||
Non-renal SLE | AUC = 0.81; sens.: 83%; spec.: 70%; PPV: 74%; NPV: 80% | Hafez et al., 2021 [24] | ||
Cytokines/chemokines | ||||
APRIL (↑) | Urine | Active non-renal SLE | AUC = 0.78 | Phatak et al., 2017 [62] |
Non-renal SLE | sens.: 38%; spec.: 68% | Vincent et al., 2018 [63] | ||
BAFF (↑) | Urine | Active non-renal SLE | AUC = 0.83 | Phatak et al., 2017 [62] |
Non-renal SLE | sens.: 20%; spec.: 91% | Vincent et al., 2018 [63] | ||
CXCL4 (↑) | Urine | Active non-renal SLE | AUC = 0.64; sens.: 63%; spec.: 61% | Mok et al., 2018 [64] |
MCP-1 (↑) | Urine | Non-renal SLE | AUC = 0.73; sens.: 76%; spec.: 58% | Gómez-Puerta et al., 2018 [41] |
Non-renal SLE | AUC = 0.70 | Barbado et al., 2012 [65] | ||
Non-renal SLE | AUC = 1.00; sens.: 95%; spec.: 93%; PPV: 94%; NPV: 95% | Elsaid et al., 2021 [30] | ||
Healthy controls | AUC = 0.87 | Singh et al., 2012 [66] | ||
TWEAK (↑) | Serum/Plasma | Non-renal SLE | AUC = 0.65; sens.: 81%; spec.: 48%; accuracy: 63%; OR = 1.1 | Choe et al., 2016 [32] |
Active non-renal SLE | AUC = 0.80; sens.: 80%; spec.: 80% | Mirioglu et al., 2020 [31] | ||
Urine | Non-renal SLE | AUC = 0.88; sens.:100%; spec.: 67% | Salem et al., 2018 [26] | |
Non-renal SLE | AUC = 0.87; sens.: 81%; spec.: 67% | Reyes-Martínez et al., 2018 [27] | ||
Non-renal SLE | AUC = 1.00; sens.: 100%; spec.: 100%; PPV: 100%; NPV: 100% | Elsaid et al., 2021 [30] | ||
Cell adhesion molecules | ||||
ALCAM (↑) | Urine | Active non-renal SLE | AUC = 0.75–0.96 | Chalmers et al., 2022 [67] |
Healthy controls | AUC = 0.82–0.96 | |||
Active non-renal SLE | AUC = 0.84 | Ding et al., 2020 [68] | ||
Healthy controls | AUC = 0.93 | |||
VCAM-1 (↑) | Urine | Active non-renal SLE | AUC = 0.73–0.92; sens.: 69%; spec.: 66% | Mok et al., 2018 [64] |
Healthy controls | AUC = 0.92 | Singh et al., 2012 [66] | ||
Other proteins | ||||
Angiostatin (↑) | Urine | Active non-renal SLE | AUC = 0.87; sens.: 80%; spec.: 82% | Mok et al., 2018 [64] |
Healthy controls | AUC = 0.95 | Wu et al., 2013 [69] | ||
Axl (↑) | Serum/Plasma | Active non-renal SLE; Inactive SLE | sens.: 68%; spec.: 77%; PPV: 55%; NPV: 86% | Mok et al., 2016 [56] |
HE4 (↑) | Serum/Plasma | Non-renal SLE | AUC = 0.88; sens.: 77%; spec.: 91% | Yang et al., 2016 [23] |
Non-renal SLE | AUC = 0.71; sens.: 82%; spec.: 53%; HR = 16.8 | Ren et al., 2018 [70] | ||
IGFBP-2 (↑) | Serum/Plasma | CKD not LN | AUC = 0.65 | Ding et al., 2016 [71] |
Healthy controls | AUC = 0.97 | |||
NGAL (↑) | Urine | Active non-renal SLE; Inactive SLE | sens.: 71%; spec.: 90%; PPV: 61%; NPV: 94% | Mok et al., 2016 [56] |
Non-renal SLE | AUC = 0.99; sens.: 98%; spec.: 100% | Li et al., 2019 [42] | ||
Non-renal SLE | AUC = 0.70; sens.: 67%; spec.: 63% | Gómez-Puerta et al., 2018 [41] | ||
sTNFRII (↑) | Serum/Plasma | Active non-renal SLE; Inactive SLE | sens.: 41%; spec.: 81%; PPV: 48%; NPV: 86% | Mok et al., 2016 [56] |
TF (↑) | Urine | Non-renal SLE | AUC = 0.81 | Davies et al., 2021 [72] |
Non-renal SLE | AUC = 0.86 | Urrego et al., 2020 [73] | ||
β2-MG (↑) | Urine | Non-renal SLE | AUC = 0.85; sens.: 82%; spec.: 90% | Huang et al., 2019 [18] |
Non-renal SLE | OR = 1.1 | Choe et al., 2014 [74] | ||
MicroRNAs | ||||
miRNA-21 (↑) | Serum/Plasma | Non-renal SLE; Inactive LN | AUC = 0.89; ORadj = 3.2 | Khoshmirsafa et al., 2019 [45] |
Healthy controls | AUC = 0.91; sens.: 86%; spec.: 63%; PPV: 76%; NPV: 93% | Nakhjavani et al., 2019 [46] | ||
Microparticles | ||||
MP-CX3CR1+ (↑) | Urine | Non-renal SLE | AUC = 0.85; sens.: 63%; spec.: 86% | Burbano et al. [48] |
MP-HLADR+ (↑) | AUC = 0.97; sens.: 85%; spec.: 86% | |||
MP-HMGB1+ (↑) | AUC = 0.99–1.00; sens.: 95–100%; spec.: 88% | |||
Renal tissue markers | ||||
Mannose enriched N-glycan expression (GNA reactivity ≥ 50%) | Kidney biopsy | Healthy controls | AUC = 0.83 | Alves et al., 2021 [75] |
Biomarker | Sample | Main Findings | References |
---|---|---|---|
Autoantibodies | |||
ANCAs (+) | Serum/Plasma | Predictive of increased mortality: RRadj = 3.6; HR = 3.3; HRadj = 3.4 | Wang et al., 2016 [153]; Wang et al., 2020 [154] |
Anti-C1q * (+) | Serum/Plasma | Risk factor for composite outcome (death and doubling of serum creatinine or ESKD) after median follow up of 42 months: HR = 3.9; HRadj = 1.2 | Pang et al., 2016 [52] |
Complement | |||
C3 (low) | Serum/Plasma | Predictive of renal failure within 20 years: RRadj = 2.0 | Petri et al., 2021 [4] |
Kidney disease-related markers | |||
Creatinine (↑) | Serum/Plasma | Higher baseline levels predictive of ESKD: HR = 2.1 | Chen et al., 2019 [169] |
Risk factor for composite outcome after median follow up of 42 months: HRadj = 4.7 | Pang et al., 2016 [52] | ||
Proteinuria (↑) (>500 mg/24 h) | Urine | Predictive of renal failure within 20 years: RRadj = 2.8 | Petri et al., 2021 [4] |
Proteinuric remission indicates good prognosis in patients with diffuse proliferative LN (mean follow up: 157.9 months). RR of composite outcome (sum of mortality and incidence of end stage renal disease) = 0.2 | Koo et al., 2016 [150] | ||
Cell adhesion molecules | |||
ALCAM(↑) (ALCAM/Cr > 0.18 × 10−4) (ALCAM/Cr > 0.17 × 10−4) | Urine | High baseline values are predictive of renal function deterioration (decline in eGFR by ≥25%) at the 10-year follow up. AUC = 0.74; sens.: 73%; spec.: 72%; OR = 6.1 | Parodis et al., 2020 [99] |
VCAM-1 (↑) (VCAM1/Cr > 0.32 × 10−4) (VCAM1/Cr > 0.24 × 10−4) | Urine | High baseline values are predictive of renal function deterioration (decline in eGFR by ≥25%) at the 10-year follow up. AUC = 0.77; sens.: 91; spec.: 76%; OR= 22.9 | Parodis et al., 2020 [99] |
Other proteins/soluble molecules | |||
Axl (↑) (>46.1 ng/mL) | Serum/Plasma | High post treatment values predict good renal outcome (creatinine ≤88.4 μmol/L) over 10 years. AUC = 0.71; sens.: 42%; spec.: 91%; PPV: 80%; NPV: 65% | Parodis et al., 2019 [131] |
CD163 (↑) (>370 ng/mmol) | Urine | Increased risk for doubling of serum creatinine within 6 (HR = 2.8) and 12 (HR = 3.6) months | Mejia-Vilet et al., 2020 [101] |
EGF (↓) (EGF/Cr <5.3 ng/mg at flare time) | Urine | Predicts doubling serum creatinine within 2 years. AUC = 0.82; sens.: 81%; spec.: 77% | Mejia-Vilet et al., 2021 [170] |
sTNFRII (↑) (>7.1 ng/mL) | Serum/Plasma | Higher post treatment levels in CKD≥3 patients compared to CKD1-2 patients. AUC = 0.73; sens.: 73%; spec.: 75% | Parodis et al., 2017 [83] |
Renal tissue markers | |||
Arteriolar C4d deposition (+) | Kidney biopsy | Risk factor for poor renal outcome (average follow up time: 55.8 months): HR = 2.1 | Ding et al., 2021 [165] |
Cellular crescents (+) | Kidney biopsy Kidney biopsy | Predictive of ESKD: HR = 4.4 (cellular crescents) and HR = 5.9 (fibrous crescents) | Chen et al., 2019 [169] |
Fibrous crescents (+) | |||
Glomerular C3 deposition (+) | Kidney biopsy | Positive staining without C1q and C4 deposition (suggestive of alternative pathway-limited activation) is associated with progression of kidney disease (≥50% reduction in eGFR from baseline values or advancement to ESKD) after a mean follow-up of 5.4 years: HR = 4.8; HRadj = 3.5 | Kim et al., 2020 [166] |
IFTA (+) (≥25% of the surface cortical area) | Kidney biopsy | Moderate/severe IFTA is associated with ESKD (HRadj = 5.2) and death (HRadj = 4.2) | Leatherwood et al., 2019 [164] |
Mannose enriched N-glycan expression (GNA reactivity ≥50%) | Kidney biopsy | Increased risk of developing CKD after 1 year: AUC = 0.83; sens.: 67%; spec.: 94%; PPV: 80%; NPV: 87%; OR = 24.3 | Alves et al., 2021 [75] |
Vascular injury (+) (≥25% subintimal narrowing of the lumen) | Kidney biopsy | Moderate/severe vascular injury is associated with ESKD (HRadj = 2.1) | Leatherwood et al., 2019 [164] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palazzo, L.; Lindblom, J.; Mohan, C.; Parodis, I. Current Insights on Biomarkers in Lupus Nephritis: A Systematic Review of the Literature. J. Clin. Med. 2022, 11, 5759. https://doi.org/10.3390/jcm11195759
Palazzo L, Lindblom J, Mohan C, Parodis I. Current Insights on Biomarkers in Lupus Nephritis: A Systematic Review of the Literature. Journal of Clinical Medicine. 2022; 11(19):5759. https://doi.org/10.3390/jcm11195759
Chicago/Turabian StylePalazzo, Leonardo, Julius Lindblom, Chandra Mohan, and Ioannis Parodis. 2022. "Current Insights on Biomarkers in Lupus Nephritis: A Systematic Review of the Literature" Journal of Clinical Medicine 11, no. 19: 5759. https://doi.org/10.3390/jcm11195759
APA StylePalazzo, L., Lindblom, J., Mohan, C., & Parodis, I. (2022). Current Insights on Biomarkers in Lupus Nephritis: A Systematic Review of the Literature. Journal of Clinical Medicine, 11(19), 5759. https://doi.org/10.3390/jcm11195759